Microplastic and antibiotic proliferated the colonization of specific bacteria and antibiotic resistance genes in the phycosphere of Chlorella pyrenoidosa. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
797301.0000Microplastic and antibiotic proliferated the colonization of specific bacteria and antibiotic resistance genes in the phycosphere of Chlorella pyrenoidosa. Despite that the phycosphere was an important niche for the proliferation of various bacteria and antibiotic resistance genes (ARGs), the factors that affect the colonization of bacteria and ARGs in the phycosphere are still poorly understood. In this study, sterile C. pyrenoidosa co-cultured with bacteria from different sources and provided with polylactic acid microplastic (PLA MPs) and florfenicol (FF) was examined. Results showed that bacteria promoted the growth of C. pyrenoidosa and increased its chlorophyll contents. PLA MPs and FF also showed positive effects on C. pyrenoidosa due to the "Hormesis effect". The occurrence of bacteria in the phycosphere was significantly affected by their sources and the addition of PLA MPs and FF. However, the core microbiota of the phycosphere in each group was similar. Additionally, PLA MPs and FF proliferated the abundance of phenicol-related ARGs (especially floR) and mobile genetic elements in the phycosphere. Notably, PLA MPs and FF enhanced the abundance of Flavobacterium, a potential host of ARGs. Our results highlighted the important roles of bacteria in microalgae and demonstrated exogenous pollutants could promote the spread of ARGs between surrounding environments and the phycosphere, which provide new insights into the occurrence and spread of ARGs in the phycosphere.202337201280
756210.9998Nanoparticles and antibiotics stress proliferated antibiotic resistance genes in microalgae-bacteria symbiotic systems. The comprehensive effect of exogenous pollutants on the dispersal and abundance of antibiotic-resistance genes (ARGs) in the phycosphere, bacterial community and algae-bacteria interaction remains poorly understood. We investigated community structure and abundance of ARGs in free-living (FL) and particle-attached (PA) bacteria in the phycosphere under nanoparticles (silver nanoparticles (AgNPs) and hematite nanoparticles (HemNPs)) and antibiotics (tetracycline and sulfadiazine) stress using high-throughput sequencing and real-time quantitative PCR. Meanwhile, the intrinsic connection of algae-bacteria interaction was explored by transcriptome and metabolome. The results showed that the relative abundance of sulfonamide and tetracycline ARGs in PA and FL bacteria increased 103-129 % and 112-134 %, respectively, under combined stress of nanoparticles and antibiotics. Antibiotics have a greater effect on ARGs than nanoparticles at environmentally relevant concentrations. Proteobacteria, Firmicutes, and Bacteroidetes, as the primary potential hosts of ARGs, were the dominant phyla. Lifestyle, i.e., PA and FL, significantly determined the abundance of ARGs and bacterial communities. Moreover, algae can provide bacteria with nutrients (carbohydrates and amino acids), and can also produce antibacterial substances (fatty acids). This algal-bacterial interaction may indirectly affect the distribution and abundance of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in microalgae-bacteria symbiotic systems.202336283215
793120.9997The stress response of tetracycline resistance genes and bacterial communities under the existence of microplastics in typical leachate biological treatment system. Landfill leachate is an important source of microplastics (MPs) and antibiotic-resistance genes (ARGs). Here, in the presence of polystyrene MPs (PS-MPs) and polyethylene MPs (PE-MPs), the nitrogen and phosphorus removal effect and sludge structure performance were affected in an anaerobic-anoxic-aerobic system, a typical biological leachate treatment process. The abundance of tetracycline-resistance genes (tet genes) in biofilms on the two types of MP was significantly higher than that in the leachate and sludge, and the load on PE-MPs was higher than that on PS-MPs because of the porous structure of PE-MPs. Aging of the MPs increased their surface roughness and abundance of oxygen-containing functional groups and shaped the profile of ARGs in the MP biofilms. The biofilm biomass and growth rate on the two types of MP increased with the incubation time in the first 30 days, and was affected by environmental factors. Structural equation models and co-occurrence network analysis demonstrated that the MPs indirectly affected the spectrum of ARGs by affecting biofilm formation, and, to a lesser extent, had a direct impact on the selective enrichment of ARGs. We discuss the mechanisms of the relationships between MPs and ARGs in the leachate treatment system, which will have guiding significance for future research. Our data on the colonization of microorganisms and tet genes in MPs biofilms provide new evidence concerning the accumulation and transmission of these ARGs, and are important for understanding the mechanisms of MPs in spreading pollution.202439018858
