Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
799701.0000Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters. Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene transfer between raw sludge bacteria and the digester microbial community.201627014196
724910.9998Modeling the fate of antibiotic resistance genes and class 1 integrons during thermophilic anaerobic digestion of municipal wastewater solids. This study investigated the use of thermophilic anaerobic digestion for removing antibiotic resistance genes (ARGs) from residual municipal wastewater solids. Four laboratory-scale anaerobic digesters were operated in 8-day batch cycles at temperatures of 40, 56, 60, and 63 °C. Two tetracycline resistance genes (tet(W) and tet(X)), a fluoroquinolone resistance gene (qnrA), the integrase gene of class 1 integrons (intI1), 16S rRNA genes of all Bacteria, and 16S rRNA genes of methanogens were quantified using real-time quantitative PCR. ARG and intI1 quantities decreased at all temperatures and were described well by a modified form of the Collins-Selleck disinfection kinetic model. The magnitudes of Collins-Selleck kinetic parameters were significantly greater at thermophilic temperatures compared to 40 °C, but few statistically significant differences were observed among these parameters for the thermophilic anaerobic digesters. This model allows for the direct comparison of different operating conditions (e.g., temperature) on anaerobic digestion performance in mitigating the quantity of ARGs in wastewater solids and could be used to design full-scale anaerobic digesters to specifically treat for ARGs as a "pollutant" of concern.201626481624
801320.9998New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. This study investigated the variations in antibiotic (sulfonamide and tetracycline) resistance genes (ARGs) and resistant bacteria (ARB) during manure anaerobic digestion (AD) at 35 ℃ and 55 ℃, and discussed the mechanisms of variations in ARGs. The AD lasted for 60 days, five ARGs and intI1 each decreased in abundance after AD at the thermophilic temperature, while only half decreased at the mesophilic temperature. On days 10, 30, and 60, sulfonamide and tetracycline ARB were screened on selective media. During thermophilic AD, ARB numbers reduced by 4-log CFUs per gram dry manure, but only by approximately 1-log CFU at the mesophilic temperature. However, ARB composition analysis showed that at either temperature, no significant reduction in identified ARB species was observed. Furthermore, 72 ARB clones were randomly selected to detect the ARGs they harbored, and the results showed that each ARG was harbored by various hosts, and no definitive link existed between ARGs and bacterial species. In addition, by comparison with the identified host by culture method, the host prediction results based on the correlation analysis between ARGs and the bacterial community was proven to be unreliable. Overall, these findings indicated that relationships between ARB and ARGs were intricate.202031685315
799830.9998Seasonal variation and removal efficiency of antibiotic resistance genes during wastewater treatment of swine farms. The seasonal variation and removal efficiency of antibiotic resistance genes (ARGs), including tetracycline resistance genes (tetG, tetM, and tetX) and macrolide (ermB, ermF, ereA, and mefA), were investigated in two typical swine wastewater treatment systems in both winter and summer. ARGs, class 1 integron gene, and 16S rRNA gene were quantified using real-time polymerase chain reaction assays. There was a 0.31-3.52 log variation in ARGs in raw swine wastewater, and the abundance of ARGs in winter was higher than in summer. tetM, tetX, ermB, ermF, and mefA were highly abundant. The abundance of ARGs was effectively reduced by most individual treatment process and the removal efficiencies of ARGs were higher in winter than in summer. However, when examining relative abundance, the fate of ARGs was quite variable. Anaerobic digestion reduced the relative abundance of tetX, ermB, ermF, and mefA, while lagoon treatment decreased tetM, ermB, ermF, and mefA. Sequencing batch reactor (SBR) decreased tetM, ermB, and ermF, but biofilters and wetlands did not display consistent removal efficiency on ARGs in two sampling seasons. As far as the entire treatment system is concerned, ermB and mefA were effectively reduced in both winter and summer in both total and relative abundance. The relative abundances of tetG and ereA were significantly correlated with intI1 (p < 0.01), and both tetG and ereA increased after wastewater treatment. This may pose a great threat to public health.201726715413
