Regulatory effects of different anionic surfactants on the transformation of heavy metal fractions and reduction of heavy metal resistance genes in chicken manure compost. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
798601.0000Regulatory effects of different anionic surfactants on the transformation of heavy metal fractions and reduction of heavy metal resistance genes in chicken manure compost. Surfactants are widely used as a passivating agent in heavy metal passivation process, but their effect on transformation of heavy metal fraction and reduction of heavy metal resistance genes (MRGs) in composting process is still unknown. The aim of this study was to compare the effects of two anionic surfactants (rhamnolipid and sodium dodecyl sulfate) on heavy metal passivation and resistance gene reduction in chicken manure composting. The results showed that the addition of surfactant can effectively enhance degradation of organic matter (OM). Both surfactants could effectively reduce the bioavailability of heavy metals (HMs) and the relative abundance of resistance genes, especially rhamnolipids. The potential functional bacteria affecting heavy metal passivation were identified by the changes of microbial community. Redundancy analysis (RDA) showed that protease (PRT) activity was the key factor affecting the fractions of the second group of HMs including ZnF1, CuF1, CuF2, PbF1 and PbF3. These findings indicate that addition of anionic surfactants can reduce the bioavailability of HMs and the abundance of resistance genes in compost products, which is of guiding significance for the reduction of health risks in the harmless utilization of livestock and poultry manure.202337543071
797610.9996Insights into the effects of Zn exposure on the fate of tylosin resistance genes and dynamics of microbial community during co-composting with tylosin fermentation dregs and swine manure. Though heavy metals are widely reported to induce antibiotic resistance propagation, how antibiotic resistance changes in response to heavy metal abundances remains unclearly. In this study, the tylosin fermentation dregs (TFDs) and swine manure co-composting process amended with two exposure levels of heavy metal Zn were performed. Results showed that the bioavailable Zn contents decreased 2.6-fold averagely, and the removal percentage of total tylosin resistance genes was around 23.5% after the co-composting completed. Furthermore, the tylosin resistance genes and some generic bacteria may exhibited a hormetic-like dose-response with the high-dosage inhibition and low dosage stimulation induced by bioavailable Zn contents during the co-composting process, which represented a beneficial aspect of adaptive responses to harmful environmental stimuli. This study provided a comprehensive understanding and predicted risk assessment for the Zn-contaminate solid wastes deposal and suggested that low levels of Zn or other heavy metals should receive more attention for their potential to the induction of resistance bacteria and propagation of antibiotic resistance genes.202133210251
691920.9995Enhanced removal of antibiotic resistance genes during chicken manure composting after combined inoculation of Bacillus subtilis with biochar. This study explored the combined effects of Bacillus subtilis inoculation with biochar on the evolution of bacterial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) during the composting of chicken manure. The results showed that B. subtilis inoculation combined with biochar increased bacterial abundance and diversity as well as prolonged the compost thermophilic period. Promoted organic matter biodegradation and facilitated the organic waste compost humification process, reduced the proliferation of ARGs by altering the bacterial composition. Firmicutes and Actinobacteriota were the main resistant bacteria related to ARGs and MGEs. The decrease in ARGs and MGEs was associated with the reduction in the abundance of related host bacteria. Compost inoculation with B. subtilis and the addition of biochar could promote nutrient transformation, reduce the increase in ARGs and MGEs, and increase the abundance of beneficial soil taxa.202437778803
692030.9995Dynamics and key drivers of antibiotic resistance genes during aerobic composting amended with plant-derived and animal manure-derived biochars. Plant-derived and animal manure-derived biochars have been used to improve the quality of compost but the differences in their effects on antibiotic resistance genes (ARGs) during composting are unclear. This study selected two types of biochar (RB and PB) produced from abundant agricultural waste to be added to the compost. Adding plant-derived RB performed better in ARGs, mobile genetic elements, and human pathogenic bacteria removal during aerobic composting, whereas adding manure-derived PB even increased ARGs abundance. Vertical gene transfer was possibly the key mechanism for persistent ARGs, and easily removed ARGs were regulated by horizontal and vertical gene transfer. Adding plant-derived RB reduced the abundances of persistent ARG hosts (e.g., Pseudomonas and Longispora) and ARG-related metabolic pathways and genes. The higher nitrogen content of manure-derived PB may have promoted the proliferation of ARG hosts. Overall, adding manure-derived biochar during composting may not be the optimal option for eliminating ARGs.202235487450