856230.9997Nitrogen and phosphorus limitations promoted bacterial nitrate metabolism and propagation of antibiotic resistome in the phycosphere of Auxenochlorella pyrenoidosa. Despite that nitrogen (N) and phosphorus (P) play critical roles in the lifecycle of microalgae, how N and P further affect the distribution of bacteria and antibiotic resistance genes (ARGs) in the phycosphere is still poorly understood. In this study, the effects of N and P on the distribution of ARGs in the phycosphere of Auxenochlorella pyrenoidosa were investigated. Results showed that the growth and chlorophyll synthesis of microalgae were inhibited when N or P was limited, regardless of the N/P ratios, but the extracellular polymeric substances content and nitrate assimilation efficiency were enhanced in contrast. Metagenomic sequencing revealed that N or P limitation resulted in the recruitment of specific bacteria that highly contribute to the nitrate metabolism in the phycosphere. Besides, N or P limitation promoted the propagation of phycosphere ARGs, primarily through horizontal gene transfer mediated by mobile genetic elements. The enrichment of specific bacteria induced by changes in the algal physiology also contributed to the ARGs proliferation under nutrient limitation. Our results demonstrated that the reduction of algal cells caused by nutrient limitation could promote the propagation of ARGs, which provides new insights into the occurrence and spread of ARGs in the phycosphere.202438367442
705140.9997Polyvinyl chloride microplastics in the aquatic environment enrich potential pathogenic bacteria and spread antibiotic resistance genes in the fish gut. Microplastics and antibiotics coexist in aquatic environments, especially in freshwater aquaculture areas. However, as the second largest production of polyvinyl chloride (PVC) in the world, the effects of co-exposure to microplastics particles and antibiotics on changes in antibiotic resistance gene (ARG) profiles and the microbial community structure of aquatic organism gut microorganisms are poorly understood. Therefore, in this study, carp (Cyprinus carpio) were exposed to single or combined PVC microplastic contamination and oxytetracycline (OTC) or sulfamethazine (SMZ) for 8 weeks. PVC microplastics can enrich potential pathogenic bacteria, such as Enterobacter and Acinetobacter, among intestinal microorganisms. The presence of PVC microplastics enhanced the selective enrichment and dissemination risk of ARGs. PVC microplastics combined with OTC (OPVC) treatment significantly increased the abundance of tetracycline resistance genes (1.40-fold) compared with that in the OTC exposure treatment, revealing an obvious co-selection effect. However, compared with those in the control group, the total abundance of ARGs and MGEs in the OPVC treatment groups were significantly lower, which was correlated with the reduced abundances of the potential host Enterobacter. Overall, our results emphasized the diffusion and spread of ARGs are more influenced by PVC microplastics than by antibiotics, which may lead to antibiotic resistance in aquaculture.202438878444
858450.9997Microplastics enhance the prevalence of antibiotic resistance genes in mariculture sediments by enriching host bacteria and promoting horizontal gene transfer. Microplastics (MPs) and antibiotic resistance genes (ARGs) pose significant challenges to the One Health framework due to their intricate and multifaceted ecological and environmental impacts. However, the understanding of how MP properties influence ARG prevalence in mariculture sediments remains limited. Herein, the polystyrene (PS) and polyvinyl chloride (PVC) MPs with different sizes (20-120 μm and 0.5-2.0 mm) were selected to evaluate their impacts and underlying mechanisms driving ARGs dissemination. The results showed that PS and PVC MPs increased the relative abundance of ARGs by 1.41-2.50-fold and 2.01-2.84-fold, respectively, compared