Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd(II) stress. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
796001.0000Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd(II) stress. An activated sludge sequencing batch reactor (SBR) was used to treat divalent cadmium (Cd(II)) wastewater for 60 d to investigate the overall treatment performance, evolution of the bacterial community, and abundance of the Cd(II) resistance gene CzcA and shifts in its potential host bacteria. During stable operation with a Cd(II) concentration of 20 mg/L, the average removal efficiencies of Cd(II) and chemical oxygen demand (COD) were more than 85% and that of total phosphorus was greater than 70%, while the total nitrogen (TN) was only about 45%. The protein (PN) content in the extracellular polymeric substances (EPS) increased significantly after Cd(II) addition, while polysaccharides displayed a decreasing trend (p < 0.05), indicating that EPS prefer to release PN to adsorb Cd(II) and protect bacteria from damage. Three-dimensional fluorescence spectral analysis showed that fulvic acid-like substances were the most abundant chemical components of EPS. The addition of Cd(II) adversely affected most denitrifying bacteria (p < 0.05), which is consistent with the low TN removal. In addition, quantitative polymerase chain reaction analysis revealed that CzcA gene abundance decreased as the Cd(II) concentration increased, possibly because expression of the CzcA gene was inhibited by Cd(II) stress. The majority of CzcA gene sequences were carried by Pseudomonas, making it the dominant genus among Cd(II)-resistant bacteria.201931514000
795910.9999Evolution of microbial community and antibiotic resistance genes in anammox process stressed by oxytetracycline and copper. The individual and combined impacts of copper ion (Cu(2+)) and oxytetracycline (OTC) on anaerobic ammonium oxidation (anammox) performance and its self-recovery process were examined. Experimental results showed that the anammox performance and activity of anammox bacteria were inhibited by 1.0 mg L(-1) OTC, Cu(2+) and OTC + Cu(2+), and both single and combined inhibitions were reversible. The abundance of functional genes and parts of antibiotic resistance genes (ARGs) were positively related to the dominant bacterium Ca. Kuenenia, implying that the recovery of the performance was associated with the progressive induction of potentially resistant species after inhibition. The above outcomes illustrated that anammox bacteria were stressed by metals and antibiotics, but they still could remove nitrogen at a rate higher than 20.6 ± 0.8 kg N m(-3) d(-1), providing guidance for engineering applications of anammox processes.202132949830
795820.9998Microbial response and recovery strategy of the anammox process under ciprofloxacin stress from pure strain and consortia perspectives. Ciprofloxacin (CIP) poses a high risk of resistance development in water environments. Therefore, comprehensive effects and recovery strategies of CIP in anaerobic ammonia oxidation (anammox) process were systematically elucidated from consortia and pure strains perspectives. The anammox consortia was not significantly affected by the stress of 10 mg L(-1) CIP, while the higher concentration (20 mg L(-1)) of CIP caused a dramatic reduction in the nitrogen removal performance of anammox system. Simultaneously, the abundances of dominant functional bacteria and corresponding genes also significantly decreased. Such inhibition could not be mitigated by the recovery strategy of adding hydrazine and hydroxylamine. Reducing nitrogen load rate from 5.1 to 1.4 kg N m(-3) d(-)(1) promoted the restoration of three reactors. In addition, the robustness and recovery of anammox systems was evaluated using starvation and shock strategies. Simultaneously, antibiotic resistance genes and key metabolic pathways of anammox consortia were upregulated, such as carbohydrate and energy metabolisms. In addition, 11 pure stains were isolated from the anammox system and identified through phylogenetic analysis, 40 % of which showed multidrug resistance, especially Pseudomonas. These findings provide deep insights into the responding mechanism of anammox consortia to CIP stress and promote the application of anammox process for treating wastewater containing antibiotics.202438554504
758530.9998Impacts of engineered nanoparticles and antibiotics on denitrification: Element cycling functional genes and antibiotic resistance genes. The wide presence of antibiotics and minerals warrants their combined effects on the denitrification in natural aquatic environment. Herein, we investigated the effects of two antibiotics, sulfamethazine (SMZ) and chlortetracycline (CTC), on the reduction of NO(3)(-)-N and accumulation of NO(2)(-)-N in the absence and presence of engineered nanoparticles (NPs) (Al(2)O(3), SiO(2), and geothite) using 16 S rRNA sequencing and high-throughput quantitative PCR. The results showed that the addition of antibiotics inhibited the reduction of NO(3)(-)-N by changing the bacterial community structure and reducing the abundance of denitrification genes, while engineered NPs