801440.9998Contributions of the microbial community and environmental variables to antibiotic resistance genes during co-composting with swine manure and cotton stalks. Understanding the main drivers that affect the spread of antibiotic resistance genes (ARGs) during the composting process is important for the removal of ARGs. In this study, three levels of tylosin (25, 50, and 75 mg kg(-1) on a dry weight basis) were added to swine manure plus a control, which was composted with cotton stalks. Each treatment was repeated in triplicate and the ARG profiles were determined with different levels of tylosin. The top 35 genera and ARGs profiles were clustered together based on the composting time. Combined composting parameters (temperature, pH, NH(4)(+)-N, NO(3)-N, and moisture content) accounted for 78.4% of the total variation in the changes in the potential host bacteria. In addition, the selected five composting parameters and six phyla (including 25 potential host bacterial genera) explained 46.9% and 30.7% of the variation in the ARG profiles according to redundancy analysis, respectively. The variations in ARGs during the composting process were mainly affected by the dynamics of potential host bacteria rather than integrons and the selective pressure due to bio-Cu and bio-Zn.201829990821
802650.9998A comparison of antibiotics, antibiotic resistance genes, and bacterial community in broiler and layer manure following composting. Animal manure is an important source of antibiotics and antibiotic resistance genes (ARGs) in the environment. However, the difference of antibiotic residues and ARG profiles in layer and broiler manure as well as their compost remains unexplored. In this study, we investigated the profiles of twelve antibiotics, seventeen ARGs, and class 1 integrase gene (intI1) in layer and broiler manure, and the corresponding compost at large-scale. Compared with layer manure, broiler manure exhibited approximately six times more residual tetracyclines, especially chlortetracycline. The relative abundances of qnrS and ermA genes in broiler manure were significantly higher than those in layer manure. The concentration of tetracyclines not only had a significantly positive correlation with tetracycline resistance genes (tetA and tetC) but was also positively correlated with quinolone resistance (qepA, qnrB, and qnrS) and macrolide resistance (ermA and ermT). Most ARGs in manure were reduced after composting. However, the relative abundance of sulfonamide resistance gene sul1 increased up to 2.41% after composting, which was significantly higher than that of broiler (0.41%) and layer (0.62%) manure. The associated bacterial community was characterized by high-throughput 16S rRNA gene sequencing. The relative abundances of thermophilic bacteria had significant positive correlations with the abundance of sul1 in compost. The composting has a significant impact on the ARG-associated gut microbes in poultry manure. Variation partitioning analysis indicated that the change of bacterial community compositions and antibiotics contributed partially to the shift in ARG profiles. The results indicate that at industry-scale production broiler manure had more antibiotics and ARGs than layer manure did, and composting decreased most ARG abundances in poultry manure except for sulfonamide resistance genes.202133219508
803660.9998Abundances of Tetracycline Resistance Genes and Tetracycline Antibiotics during Anaerobic Digestion of Swine Waste. The impact of anaerobic digestion of animal waste on the persistence of antibiotic resistance genes (ARGs) and antibiotics is not widely studied. Two identical, 800-L digesters seeded with swine slurry were followed up to 100 d in three separate trials. The trials received varying amounts of antibiotic-free corn ( L.) mixed with water to maintain the digestion process. Biogas production, seven tetracycline resistance () genes, and three tetracyclines and their transformation products were measured. Biogas production proportionally increased as the feeding loads increased between trials. In Trial 1, log gene copies showed small but statistically significant ( < 0.01) increases during digestion. In Trial 2, anaerobic digestion did not have a significant ( > 0.05) effect except for significant reductions in B ( < 0.0001) and G ( = 0.0335) log gene copies. In Trial 3, which received the highest amount of corn mix, log copies of the 16S ribosomal RNA and the genes significantly ( < 0.0001) reduced over time during digestion. Up to 36 μg L tetracycline, 112 μg L chlortetracycline, 11.9 mg L isochlortetracycline, and 30 μg L 4-epitetracycline were detected both in the liquid and solid digestates. Results of this study revealed that although anaerobic digestion of swine waste can produce useful biogas, it does not result in complete removal of bacteria, ARGs, and antibiotics regardless of differences in the feeding loads between trials. Further effluent and sludge treatments are required prior to their downstream use in crop production to minimize emergence and environmental dissemination of antimicrobial-resistant bacteria through animal manure.201930640349