with control, particularly high-risk genes. The polymer type effect was identified as more influential than the size effect in driving the sediment resistome evolution. PVC shifted the microbial community assembly from stochastic to deterministic processes, thus enriching ARG host pathogens. Furthermore, the highly hydrophobic PS not only recruited the host bacteria colonization but also facilitated ARG exchange within the plastisphere. The exogenous additives released by PVC (e.g., heavy metals, bisphenol A, and tridecyl ester) and the particles synergistically promoted ARG conjugative transfer by inducing oxidative stress and enhancing cell membrane permeability. These findings revealed how MPs characteristics facilitated the spread of ARGs in marine benthic ecosystems, underscoring the importance of mitigating MPs pollution to maintain mariculture ecosystem health, prevent zoonotic diseases, and balance global mariculture with ecological health.202540052062
705360.9997Plastisphere showing unique microbiome and resistome different from activated sludge. Plastisphere (the biofilm on microplastics) in wastewater treatment plants (WWTPs) may enrich pathogens and antibiotic resistance genes (ARGs) which can cause risks to the ecological environment by discharging into receiving waters. However, the microbiome and resistome of plastisphere in activated sludge (AS) systems remain inconclusive. Here, metagenome was applied to investigate the microbial composition, functions and ARGs of the Polyvinyl chloride (PVC) plastisphere in lab-scale reactors, and revealed the effects of tetracycline (TC) and/or Cu(II) pressures on them. The results indicated that the plastisphere provided a new niche for microbiota showing unique functions distinct from the AS. Particularly, various potentially pathogenic bacteria tended to enrich in PVC plastisphere. Moreover, various ARGs were detected in plastisphere and AS, but the plastisphere had more potential ARGs hosts and a stronger correlation with ARGs. The ARGs abundances increased after exposure to TC and/or Cu(II) pressures, especially tetracycline resistance genes (TRGs), and the results further showed that TRGs with different resistance mechanisms were separately enriched in plastisphere and AS. Furthermore, the exogenous pressures from Cu(II) or/and TC also enhanced the association of potential pathogens with TRGs in PVC plastisphere. The findings contribute to assessing the potential risks of spreading pathogens and ARGs through microplastics in WWTPs.202236041613
858270.9997Effects of freeze-thaw dynamics and microplastics on the distribution of antibiotic resistance genes in soil aggregates. This is the first study investigating the effects of freeze-thaw (FT) and microplastics (MPs) on the distribution of antibiotic resistance genes (ARGs) in soil aggregates (i.e., soil basic constituent and functional unit) via microcosm experiments. The results showed that FT significantly increased the total relative abundance of target ARGs in different aggregates due to the increase in intI1 and ARG host bacteria. However, polyethylene MPs (PE-MPs) hindered the increase in ARG abundance caused by FT. The host bacteria carrying ARGs and intI1 varied with aggregate size, and the highest number of hosts was observed in micro-aggregates (<0.25 mm). FT and MPs altered host bacteria abundance by affecting aggregate physicochemical properties and bacterial community and enhanced multiple antibiotic resistance via vertical gene transfer. Although the dominant factors affecting ARGs varied with aggregate size, intI1 was a co-dominant factor in various-sized aggregates. Furthermore, other than ARGs, FT, PE-MPs, and their integration promoted the proliferation of human pathogenic bacteria in aggregates. These findings suggested that FT and its integration with MPs significantly affected ARG distribution in soil aggregates. They amplified antibiotic resistance environmental risks, contributing to a profound understanding of soil antibiotic resistance in the boreal region.202337059196