promoted the denitrification by increasing the abundance of denitrification genes. In the binary systems, engineered NPs alleviated the inhibitory effect of antibiotics through enriching the denitrification genes and adsorbing antibiotics. Antibiotics and its combination with engineered NPs changed the composition of functional genes related to C, N, P, S metabolisms (p < 0.01). The addition of antibiotics and/or engineered NPs altered the bacterial community structure, which is dominated by the genera of Enterobacter (40.7-90.5%), Bacillus (4.9-58.5%), and Pseudomonas (0.21-12.7%). The significant relationship between denitrification, carbon metabolism genes, and antibiotic resistance genes revealed that the heterotrophic denitrifying bacteria may host the antibiotic resistance genes and denitrification genes simultaneously. The findings underscore the significance of engineered NPs in the toxicity assessment of pollutants, and provide a more realistic insight into the toxicity of antibiotics in the natural aquatic environment.202235738104
804240.9998Algal-bacterial consortium mediated system offers effective removal of nitrogen nutrients and antibiotic resistance genes. The sulfonamide antibiotic resistance genes (ARGs) especially sul1 was identified as the dominant in eutrophic water. The performance of Chlorella vulgaris-B. licheniformis consortium toward sul1 removal, total nitrogen (TN) removal, and the mechanism of sul1 removal was investigated. The removal efficiency of exogenous ARGs plasmids carrying sul1 reached (97.2 ± 2.3)%. The TN removal rate reached (98.5 ± 1.2)%. The enhancements of carbon metabolism, nitrogen metabolism, aminoacyl-tRNA biosynthesis, and glycoproteins had significant influences on sul1 and TN removals, under the premise of normal growth of algae and bacteria. The quantitative polymerase chain reaction (qPCR) results suggested that the absolute abundances of sul1 were low in algal-bacterial systems (0 gene copies/mL) compared with individual systems ((1 × 10(6) ± 15) gene copies/mL). The duplication of sul1 was inhibited in algal cells and bacterial cells. The algal-bacterial consortium seems to be a promising technology for wastewater treatment with a potential to overcome the eutrophication and ARGs challenges.202236049708
804150.9998Insights into the microalgae-bacteria consortia treating swine wastewater: Symbiotic mechanism and resistance genes analysis. This study investigated the effects of microalgae-bacteria consortia (MBC) (Chlorella pyrenoidosa-activated sludge (AS)) treating swine wastewater with low C/N ratios. After co-culture, the removal rates of NH(4)(+)-N and PO(4)(3-)-P increased by 53.84% and 43.52%. Furthermore, the sulfamethoxazole (SMX) degradation rates in MBC were slightly higher than in the activated sludge process. Interestingly, the absolute abundance of antibiotic resistance genes (ARGs) in effluent from MBC is relatively less than in the AS process. C. pyrenoidosa has a negative zeta potential that allows bacteria to adhere to its surface. The concentrations of carbohydrates and proteins in extracellular polymeric substance (EPS) of MBC dramatically increased compared with the AS process. At the phylum level, Proteobacteria, Bacteroidota, and Cyanobacteria were the main bacteria, while Ascomycota and Basidiomycota were the primary fungi in MBC. Overall, those findings lead to a better understanding of the swine wastewater containing antibiotic treatment by MBC.202235217162
759860.9998Aspartame affects methane yield and enhances transmission of antibiotic resistance genes during anaerobic digestion of sludge. Aspartame (ASP) is a widely used artificial sweetener, yet recent studies have shown that ASP have potential toxic effect. ASP is also detected in sludge, however, the influence of ASP on the performance of sludge anaerobic digestion and the fate of antibiotic resistance genes (ARGs) have not been thoroughly investigated. Under stress of 0, 0.5, 5 and 50 mg/L ASP, cumulative methane production was 181.7, 167.0, 154.0 and 140.8 mlCH(4)/g VSS, respectively. ASP inhibited the dissolution and conversion of organic matter in sludge. Sequencing data revealed a decline in the abundance of functional microorganisms compared to control, such as hydrolytic-acidifying bacteria and methanogens, potentially attributed to increased intracellular reactive oxygen species and damaged cell membranes caused by ASP addition. Specifically, 50 mg/L ASP reduced the total abundance of methanogens by 59.40 % compared to control. Concurrently, alterations in microbial communities along with an increase in Tn916 and intI1 were observed, increasing the abundance of ARGs. The total abundance of five ARGs peaked at 1.43E+ 12 copies/g at 5 mg/L ASP, representing 139 % of the control. This research contributes valuable insights into the alterations in anaerobic digestion caused by ASP, emphasizing the potential risks in the overall environmental system.202539616849