754840.9994Maturity phase is crucial for removing antibiotic resistance genes during composting: novel insights into dissolved organic matter-microbial symbiosis system. Composting is widely regarded as an effective method for reducing antibiotic resistance genes (ARGs) in livestock and poultry manure. However, the critical mechanisms of ARGs in different composting phase are still unclear. In this study, normal composting and two types of rapid composting (without mature phase) were used to analyze the removal of ARGs and the succession of dissolved organic matter (DOM). Compared to normal composting, rapid composting reactivated tetracyclines, sulfonamide, and quinolones resistance genes during the maturation phase and reduced the total ARGs removal rates by 45.58 %-57.87 %. Humus-like components could inhibit the proliferation of ARGs, and the enrichment of protein-like components increased abundances of Pusillimonas, Persicitalea, and Pseudomonas, indirectly reducing the removal. This study is the first to demonstrate the contribution of DOM and microbial community to ARGs removal, emphasizing the importance of the maturation phase for ARGs elimination. This research provides guidance for producing safe compost products.202540311709
812450.9994Effect of graphene and graphene oxide on antibiotic resistance genes during copper-contained swine manure anaerobic digestion. Copper is an important selectors for antibiotic resistance genes (ARGs) transfer because of metal-antibiotic cross-resistance and/or coresistance. Due to carbon-based materials' good adsorption capacity for heavy metals, graphene and graphene oxide have great potential to reduce ARGs abundance in the environment with copper pollution. To figure out the mechanics, this study investigated the effects of graphene and graphene oxide on the succession of ARGs, mobile genetic elements (MGEs), heavy metal resistance genes (HMRGs), and bacterial communities during copper-contained swine manure anaerobic digestion. Results showed that graphene and graphene oxide could reduce ARGs abundance in varying degrees with the anaerobic reactors that contained a higher concentration of copper. Nevertheless, graphene decreased the abundance of ARGs more effectively than graphene oxide. Phylum-level bacteria such as Firmicutes, Bacteroidetes, Spirochaetes, and Verrucomicrobiaat were significantly positively correlated with most ARGs. Network and redundancy analyses demonstrated that alterations in the bacterial community are one of the main factors leading to the changes in ARGs. Firmicutes, Bacteroidetes, and Spirochaetes were enriched lower in graphene reactor than graphene oxide in anaerobic digestion products, which may be the main reason that graphene is superior to graphene oxide in reduced ARGs abundance. Additionally, ARGs were close to HMRGs than MGEs in the treatments with graphene, the opposite in graphene oxide reactors. Therefore, we speculate that the reduction of HMRGs in graphene may contribute to the result that graphene is superior to graphene oxide in reduced ARGs abundance in anaerobic digestion.202336394812
859360.9994Preference and regulation mechanism mediated via mobile genetic elements for antibiotic and metal resistomes during composting amended with nano ZVI loaded on biochar. This study assessed the effectiveness of nano zero-valent iron loaded on biochar (BC-nZVI) during swine manure composting. BC-nZVI significantly reduced the abundance of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs). BC-nZVI modified the preference of MGEs to carry ARGs and MRGs, and the corrosion products of BC-nZVI could destroy cell structure, hinder electron transfer between cells, and weaken the association between ARGs, MRGs, and host bacteria. Functional genes analysis revealed that BC-nZVI down-regulated the abundance of genes affecting the transmission and metabolism of ARGs and MRGs, including type IV secretion systems, transporter systems, two-component systems, and multidrug efflux pumps. Furthermore, the BC-nZVI decreased genes related to flagella and pili production and cell membrane permeability, thereby hindering the transfer of ARGs, MRGs, and MGEs in the environment. Redundancy analysis demonstrated that changes in the microbial community induced by BC-nZVI were pivotal factors impacting the abundance of ARGs, MRGs, and MGEs. Overall, this study confirmed the efficacy of BC-nZVI in reducing resistance genes during swine manure composting, offering a promising environmental strategy to mitigate the dissemination of these contaminants.202438992827