756380.9997Polystyrene microplastics alleviate the effects of sulfamethazine on soil microbial communities at different CO(2) concentrations. Microplastics were reported to adsorb antibiotics and may modify their effects on soil systems. But there has been little research investigating how microplastics may affect the toxicities of antibiotics to microbes under future climate conditions. Here, we used a free-air CO(2) enrichment system to investigate the responses of soil microbes to sulfamethazine (SMZ, 1 mg kg(-1)) in the presence of polystyrene microplastics (PS, 5 mg kg(-1)) at different CO(2) concentrations (ambient at 380 ppm and elevated at 580 ppm). SMZ alone decreased bacterial diversity, negatively affected the bacterial structure and inter-relationships, and enriched the sulfonamide-resistance genes (sul1 and sul2) and class 1 integron (intl1). PS, at both CO(2) conditions, showed little effect on soil bacteria but markedly alleviated SMZ's adverse effects on bacterial diversity, composition and structure, and inhibited sul1 transmission by decreasing the intl1 abundance. Elevated CO(2) had limited modification in SMZ's disadvantages to microbial communities but markedly decreased the sul1 and sul2 abundance. Results indicated that increasing CO(2) concentration or the presence of PS affected the responses of soil microbes to SMZ, providing new insights into the risk prediction of antibiotics under future climate conditions.202133592488
756590.9997Microalgae Enhances the Adaptability of Epiphytic Bacteria to Sulfamethoxazole Stress and Proliferation of Antibiotic Resistance Genes Mediated by Integron. The transmission of ARGs in the microalgae-associated epiphytic bacteria remains unclear under antibiotic exposure, apart from altering the microbial community structure. In this study, Chlorella vulgaris cocultured with bacteria screened from surface water was examined to explore the spread of ARGs in the presence of sulfamethoxazole (SMX). The extracellular polymers released by Chlorella vulgaris could reduce antibiotic-induced collateral damage to bacteria, thus increasing the diversity of the microalgae-associated epiphytic bacteria. The abundances of sul1 and intI1 in the phycosphere at 1 mg/L SMX dose increased by 290 and 28 times, respectively. Metagenomic sequencing further confirmed that SMX bioaccumulation stimulated the horizontal transfer of sul1 mediated by intI1 in the microalgae-associated epiphytic bacteria, while reactive oxygen species (ROS)-mediated oxidative stress induced the SOS response and thus enhanced the transformation of sul1 in the J group. This is the first study to verify that microalgae protect bacteria from antibiotic damage and hinder the spread of ARGs mediated by SOS response, while the transfer of ARGs mediated by integron is promoted due to the bioaccumulation of SMX in the phycosphere. The results contribute to present comprehensive understanding of the risk of ARG proliferation by the presence of emerging contaminants residues in river.202439417646
7052100.9997Plastisphere enrich antibiotic resistance genes and potential pathogenic bacteria in sewage with pharmaceuticals. Microplastics (MPs) and pharmaceuticals are common emerging pollutants in sewage, and their coexistence may have more negative effects on the environments. This study chose tetracycline (TC), ampicillin (AMP) and triclosan (TCS) to investigate the responses of antibiotic resistance genes (ARGs) and microbial communities on different MPs (polyvinyl chloride (PVC), polyethylene (PE)) biofilms (plastisphere). The adsorption capacity of three pharmaceuticals on PVC and PE decreased in the order of AMP > TC > TCS. PE was more conducive to microbial attachment than PVC. MPs led to the increase of the total copies of ARGs and mobile genetic elements (MGEs) in the sewage. Importantly, multidrug ARGs and MGEs were enriched on plastisphere. Furthermore, the co-occurrence of TC and MPs led to higher risks of spreading ARGs and MGEs. In addition, potential pathogenic bacteria Legionella, Mycobacterium, Neisseria and Arcobacter were more abundant on plastisphere than those in sewage, and these bacteria might be the hosts for ARGs and MGEs. This study showed that plastisphere could be repositories of ARGs and MGEs in sewage and accumulated potential pathogenic bacteria.202133454495