725070.9998Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids. The objective of this research was to investigate the ability of anaerobic and aerobic digesters to reduce the quantity of antibiotic resistant bacteria in wastewater solids. Lab-scale digesters were operated at different temperatures (22 °C, 37 °C, 46 °C, and 55 °C) under both anaerobic and aerobic conditions and fed wastewater solids collected from a full-scale treatment facility. Quantitative PCR was used to track five genes encoding tetracycline resistance (tet(A), tet(L), tet(O), tet(W), and tet(X)) and the gene encoding the integrase (intI1) of class 1 integrons. Statistically significant reductions in the quantities of these genes occurred in the anaerobic reactors at 37 °C, 46 °C, and 55 °C, with the removal rates and removal efficiencies increasing as a function of temperature. The aerobic digesters, in contrast, were generally incapable of significantly decreasing gene quantities, although these digesters were operated at much shorter mean hydraulic residence times. This research suggests that high temperature anaerobic digestion of wastewater solids would be a suitable technology for eliminating various antibiotic resistance genes, an emerging pollutant of concern.201021058743
800880.9997Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater. Wastewater treatment plants are hot spots for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, limited studies have been conducted to compare the reductions of ARB and ARGs by various biological treatment processes. The study explored the reductions of heterotrophic bacteria resistant to six groups of antibiotics (vancomycin, gentamicin, erythromycin, cephalexin, tetracycline, and sulfadiazine) and corresponding resistance genes (vanA, aacC1, ereA, ampC, tetA, and sulI) by five bench-scale biological reactors. Results demonstrated that membrane bioreactor (MBR) and sequencing batch reactor (SBR) significantly reduced ARB abundances in the ranges of 2.80∼3.54 log and 2.70∼3.13 log, respectively, followed by activated sludge (AS). Biological filter (BF) and anaerobic (upflow anaerobic sludge blanket, UASB) techniques led to relatively low reductions. In contrast, ARGs were not equally reduced as ARB. AS and SBR also showed significant potentials on ARGs reduction, whilst MBR and UASB could not reduce ARGs effectively. Redundancy analysis implied that the purification of wastewater quality parameters (COD, NH4 (+)-N, and turbidity) performed a positive correlation to ARB and ARGs reductions.201627384166
809090.9997Swine Manure Composting With Compound Microbial Inoculants: Removal of Antibiotic Resistance Genes and Their Associations With Microbial Community. In this study, compound microbial inoculants, including three Bacillus strains and one Yeast strain, were inoculated into swine manure composting to explore the effects on antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), microbial community structure, and pathogenic bacteria. The results indicated that the abundances of the detected ARGs ranged from 3.6 × 10(3) to 1.13 × 10(8) copies/g. The ARGs with the highest abundance was sul2, and the lowest was blaCTX. Composting removes most of the ARGs and MGEs by 22.8-99.7%. These ARGs were significantly reduced during the thermophilic phase of compost. The removal rate of ARGs at the different layers of compost pile was different as follows: middle layer > upper layer > lower layer. But some ARGs proliferated significantly in the maturation phase of compost, especially the sulfonamide resistance genes. Compound microbial inoculants increased the temperature of compost, accelerated water loss, nitrogen fixation, and increased the removal rate of β-lactamase resistance genes, the transposon gene tn916 and part of tetracycline resistance genes by 3.7-23.8% in compost. Compound microbial inoculants changed the community structure and increased the Bacillus abundance in the thermophilic phase of compost. And it was helpful for removing pathogens during composting. The addition of compound microbial inoculants causes the decrease of Firmicutes and the increase of Bacteroidetes, which may be related to the removal and proliferation of ARGs.202033250880