811870.9994Effects of biocontrol Bacillus and fermentation bacteria additions on the microbial community, functions and antibiotic resistance genes of prickly ash seed oil meal-biochar compost. This study evaluated the effects of biocontrol Bacillus and fermenting bacteria addition on the microbial community, metabolic functions and antibiotic resistance genes (ARGs) of new prickly ash seed oil meal (PSOM)-biochar composting. The results showed that the addition of Bacillus subtilis and fermentation bacteria significantly increased the NH(4)(+)-N, bacterial abundance and fungal diversity of compost while decreasing the relative abundances (RAs) of carbon metabolism genes in mature compost. NH(4)(+)-N was significantly correlated with microbial abundance and diversity, and its increase was closely related to microbial amino acid metabolism. The addition of biocontrol and fermenting bacteria changed the RAs of ARGs, which was caused by changes in the potential hosts Proteobacteria, Bacteroidota and Firmicutes in the compost. Consequently, adding Bacillus and fermenting bacteria into PSOM to make composting was suggested as an effective method to promote nutrient transformation, regulate microbial activity and decrease RAs of tetracycline and vancomycin ARGs.202134339999
859080.9994Metagenomic insights into role of red mud in regulating fate of compost antibiotic resistance genes mediated by both direct and indirect ways. In this study, the amendment of red mud (RM) in dairy manure composting on the fate of antibiotic resistance genes (ARGs) by both direct (bacteria community, mobile genetic elements and quorum sensing) and indirect ways (environmental factors and antibiotics) was analyzed. The results showed that RM reduced the total relative abundances of 10 ARGs and 4 mobile genetic elements (MGEs). And the relative abundances of total ARGs and MGEs decreased by 53.48% and 22.30% in T (with RM added) on day 47 compared with day 0. Meanwhile, the modification of RM significantly increased the abundance of lsrK, pvdQ and ahlD in quorum quenching (QQ) and decreased the abundance of luxS in quorum sensing (QS) (P < 0.05), thereby attenuating the intercellular genes frequency of communication. The microbial community and network analysis showed that 25 potential hosts of ARGs were mainly related to Firmicutes, Proteobacteria and Actinobacteria. Redundancy analysis (RDA) and structural equation model (SEM) further indicated that RM altered microbial community structure by regulating antibiotic content and environmental factors (temperature, pH, moisture content and organic matter content), which then affected horizontal gene transfer (HGT) in ARGs mediated by QS and MGEs. These results provide new insights into the dissemination mechanism and removal of ARGs in composting process.202336462475
858890.9994Does lipid stress affect performance, fate of antibiotic resistance genes and microbial dynamics during anaerobic digestion of food waste? The dissemination of antibiotic resistance genes (ARGs) in food waste (FW) disposal can pose severe threats to public health. Lipid is a primary composition in FW, while whether lipid stress can affect ARGs dynamics during anaerobic digestion (AD) process of FW is uncertain. This study focused on the impacts of lipid stress on methane production, fate of ARGs and its microbial mechanisms during AD of FW. Results showed that high lipid content increased methane yield but prolonged hydrolysis and lag time of methane production compared to AD of FW without oil. Moreover, variations of ARGs were more susceptible to lipid stress. Lipid stress could facilitate the reduction of total ARGs abundances compared to the group without oil, particularly restraining the proliferation of sul1, aadA1 and mefA in AD systems (P < 0.05). Mantel test suggested that integrons (intl1 and intl2) were significantly correlated with all detected ARGs (r: 0.33, P < 0.05), indicating that horizontal gene transfer mediated by integrons could be the driving force on ARGs dissemination. Network analysis suggested that Firmicutes, Bacteroidetes, Synergistetes and Proteobacteria were the main potential hosts of ARGs. In addition, under the lipid stress, the reduction of host bacteria was responsible for the elimination of several specific ARGs, thereby affecting ARGs profiles. These findings firstly deciphered ARGs dynamics and their driving factors responding to lipid stress during anaerobic biological treatment of FW.202133250254