8589110.9997Impacts of microplastic type on the fate of antibiotic resistance genes and horizontal gene transfer mechanism during anaerobic digestion. Microplastics (MPs) and antibiotic resistance genes (ARGs) are important pollutants in waste activated sludge (WAS), but their interactions during anaerobic digestion (AD) still need to be further explored. This study investigated variations in ARGs, mobile genetic elements (MGEs), and host bacteria during AD under the pressure of polyamide (PA), polyethylene (PE), and polypropylene (PP). The results showed that the MPs increased methane production by 11.7-35.5%, and decreased ARG abundance by 5.6-24.6%. Correlation analysis showed that the decrease of MGEs (plasmid, prophage, etc.) promoted the decrease of the abundance of multidrug, aminoglycoside and tetracycline resistance genes. Metagenomic annotation revealed that the reduction of key host bacteria (Arenimonas, Lautropia, etc.) reduced the abundance of major ARGs (rsmA, rpoB2, etc.). Moreover, PP MPs contributed to a reduction in the abundance of functional genes related to the production of reactive oxygen species, ATP synthesis, and cell membrane permeability, which was conducive to reducing the potential for horizontal gene transfer of ARGs. These findings provide insights into the treatment of organic waste containing MPs.202438772228
7930120.9996Fates of extracellular and intracellular antibiotic resistance genes in activated sludge and plastisphere under sulfadiazine pressure. Microplastics, antibiotics, and antibiotic resistance genes (ARGs) represent prominent emerging contaminants that can potentially hinder the efficacy of biological wastewater treatment and pose health risks. Plastisphere as a distinct ecological niche for microorganisms, acts as a repository for ARGs and potential pathogenic bacteria. Nonetheless, the spread pattern of extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in plastisphere under antibiotic exposure was not yet known. This study aimed to investigate disparities in extracellular polymeric substances (EPS) production, extracellular and intracellular microbial community structures, as well as the transmission of eARGs and iARGs between activated sludge and plastisphere in an anaerobic/anoxic/oxic system under sulfadiazine (SDZ) exposure. SDZ was found to enhance EPS production in activated sludge and plastisphere. Interestingly, as SDZ removal efficiency increased, EPS content decreased in activated sludge and plastisphere collected from oxic zone, and continued to increase in plastisphere samples collected from anaerobic and anoxic zones. There were significant differences in microbial community structure between activated sludge and plastisphere, and the DNA fragments of potential pathogenic bacteria were detected in extracellular samples. SDZ exhibited a promoting effect on the propagation of eARGs, which were more abundant in the plastisphere than in activated sludge, thus heightening the risk of ARGs dissemination. Extracellular mobile genetic elements played a pivotal role in driving the spread of eARGs, while the microbial community induced the changes of iARGs. Potential pathogenic bacteria emerged as potential hosts for ARGs and mobile genetic elements within activated sludge and plastisphere, leading to more serious environmental threats.202337898001
7566130.9996Antibiotic sulfadiazine degradation by persulfate oxidation: Intermediates dependence of ecotoxicity and the induction of antibiotic resistance genes. To preserve the water resources, this study has analyzed the ecotoxicity and antibiotic resistance genes (ARGs) induction capacity of sulfadiazine degradation intermediates resulting from persulfate activation oxidation enhanced by ultraviolet, ultrasound and microwave. The five degradation pathways caused by the contribution discrepancy of electron transfer and singlet oxygen ((1)O(2)) and variations in the ecotoxicity of different degradation products were analyzed. Microcosm experiment exhibited that the microbial community in actual water changed significantly with SDZ and degradation intermediates, in which the dominant genera were Aeromonas, Cupriavidus, Elizabethkingia and Achromobacter. Except for the selective pressure on bacteria, the degradation intermediates also exert a certain degree or even stronger induction on sulfonamide ARGs (sul4, sul1 and sul2) than SDZ. Furthermore, the potential hosts for sulfonamide ARGs were revealed by network analysis. These results provide a better understanding of antibiotics degradation mechanism and ARGs occurrence, which is useful for controlling the spread of ARGs.202336372382