8025100.9997Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures. Animal manure is a main reservoir of antibiotic residues and antibiotic resistance. Here, the effect of temperature on sulfonamide antibiotics (SAs), sulfonamide-resistant (SR) genes/bacteria was investigated by aerobically incubating swine and chicken manures at different temperatures. In swine manure, the SAs concentration declined with increasing temperature, with a minimum at 60°C. In chicken manure, the greatest degradation of SAs was noted at 30°C. The reduction of relative abundance of antibiotic resistance genes (ARGs) and sul-positive hosts in swine manure was more pronounced during thermophilic than mesospheric incubation; neither temperature conditions effectively reduced these parameters in chicken manure. The relationship between the residual levels/distribution profiles of SAs, ARGs (sul1, sul2 and intI1), cultivable SR bacteria and sul-positive hosts was further established. The antibiotic residual profile, rather than antibiotic concentration, acted as an important factor in the prevalence of ARGs and sul-positive hosts in manure. Corynebacterium and Leucobacter from the phylum Actinobacteria tend to be main carriers of sul1 and intI1; the relative abundance of sul2 was significantly correlated with the relative abundance of cultivable SR bacteria. Overall, differences in resistant bacterial communities also constitute a dominant factor affecting ARG variation. This study contributes to management options for reducing the pollution of antibiotics and antibiotic resistance within manure.201728711002
7246110.9997Tetracycline resistance genes are more prevalent in wet soils than in dry soils. This study aimed to reveal the effects of water content on the spread of tetracycline resistance genes (TRGs) in the soil. Amendments of four samples with different soil water contents, namely 16% (dry soil) and 25% (wet soil), and with or without pig manures (PM) were conducted under laboratory conditions. Quantitative polymerase chain reaction (q-PCR) results showed that the relative abundance of TRGs (tetB, tetC, tetM, tetO, tetT, and tetZ) in the wet soils was significantly higher than that in the dry soils whether under fertilization or non-fertilization conditions. Moreover, PM application enhanced the relative abundance of TRGs. The absolute copies of TRGs did not decline with the decrease in 16S rRNA genes in wet soils, implying that most TRGs were probably located in facultative anaerobic bacteria. However, cultivable tetracycline-resistant bacteria (TRB) in the wet soils were not in line with the q-PCR results, further indicating that aerobes might not account for the increases in the relative abundance of TRGs. Diversities of aerobic TRB were significantly higher in the wet soils than in the dry soils, especially on days 14 and 28. The patterns of community structures of aerobic TRB in the wet soils or dry soils containing PM were different from those in the dry soils. Together, this study showed that the variations in bacterial communities between the wet and dry soils, especially reflected in the diversity of aerobic TRB and/or community structure of facultative anaerobic TRB, might be an important reason behind the changes in the abundance of TRGs.201829573724
7243120.9997Responses and successions of sulfonamides, tetracyclines and fluoroquinolones resistance genes and bacterial community during the short-term storage of biogas residue and organic manure under the incubator and natural conditions. Biogas residue and organic manure are frequently used for crop planting. However, the evaluation of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and bacterial community before their applications to fields is still lacking. This study monitored the variations of bacteria resistant to sulfadiazine, tetracycline and norfloxacin, 57 resistance genes for sulfonamides, tetracyclines and fluoroquinolones as well as the bacterial community during the 28-day aerobic storage of biogas residue and organic manure by using viable plate counts, high-throughput qPCR and Illumina MiSeq sequencing methods. Then two storage conditions, incubator (25 °C) and natural environment, were used to assess the responses of ARB and ARGs to the environmental factors. Results showed that a total of 35 and 21 ARGs were detected in biogas residue and organic manure, respectively. ARB and ARGs were enriched up to 8.01-fold in biogas residue after the 28-day storage, but varied in a narrow range during the storage of organic manure. Compared with the incubator condition, the proliferation of ARB and ARGs in biogas residue under the natural condition was relatively inhibited by the varied and complicated environmental factors. However, we found that there was no significant difference of ARB and ARGs in organic manure between the incubator and natural conditions. Bacterial community was also shifted during the storage of biogas residue, especially Bacteroidetes_VC2.1_Bac22, Aequorivita, Luteimonas and Arenimonas. Network analysis revealed that the relationship in biogas residue was much more complicated than that in organic manure, which ultimately resulted in large successions of ARB and ARGs during the short-term storage of biogas residue. Therefore, we suggest that further measures should be taken before the application of biogas residue to fields.201830031308