7977100.9994Acid-modified biochar regulates heavy metal resistance genes in compost to reduce bioavailability of heavy metal and composting cycle. Heavy metal passivation during composting is critical for enhancing the safety of compost products. This study aimed to elucidate clarify the relationship among the heavy metal fractions, heavy metal resistance bacteria (HMRB) and heavy metal resistance genes (HMRGs) during composting with acid-modified biochar, with the goal of mitigating the environmental risks associated with composting products to soil. The results showed that the addition of acid-modified biochar enhanced passivation efficiency of Cu, Zn and Pb, reducing their exchangeable fraction (F1) fractions by 84.06 %, 63.15 % and 85.77 %, respectively. Furthermore, the abundance of Cu and Zn resistance genes decreased during the high-temperature phase, while the relative abundance of the pbrT gene increased. The dominant microbial community during composting was characterized by the following order: Firmicutes > Proteobacteria > Actinobacteria, which played a crucial role in determining the fate of HMRGs. Heat map analysis showed that HMRGs was closely related to the fractions of heavy metals during composting with acid modified biochar. Additionally, addition of acid-modified biochar significantly altered the interactions between HMRB and HMRGs, with copA and pbrT exhibiting positive correlations with the F1 states of the three heavy metals. This study provides a novel and efficient approach for reducing the bioavailability of heavy metals during composting.202540782749
7562110.9994Nanoparticles and antibiotics stress proliferated antibiotic resistance genes in microalgae-bacteria symbiotic systems. The comprehensive effect of exogenous pollutants on the dispersal and abundance of antibiotic-resistance genes (ARGs) in the phycosphere, bacterial community and algae-bacteria interaction remains poorly understood. We investigated community structure and abundance of ARGs in free-living (FL) and particle-attached (PA) bacteria in the phycosphere under nanoparticles (silver nanoparticles (AgNPs) and hematite nanoparticles (HemNPs)) and antibiotics (tetracycline and sulfadiazine) stress using high-throughput sequencing and real-time quantitative PCR. Meanwhile, the intrinsic connection of algae-bacteria interaction was explored by transcriptome and metabolome. The results showed that the relative abundance of sulfonamide and tetracycline ARGs in PA and FL bacteria increased 103-129 % and 112-134 %, respectively, under combined stress of nanoparticles and antibiotics. Antibiotics have a greater effect on ARGs than nanoparticles at environmentally relevant concentrations. Proteobacteria, Firmicutes, and Bacteroidetes, as the primary potential hosts of ARGs, were the dominant phyla. Lifestyle, i.e., PA and FL, significantly determined the abundance of ARGs and bacterial communities. Moreover, algae can provide bacteria with nutrients (carbohydrates and amino acids), and can also produce antibacterial substances (fatty acids). This algal-bacterial interaction may indirectly affect the distribution and abundance of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in microalgae-bacteria symbiotic systems.202336283215
7040120.9994The maturity period is the main stage of antibiotic resistance genes reduction in aerobic composting process of swine manure in sub-scale farms. This study was focused on the changes of antibiotic resistance genes (ARGs) and their potential host bacteria during the swine manure composting on sub-scale farms. Eight target ARGs increased 427% on average, with a trend of increase at early stage and decrease at later stage, and the main reduction stage appeared in maturity stage. The abundance of ARGs was mainly affected by the community succession of potential host bacteria. Composting could reduce the abundance of potential host bacteria of ARGs as well as pathogens such as Pseudomonas, and reduce the environmental risks of swine manure. N/C and S levels had a positive effect on the potential host of most ARGs. Prolonging the maturity period would inhibit the growth of potential host bacteria of ARGs during composting, therefore inhibiting the transmission of ARGs.202132971337
6914130.9994Responses of antibiotic and heavy metal resistance genes to bamboo charcoal and bamboo vinegar during aerobic composting. The application of compost in agriculture has led to the accumulation of antibiotic resistance genes (ARGs) and heavy metal resistance genes (MRGs) in the soil environment. In this study, the response of ARGs and MRGs to bamboo charcoal (BC) and bamboo vinegar (BV) during aerobic composting was investigated. Results showed that BC + BV treatment reduced the abundances of ARGs and mobile genetic elements (MGEs) during the thermophilic period, as well as achieved the lowest rebound during the cooling period. BC + BV promoted the growth of Firmicutes, thereby facilitating the thermophilic period of composting. The rebound of ARGs and MGEs can be explained by increasing the abundance of Actinobacteria and Proteobacteria at the end of composting. Composting reduced the abundances of MRGs comprising pcoA, tcrB, and cueO, whereas cusA and copA indicated the selective pressure imposed by heavy metals on bacteria. The fate of ARGs was mainly driven by MGEs, and heavy metals explained most of the variation in MRGs. Interestingly, nitrogen conversion also had an important effect on ARG and MRG profiles. Our current findings suggest that the addition of BC + BV during compost preparation is an effective method in controlling the mobility of ARGs and MRGs, thereby reducing the environmental problems.201931252107