7558140.9996Interaction of sulfate-reducing bacteria and methanogenic archaea in urban sewers, leads to increased risk of proliferation of antibiotic resistance genes. Sewers are considered a potential reservoir of antibiotic resistance. However, the generation of antibiotic resistance genes (ARGs) in microbial communities in pipeline biofilms under antibiotic stress remains unexplored. In this study, the biodegradation efficiency of tetracycline (TCY) and sulfamethoxazole (SMX) was evaluated in a pilot reactor of the sewers. The results showed that under TCY and SMX stress, the degradation efficiency of sewage water was inhibited. The most abundant ARGs detected in the biofilm samples were TCY-related genes (e.g., tetW/N/W, tetC, and tetM), accounting for 34.1%. The microbial community composition varied, and the correlation analysis showed that antibiotic stress had a certain impact on the biological metabolic activity and function of the urban sewers. The community structure and diversity of biofilms enabled the evaluation of the bioconversion of antibiotics. Notably, Anaerocella and Paludibacter directly influenced the methanogenesis and sulfate reduction processes, playing a key role in the interaction between sulfate-reducing bacteria and methanogenic archaea. These microorganisms facilitated the proliferation of ARGs (tet and sul) in the biofilms through horizontal gene transfer. This study provides insight into the front-end control of ARGs, further improving sewage treatment plant processes and reducing the environmental and health risks caused by antibiotic abuse.202539894155
6433150.9996Do microplastic biofilms promote the evolution and co-selection of antibiotic and metal resistance genes and their associations with bacterial communities under antibiotic and metal pressures? Microplastic (MP) biofilms with heterogeneous bacterial compositions and structure have become a hotspot of antibiotic resistance genes (ARGs) in aquatic environments. The evolutionary features of ARGs and their related factors including class 1 integron (intI1), metal resistance genes (MRGs), and bacterial communities in MP biofilms under exogenous pressures and how they compared with natural substrates (NS) are unclear. The individual and combined pressures of sulfamethoxazole, tetracycline, and zinc were used to drive the dynamic evolution of ARGs, intI1, MRGs, and bacterial communities in the MP and NS biofilms. The exogenous pressures from the combined selection of sulfamethoxazole, tetracycline, and zinc and their increasing concentrations both significantly enhanced the abundances of ARGs on the MP compared to the NS. Meanwhile, the selective pressures resulted in obvious dissimilarities between the MP and NS bacterial communities. The core bacterial taxa and the co-occurrence patterns of ARGs and bacterial genera in the biofilms of MP and NS were obviously different, and more potential ARG host bacteria selectively colonized the MP. Metal pressure also enhanced the enrichment of ARGs in the MP biofilms by promoting the spread of intI1 via the co-selection mechanism.202234597934
7030160.9996Metagenomic profiling of antibiotic resistance genes/bacteria removal in urban water: Algal-bacterial consortium treatment system. Antibiotic resistance genes (ARGs) have exhibited significant ecological concerns, especially in the urban water that are closely associated with human health. In this study, with presence of exogenous Chlorella vulgaris-Bacillus licheniformis consortium, most of the typical ARGs and MGEs were removed. Furthermore, the relative abundance of potential ARGs hosts has generally decreased by 1-4 orders of magnitude, revealing the role of algal-bacterial consortium in cutting the spread of ARGs in urban water. While some of ARGs such as macB increased, which may be due to the negative impact of algicidal bacteria and algal viruses in urban water on exogenous C. vulgaris and the suppression of exogenous B. licheniformis by indigenous microorganisms. A new algal-bacterial interaction might form between C. vulgaris and indigenous microorganisms. The interplay between C. vulgaris and bacteria has a significant impact on the fate of ARGs removal in urban water.202438801952
8567170.9996System-dependent divergence of microbial community and resistome in two anaerobic niches under sulfamethoxazole selection. The prevalence of sulfamethoxazole (SMX) in high-strength wastewater poses a significant threat to the stability and efficiency of anaerobic biological treatment systems, particularly when deployed as initial treatment units. However, the complex interactions arising from SMX biodegradation and their resultant effects on typical anaerobic digestion (AD) and sulfate-reducing (SR) systems are not thoroughly understood. This study revealed that SMX exposure stimulated methanogenesis in the AD system and sulfate reduction in the SR system, driven primarily by enriched key functional taxa (e.g., methanogens, sulfate-reducing bacteria). Organic matter removal efficiency increased significantly in the AD system under SMX stress, attributed