796470.9998Fate of sulfonamide resistance genes during sludge anaerobic fermentation: Roles of sludge components and fermentation pHs. This study assessed potential effects of two neglected factors (sludge components and pH values) on the fate of sulfonamide (sul) resistance genes during sludge anaerobic fermentation. It was found that sludge with different contents of protein, carbohydrate and humic acid caused no significant changes in the abundances of sul genes. Nevertheless, sul genes were sensitive to pHs (4-10), and the maximum attenuations (0.8-1.1 log unit) were obtained at pH 10. Mechanism exploration indicated that pHs drove the community evolution of sulfonamide resistant bacteria (SRB), most of which were affiliated to the pH-enriched phyla but not the pH-enriched dominant genera. In addition, the relative abundances of SRB were decreased under both acidic and alkaline conditions. Furthermore, the abundances of intI 1 as well as the sul-carrying abilities of plasmid and extracellular DNA were all reduced at test pHs, indicating that the potential of horizontal gene transfer among bacteria was restricted.201931226672
797080.9998Environmental micro-molar H(2)O(2) reduces the efficiency of glyphosate biodegradation in soil. Glyphosate is one of the most widely used pesticides globally. The environmental micro-molar hydrogen peroxide (H(2)O(2))-driven Fenton reaction has been reported to degrade herbicides in natural water. However, the impact of micro-molar H(2)O(2) (50 μM) on the degradation of glyphosate in soil and glyphosate-degrading bacteria remains unclear. In this study, degradation of glyphosate in the sterilized and unsterilized soil system and MSM medium under micro-molar H(2)O(2) was investigated; bacterial diversity, enzyme activity and gene abundance in the soil following micro-molar H(2)O(2) addition were also investigated. The results indicated that the addition of micro-molar H(2)O(2) facilitated the degradation of glyphosate in a sterilized environment, resulting in a 76.30% decrease in glyphosate within 30 days. The degradation of glyphosate increased by 52.32% compared to the control treatment. However, in an unsterilized environment, the addition of micro-molar H(2)O(2) leads to a reduction in the biodegradation efficiency of glyphosate. Bacteria, enzymes and specific genes were found to be affected to varying degrees. Firstly, micro-molar H(2)O(2) affects the relative abundance of functional bacteria related to glyphosate degradation, such as Afipia, Microcoleus and Pseudomonas. Secondly, micro-molar H(2)O(2) resulted in a decrease in soil phosphatase activity. Thirdly, the expression of resistance genes was affected, particularly the glyphosate resistance gene aroA. The findings presented a novel research perspective on the degradation of soil glyphosate by micro-molar H(2)O(2).202439307340
804390.9998Effect of tetracycline on bio-electrochemically assisted anaerobic methanogenic systems: Process performance, microbial community structure, and functional genes. Bio-electrochemically assisted anaerobic methanogenic systems (An-BES) are highly effective in wastewater treatment for methane production and degradation of toxic compounds. However, information on the treatment of antibiotic-bearing wastewater in An-BES is still very limited. This study therefore investigated the effect of tetracycline (TC) on the performance, microbial community, as well as functional and antibiotic resistance genes of An-BES. TC at 1 and 5 mg/L inhibited methane production by less than 4.8% compared to the TC-free control. At 10 mg/L TC, application of 0.5 and 1.0 V decreased methane production by 14 and 9.6%, respectively. Under the effect of 1-10 mg/L TC, application of 1.0 V resulted in a decrease of current from 42.3 to 2.8 mA. TC was mainly removed by adsorption; its removal extent increased by 19.5 and 32.9% with application of 0.5 and 1.0 V, respectively. At 1.0 V, current output was not recovered with the addition of granular activated carbon, which completely removed TC by adsorption. Metagenomic analysis showed that propionate oxidizing bacteria and methanogens were more abundant in electrode biofilms than in suspended culture. Antibiotic resistance genes (ARGs) were less abundant in biofilms than in suspended culture, regardless of whether voltage was applied or not. Application of 1.0 V resulted in the enrichment of Geobacter in the anode and Methanobacterium in the cathode. TC inhibited exoelectrogens, propionate oxidizing bacteria, and the methylmalonyl CoA pathway, leading to a decrease of current output, COD consumption, and methane production. These findings deepen our understanding of the inhibitory effect of TC in An-BES towards efficient bioenergy recovery from antibiotic-bearing wastewater, as well as the response of functional microorganisms to TC in such systems.202235533856
7961100.9998Effect of tetracycline on ammonia and carbon removal by the facultative bacteria in the anaerobic digester of a sewage treatment plant. This study was conducted to see the effect of tetracycline on nitrogen assimilation and carbon removal in an anaerobic digester of a sewage plant. Samples of sewage were collected from an anaerobic digester sludge. Consortium of nitrogen assimilating bacteria were isolated from the sample and its ability to assimilate ammonia at different concentrations of tetracycline was measured along with carbon removal. The results indicate that while high concentrations of tetracycline of more than 100 mg/L delayed the growth of the bacteria, the resistant bacteria grew after a lag period and the removal of nitrogen and carbon was unaffected even at the highest tetracycline concentration of 250 mg/L tested in this study.201830025323