7039140.9994Profiles and key drivers of bacteria/phage co-mediated antibiotic resistance genes during swine manure composting amended with humic acid. Phages can promote the spread of antibiotic resistance genes (ARGs) in agricultural environments through transduction. However, studies on phage-mediated ARG profiles during composting have not been performed. This study investigated the effects of adding humic acid (HA) on the abundances of bacteria/phage co-mediated ARGs (b/pARGs) during swine manure composting and the key factors that affected the transmission of b/pARGs. The results showed that the addition of 5 % HA during composting could effectively reduce the absolute abundances of b/pARGs, inhibit the proliferation of pathogenic microorganisms (e.g., Corynebacterium and Streptococcus) that carried ARGs, and ultimately affect the fate of b/pARGs in the composting process by regulating key environmental factors to change the abundance of co-host bacteria. Overall, the findings of this study provided new information for understanding the main driving factors affecting the b/pARGs profile and provided a reference for the prevention and control of ARGs pollution during composting.202336774987
8564150.9994Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater. The formation and transmission of antibiotic resistance genes (ARGs) have attracted increasing attention. It is unclear whether the internal mechanisms by which antibiotics affect horizontal gene transfer (HGT) of ARGs during anaerobic digestion (AD) were influenced by dose and type. We investigated the effects of two major antibiotics (oxytetracycline, OTC, and sulfamethoxazole, SMX) on ARGs during AD according to antibiotic concentration in livestock wastewater influent. The low-dose antibiotic (0.5 mg/L) increased ROS and SOS responses, promoting the formation of ARGs. Meanwhile, low-dose antibiotics could also promote the spread of ARGs by promoting pili, communication responses, and the type IV secretion system (T4SS). However, different types and doses of antibiotics would lead to changes in the above functional modules and then affect the enrichment of ARGs. With the increasing dose of SMX, the advantages of pili and communication responses would gradually change. In the OTC system, low-dose has the strongest promoting ability in both pili and communication responses. Similarly, an increase in the dose of SMX would change T4SS from facilitation to inhibition, while OTC completely inhibits T4SS. Microbial and network analysis also revealed that low-dose antibiotics were more favorable for the growth of host bacteria.202336063716
8574160.9994Impact of different manure-derived dissolved organic matters on the fate of arsenic-antibiotic in co-contaminated paddy soils. Manure application increases the transfer risk of antibiotic resistance to farmland. Especially, its impact remains unclear when it occurs in arsenic (As)-contaminated paddy soils, which is considered as a global environmental problem. In this work, we investigated the fate of antibiotic resistance genes (ARGs) in As-antibiotic co-contaminated paddy soils under the application of manure from different sources (pig manure, cow dung, and chicken manure). Differences in the aliphatic carbon and electron-donating capacities of these dissolved organic matters (DOM) regulated the transformation of iron and As by both biotic and abiotic processes. The regulation by pig manure was stronger than that by cow dung and chicken manure. DOM regulation increased the abundance of As-related functional genes (arsC, arrA, aioA, and arsM) in the soil and accelerated the transformation of As speciation, the highest proportion of As(III) being 45%-61%. Meanwhile, the continuous selection pressure provided by the highly toxic As(III) increased the risk of ARGs and mobile genetic elements (MGEs) via horizontal gene transfer. As-resistant bacteria, including Bacillus, Geobacter, and Desulfitobacterium, were finally considered as potential host bacteria for ARGs and MGEs. In summary, this study clarified the synergistic mechanism of As-antibiotic on the fate of ARGs in co-contaminated paddy soils, and provided practical guidance for the proper application of organic fertilizers.202235491001