7245130.9997Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. Veterinary antibiotics entering agricultural land with manure pose the risk of spreading antibiotic resistance. The fate of sulfadiazine (SDZ) introduced via manure and its effect on resistance gene levels in the rhizosphere were compared with that in bulk soil. Maize plants were grown for 9 weeks in soil fertilized with manure either from SDZ-treated pigs (SDZ treatment) or from untreated pigs (control). CaCl(2) -extractable concentrations of SDZ dissipated faster in the rhizosphere than in bulk soil, but SDZ remained detectable over the whole time. For bulk soil, the abundance of sul1 and sul2 relative to 16S rRNA gene copies was higher in the SDZ treatment than in the control, as revealed by quantitative PCR on days 14 and 63. In the rhizosphere, sampled on day 63, the relative sul gene abundances were also significantly increased in the SDZ treatment. The accumulated SDZ exposure (until day 63) of the bacteria significantly correlated with the log relative abundance of sul1 and sul2, so that these resistance genes were less abundant in the rhizosphere than in bulk soil. Plasmids conferring SDZ resistance, which were exogenously captured in Escherichia coli, mainly belonged to the LowGC group and carried a heterogeneous load of resistances to different classes of antibiotics.201322809094
8018140.9997Analysis for microbial denitrification and antibiotic resistance during anaerobic digestion of cattle manure containing antibiotic. This study investigated the effects of tylosin (0, 10, and 100 mg/kg dry weight) on the denitrification genes and microbial community during the anaerobic digestion of cattle manure. N(2) emissions were reduced and N(2)O emissions were increased by 10 mg/kg tylosin. Adding 100 mg/kg tylosin increased the emission of both N(2)O and N(2). The different responses of denitrifying bacteria and genes to tylosin may have been due to the presence of antibiotic resistance genes (ARGs). Network analysis indicated that denitrification genes and ARGs had the same potential host bacteria. intI1 was more important for the horizontal transfer of denitrification genes and ARGs during anaerobic digestion than intI2. The anaerobic digestion of manure containing tylosin may increase nitrogen losses and the associated ecological risk.201931326686
8003150.9997Dynamics of antibiotic resistance agents during sludge alkalinization treatment. This study aimed to assess the removal of antimicrobial resistance agents (antibiotics, antibiotic-resistant bacteria - ARB, and antimicrobial resistance genes - ARGs) from aerobic and anaerobic sludges treated with quicklime (chemical alkalinization). Different mixing ratios (25%, 35%, and 45%) and contact times (2 h and 72 h) were evaluated. The findings revealed that anaerobic sludge responded more effectively to alkaline treatment, achieving better removal rates of antibiotics, ARB, and ARGs compared to aerobic sludge. The 45% lime treatment yielded the highest antibiotic removal rates, with average reductions of 19% in aerobic sludge and 28% in anaerobic sludge. The 35% lime treatment was the most effective in reducing ARGs across both types of sludge (average removal of 2 logs). The 25% lime treatment proved most efficient for removing ARB, with average reductions of 4 logs (aerobic) and 5 logs (anaerobic). The contact time between the sludge and quicklime also influenced the removal of resistance agents. An increase in the proportion of antibiotics and the absolute concentration of ARB and ARGs was observed after 72 h compared to the samples analyzed after 2 h of contact. This increase was more pronounced in aerobic sludge samples treated with 35% and 45% lime. Despite the overall reduction, none of the monitored resistant genes or bacteria were completely eradicated in both sludge samples, raising concerns about their potential dissemination into the environment.202439414064
8020160.9997Influence of zeolite and superphosphate as additives on antibiotic resistance genes and bacterial communities during factory-scale chicken manure composting. Factory-scale chicken manure composting added with zeolite (F), superphosphate (G), or zeolite and ferrous sulfate (FL) simultaneously, were evaluate for their effects on the behaviors of antibiotic resistance genes (ARGs) and bacterial communities. After composting, ARGs in manure decreased by 67.3% in the control, whereas the reductions were 86.5%, 68.6% and 72.2% in F, G and FL, respectively. ARGs encoding ribosomal protection proteins (tetO, tetB(P), and tetM) were reduced to a greater extent than tetG, tetL, sul1 and sul2. Bacteria pathogens were also effectively removed by composting. Network analysis showed that Firmicutes were the important potential host bacteria for ARGs. The bacterial communities and environmental factors, as well as the intI gene, contributed significantly to the variation of ARGs. The ARGs and integrons were reduced more when zeolite was added than when superphosphate was added; thus, it may be useful for reducing the risks of ARGs in chicken manure.201829772500