7966110.9997How heavy metal stress promotes dissemination of antibiotic resistance genes in the activated sludge process. Heavy metals have been recently revealed as promoters to antibiotic resistance gene (ARG) dissemination in water environment, but their influence on ARG transfer in the activated sludge process has not been clear. In this study, a set of sequencing batch reactors (SBRs) and micro-scale microfluidic chips were established to quantify the impacts of heavy metals (0.5 mM of Pb, 0.1 mM of As, and 0.005 mM of Hg) on the ARG spreading in the activated sludge consortium. Under heavy metal stress, transfer frequencies were 1.7-3.6 folds increase compared to the control. Gram-negative bacteria increased significantly after heavy metal added, which were more prone to receiving resistant plasmid from donors. Meanwhile, the relative expression of genes related to conjugation changed in activated sludge, especially the expression of outer membrane protein and oxidative stress regulatory genes increased by 2.9-7.4 folds and 7.8-13.1 folds, respectively. Furthermore, using microfluidic chips, the dynamics of ARG transfer was observed at single cell level under heavy metal pressure. Heavy metals firstly promoted conjugation and then vertical gene transfer played an important part for ARG spreading. The results provided in-depth understanding of the influence of heavy metals on ARG behavior in the environment.202235724617
7590120.9997Characteristics, Performance and Microbial Response of Aerobic Granular Sludge for Treating Tetracycline Hypersaline Pharmaceutical Wastewater. Salt-tolerant aerobic granular sludge(AGS) was successfully cultivated under the dual stress of tetracycline and 2.5% salinity, resulting in an average particle size of 435.0 ± 0.5 and exhibiting a chemical oxygen demand(COD) removal rate exceeding 80%, as well as excellent sedimentation performance. The analysis of metagenomics technology revealed a significant pattern of succession in the development of AGS. The proportion of Oleiagrimonas, a type of salt-tolerant bacteria, exhibited a gradual increase and reached 38.07% after 42 days, which indicated that an AGS system based on moderate halophilic bacteria was successfully constructed. The expression levels of targeted genes were found to be reduced across the entire AGS process and formation, as evidenced by qPCR analysis. The presence of int1 (7.67 log10 gene copies g(-1) in 0 d sludge sample) enabled microbes to horizontally transfer ARGs genes along the AGS formation under the double pressure of TC and 2.5% salinity. These findings will enhance our understanding of ARG profiles and the development in AGS under tetracycline pressure, providing a foundation for guiding the use of AGS to treat hypersaline pharmaceutical wastewater.202438930555
7962130.9997Linking the Effect of Antibiotics on Partial-Nitritation Biofilters: Performance, Microbial Communities and Microbial Activities. The emergence and spread of antibiotics resistance in wastewater treatment systems have been pointed as a major environmental health problem. Nevertheless, research about adaptation and antibiotics resistance gain in wastewater treatment systems subjected to antibiotics has not been successfully developed considering bioreactor performance, microbial community dynamics and microbial activity dynamics at the same time. To observe this in autotrophic nitrogen removal systems, a partial-nitritation biofilter was subjected to a continuous loading of antibiotics mix of azithromycin, norfloxacin, trimethoprim, and sulfamethoxazole. The effect of the antibiotics mix over the performance, bacterial communities and bacterial activity in the system was evaluated. The addition of antibiotics caused a drop of ammonium oxidation efficiency (from 50 to 5%) and of biomass concentration in the bioreactor, which was coupled to the loss of ammonium oxidizing bacteria Nitrosomonas in the bacterial community from 40 to 3%. Biomass in the partial nitritation biofilter experienced a sharp decrease of about 80% due to antibiotics loading, but the biomass adapted and experienced a growth by stabilization under antibiotics feeding. During the experiment several bacterial genera appeared, such as Alcaligenes, Paracoccus, and Acidovorax, clearly dominating the bacterial community with >20% relative abundance. The system reached around 30% ammonium oxidation efficiency after adaptation to antibiotics, but no effluent nitrite was found, suggesting that dominant antibiotics-resistant phylotypes could be involved in nitrification-denitrification metabolisms. The activity of ammonium oxidation measured as amoA and hao gene expression dropped a 98.25% and 99.21%, respectively, comparing the system before and after the addition of antibiotics. On the other hand, denitrifying activity increased as observed by higher expression of nir and nos genes (83.14% and 252.54%, respectively). In addition, heterotrophic nitrification cyt c-551 was active only after the antibiotics addition. Resistance to the antibiotics was presumably given by ermF, carA and msrA for azithromycin, mutations of the gyrA and grlB for norfloxacin, and by sul123 genes for sulfamethoxazole. Joined physicochemical and microbiological characterization of the system were used to investigate the effect of the antibiotics over the bioprocess. Despite the antibiotics resistance, activity of Bacteria decreased while the activity of Archaea and Fungi increased.201829535704