8567170.9994System-dependent divergence of microbial community and resistome in two anaerobic niches under sulfamethoxazole selection. The prevalence of sulfamethoxazole (SMX) in high-strength wastewater poses a significant threat to the stability and efficiency of anaerobic biological treatment systems, particularly when deployed as initial treatment units. However, the complex interactions arising from SMX biodegradation and their resultant effects on typical anaerobic digestion (AD) and sulfate-reducing (SR) systems are not thoroughly understood. This study revealed that SMX exposure stimulated methanogenesis in the AD system and sulfate reduction in the SR system, driven primarily by enriched key functional taxa (e.g., methanogens, sulfate-reducing bacteria). Organic matter removal efficiency increased significantly in the AD system under SMX stress, attributed to the enrichment of fermentative bacteria. Notably, the enriched class Actinomycetes was capable of SMX biodegradation, thereby likely mitigating SMX stress for other microorganisms. In contrast, the SR system exhibited significantly diminished organic matter removal despite developing a more functionally specialized community under SMX exposure. This community harbored fewer SMX degraders, perpetuating selective pressure on the microbiota. Increasing SMX concentrations failed to induce significant shifts in overall community structure in either system, while significantly promoted the proliferation of antibiotic resistance genes (ARGs), particularly pronounced in the SR system exhibiting high SMX accumulation. Moreover, mobile genetic elements mediated the horizontal transfer of the sulfonamide resistance gene sul1 and other co-occurring ARGs located on plasmids. This study provides novel insights into the convergent and divergent microbial responses in the AD and SR systems under SMX exposure, highlighting the dual effects (both stimulatory and inhibitory) of SMX on the functionality of these anaerobic systems.202541130171
8060180.9994Responses of bacterial communities and antibiotic resistance genes to nano-cellulose addition during pig manure composting. Treatment with exogenous additives during composting can help to alleviate the accumulation of antibiotic resistance genes (ARGs) caused by the direct application of pig manure to farmland. In addition, nano-cellulose has an excellent capacity for adsorbing pollutants. Thus, the effects of adding 300, 600, and 900 mg/kg nano-cellulose to compost on the bacterial communities, mobile genetic elements (MGEs), and ARGs were determined in this study. After composting, treatment with nano-cellulose significantly reduced the relative abundance of ARGs, which was lowest in the compost product with 600 mg/kg added nano-cellulose. Nano-cellulose inhibited the rebound in ARGs from the cooling period to the maturity period, and weakened the selective pressure of heavy metals on microorganisms by passivating bio-Cu. The results also showed that MGEs explained most of the changes in the abundances of ARGs, and MGEs had direct effects on ARGs. The addition of 600 mg/kg nano-cellulose reduced the abundances of bacterial genera associated with ermQ, tetG, and other genes, and the number of links (16) between ARGs and MGEs was lowest in the treatment with 600 mg/kg added nano-cellulose. Therefore, adding 600 mg/kg nano-cellulose reduced the abundances of ARGs by affecting host bacteria and MGEs. The results obtained in this study demonstrate the positive effect of nano-cellulose on ARG pollution in poultry manure, where adding 600 mg/kg nano-cellulose was most effective at reducing the abundances of ARGs.202134649327
8125190.9994The removal performances and evaluation of heavy metals, antibiotics, and resistomes driven by peroxydisulfate amendment during composting. This study aimed to explore the effect of peroxydisulfate on the removal of heavy metals, antibiotics, heavy metal resistance genes (HMRGs), and antibiotic resistance genes (ARGs) during composting. The results showed that peroxydisulfate achieved the passivation of Fe, Mn, Zn, and Cu by promoting their speciation variations, thus reducing their bioavailability. And the residual antibiotics were better degraded by peroxydisulfate. In addition, metagenomics analysis indicated that the relative abundance of most HMRGs, ARGs, and MGEs was more effectively down-regulated by peroxydisulfate. Network analysis confirmed Thermobifida and Streptomyces were dominant potential host bacteria of HMRGs and ARGs, whose relative abundance was also effectively down-regulated by peroxydisulfate. Finally, mantel test showed the significant effect of the evolution of microbial communities and strong oxidation of peroxydisulfate on the removal of pollutants. These results suggested that heavy metals, antibiotics, HMRGs, and ARGs shared a joint fate of being removed driven by peroxydisulfate during composting.202337307729