8009170.9997High removal efficiency of antibiotic resistance genes in swine wastewater via nanofiltration and reverse osmosis processes. Swine wastewater treatment plant has become one of the main sources of antibiotic resistance genes (ARGs). Membrane treatment processes are promising solutions for removal of the emerging contaminants. However, limited studies have investigated the effects of nanofiltration and reverse osmosis treatment in removing ARGs in swine wastewater. In this study, the presence and the fate of common ARGs including sul1, sul2, tetA, tetM and tetW, as well as intI1 and 16S rRNA gene, were investigated in a medium-sized (6500) pig farm wastewater treatment plant (WWTP) equipped with conventional biological treatment and advanced membrane processing system. All of the genes were detected with highly abundance in the raw sewage. The biological treatments of the swine wastewater treatment plant did not reduce the quantity of the ARGs. As expected, nanofiltration and reverse osmosis treatment reduced the absolute gene copy number of ARGs efficiently (4.98-9.52 logs removal compared to raw sewage). Compared to the reverse osmosis effluent, however, the absolute abundance of ARGs in the artificial wetland increased by 1.00-2.06 logs. Meanwhile, the relative abundance of sulfonamide resistant genes were basically unchanged, while tetracycline resistance genes (tetA, tetM and tetW) decreased by 0.88, 3.47, 2.51 log, respectively. The results demonstrated that advanced membrane treatments are capable of removing various kinds of ARGs efficiently, as well as some common nitrogen and phosphorus contaminants. This study suggested a mature alternative method for the removal of ARGs from livestock wastewater.201930368154
7247180.9997Environmental analysis of typical antibiotic-resistant bacteria and ARGs in farmland soil chronically fertilized with chicken manure. Antibiotics and the corresponding resistant bacteria and resistance genes (ARGs) are generally considered emerging pollutants. To assess the impacts of tetracycline (TC) and sulfonamide (SA) antibiotics that are eliminated with fecaluria as drug prototypes, farmland soil used to research long-term fertilization with chicken manure was collected at four sites in Shandong Province. In this study, the rates of bacterial drug resistance to the same antibiotic decreased with an increase in the concentration of that antibiotic, and the resistance rates to TCs were lower than those to SAs. PCR of ARGs revealed that the ARGs detected at the highest frequency were the TC resistance genes tetW and tetO and the SA resistance genes sul1 and sul2. Real-time qPCR showed that the quantities of ARGs in farmland soil fertilized with chicken manure were significantly greater compared with the control soil. Moreover, significant correlations (R(2)=0.9525, p<0.05) between the number of sul ARGs and the total SA concentration were observed in all of the soil samples. In summary, this study showed that SAs can induce the appearance of ARGs and pollute the soil environment.201728340477
7256190.9997Impact of direct application of biogas slurry and residue in fields: In situ analysis of antibiotic resistance genes from pig manure to fields. Biogas slurry and residue contaminated with antibiotics are widely used as fertilizers in vegetable crop planting. However, their impact on the spreading of antibiotic resistance genes (ARGs) in vegetable fields is still largely unknown. In the present study, antibiotic resistant bacteria (ARB), ARGs and bacterial communities from pig manure to fields were monitored by using viable plate counts, high-throughput fluorescent quantitative PCR (HT-qPCR) and Illumina MiSeq sequencing. Eighty-three ARGs and 3 transposons genes were detected. Anaerobic digestion reduced relative abundance of tetracycline and Macrolide-Lincosamide-Streptogramin (MLSB) resistance genes. However, the number of ARB and the relative abundance of sulfa, aminoglycoside and florfenicol, chloramphenicol, and amphenicol (FCA) resistance genes, respectively, enriched up to 270 times and 52 times in biogas residue. Long-term application of biogas slurry and residue contaminated with antibiotics in fields increased the rate of ARB as well as relative abundance of ARGs and transposons genes. Additionally, bacterial communities significantly differed between the soil treated with biogas slurry and residue and the control sample, especially the phyla Bacteroidetes and Actinobacteria. Based on network analysis, 19 genera were identified as possible hosts of the detected ARGs. Our results provide an important significance for reasonable application of biogas slurry and residue.201829096257