to the enrichment of fermentative bacteria. Notably, the enriched class Actinomycetes was capable of SMX biodegradation, thereby likely mitigating SMX stress for other microorganisms. In contrast, the SR system exhibited significantly diminished organic matter removal despite developing a more functionally specialized community under SMX exposure. This community harbored fewer SMX degraders, perpetuating selective pressure on the microbiota. Increasing SMX concentrations failed to induce significant shifts in overall community structure in either system, while significantly promoted the proliferation of antibiotic resistance genes (ARGs), particularly pronounced in the SR system exhibiting high SMX accumulation. Moreover, mobile genetic elements mediated the horizontal transfer of the sulfonamide resistance gene sul1 and other co-occurring ARGs located on plasmids. This study provides novel insights into the convergent and divergent microbial responses in the AD and SR systems under SMX exposure, highlighting the dual effects (both stimulatory and inhibitory) of SMX on the functionality of these anaerobic systems.202541130171
7944180.9996Effects of nitrogen-driven eutrophication on the horizontal transfer of extracellular antibiotic resistance genes in water-sediment environments. Excessive nitrogen and other nutrients can trigger the eutrophication of freshwater bodies. Antibiotic resistance genes (ARGs) are now recognized as environmental pollutants, with extracellular ARGs (eARGs) being the dominant form in sediments. However, research on the propagation characteristics of eARGs remains limited. This study investigated the transfer characteristics of kanamycin resistance (KR) genes in the pEASY-T1 plasmid to intracellular DNA (iDNA) and extracellular DNA (eDNA) in water and sediment microenvironments under increasing nitrogen concentrations, as well as the community structure of free-living (FL) and particle-attached (PA) bacteria. The results revealed KR genes relative abundance in free extracellular DNA (f-eDNA) and adsorbed extracellular DNA (a-eDNA) of the water initially decreased and then increased with rising nitrogen concentrations. Its abundance in iDNA of the sediments decreased significantly with increasing nitrogen content, with relative abundance ranging from 5.09 × 10(-4) to 1.14 × 10(-3) copies/16SrRNA. The transfer from eDNA to iDNA in the water showed a rising and then falling trend as nitrogen concentration rose. The transfer of iDNA from the water to iDNA in sediments exhibited the opposite pattern. Additionally, copper (Cu) and zinc (Zn) were identified as key factors influencing the abundance of KR genes in the water, but total phosphorus (TP) was the primary determinant of KR gene distribution in sediments according to random forest analysis. These findings reveal novel mechanisms of eARG propagation in eutrophic environments, providing a theoretical foundation for managing antibiotic resistance in aquatic ecosystems.202540057108
7974190.9996Sediments alleviate the inhibition effects of antibiotics on denitrification: Functional gene, microbial community, and antibiotic resistance gene analysis. Both antibiotics and sediments can affect the denitrification in aquatic systems. However, little is known how antibiotics influence the denitrification in the presence of sediments. Here, the effects of antibiotics (sulfamethoxazole, tetracycline and ofloxacin) on denitrification in the absence and presence of sediments were investigated. The influencing mechanisms were revealed by quantifying the denitrification functional genes (DNGs), 16S-seq of bacteria, and antibiotic resistance genes (ARGs). The results showed that the presence of antibiotics inhibited NO(3)-N reduction by decreasing the abundances of narG, nirK, nosZ, total DNGs, and denitrifying bacteria. However, the inhibition effect was alleviated by sediments, which promoted the growth of bacteria and decreased the selective pressure of antibiotics as the vector of bacteria and antibiotics, thus increasing the abundances of denitrifying bacteria and all the DNGs. Partial least-squares path model disclosed that antibiotics had negative effects on bacteria, ARGs and DNGs, while sediments had negative effects on ARGs but positive effects on bacteria and DNGs. The network analysis further revealed the close relation of the genera Bacillus, Acinetobacter, and Enterobacter with the ARGs and DNGs. The findings are helpful to understand the denitrification in antibiotic-polluted natural waters.202234520908