7844140.9997Insight into using a novel ultraviolet/peracetic acid combination disinfection process to simultaneously remove antibiotics and antibiotic resistance genes in wastewater: Mechanism and comparison with conventional processes. In this study, the simultaneous removal mechanism of antibiotics and antibiotic resistance genes (ARGs) was investigated using the novel ultraviolet/peracetic acid (UV/PAA) combination disinfection process and conventional disinfection processes were also applied for comparison. The results showed that UV/PAA disinfection with a high UV dosage (UV/PAA-H) was most effective for the removal of tetracyclines, quinolones, macrolides and β-lactams; their average removal efficiencies ranged from 25.7% to 100%, while NaClO disinfection was effective for the removal of sulfonamides (∼81.6%). The majority of ARGs were well removed after the UV/PAA-H disinfection, while specific genes including tetB, tetC, ermA and bla(TEM) significantly increased after NaClO disinfection. In addition, β-lactam resistance genes (-35.9%) and macrolides resistance genes (-12.0%) remarkably augmented after UV/NaClO disinfection. The highly reactive oxidation species generated from UV/PAA process including hydroxyl radicals (•OH) and carbon-centered organic radicals (R-C•), were responsible for the elimination of antibiotics and ARGs. Correlation analysis showed that tetracycline, sulfonamide and macrolide antibiotics removal showed a positive correlation with the corresponding ARGs, and a low dose of antibiotic residues played an important role in the distribution of ARGs. Metagenomic sequencing analysis showed that UV/PAA disinfection could not only greatly decrease the abundance of resistant bacteria but also downregulate the expression of key functional genes involved in ARGs propagation and inhibit the signal transduction of the host bacteria, underlying that its removal mechanism was quite different from that of NaClO-based disinfection processes. Our study provides valuable information for understanding the simultaneous removal mechanism of antibiotics and ARGs in wastewater during the disinfection processes, especially for the novel UV/PAA combination process.202234982977
7564150.9997Formation, characteristics and microbial community of aerobic granular sludge in the presence of sulfadiazine at environmentally relevant concentrations. The growing occurrence of antibiotics in water environment is causing increasing concern. To investigate the impact of frequently detected sulfadiazine on the formation of aerobic granular sludge, four sequencing batch reactors (SBRs) were set up with different environmentally relevant concentrations of sulfadiazine. Results showed that sulfadiazine pressure could lead to larger and more compact sludge particles and cause slight effect on reactor performance. Presence of sulfadiazine apparently increased the extracellular polymeric substances (EPS) secretion of microorganisms. Quantitative polymerase chain reaction (qPCR) showed that the abundances of sulfanilamide resistance genes in sludge increased with addition of sulfadiazine significantly. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to predict functional genes, results showed that sulfadiazine led to an increase of specific functional genes. Thereby, it concluded that microorganisms could change the community structure by acclimating of functional bacteria and antibiotic resistance species to adapt to the antibiotic stress.201829197771
7582160.9997Anaerobic fermentation for hydrogen production and tetracycline degradation: Biodegradation mechanism and microbial community succession. The misuse and continues discharge of antibiotics can cause serious pollution, which is urgent to take steps to remit the environment pollution. In this study, anaerobic bacteria isolated from the aeration tank of a local sewage treatment plant were employed to investigate hydrogen production and tetracycline (TC) degradation during anaerobic fermentation. Results indicate that low concentrations of TC enhanced hydrogen production, increasing from 366 mL to a maximum of 480 mL. This increase is attributed to stimulated hydrolysis and acidogenesis, coupled with significant inhibition of homoacetogenesis. Furthermore, the removal of TC, facilitated by adsorption and biodegradation, exceeded 90 %. During the fermentation process, twenty-one by-products were identified, leading to the proposal of four potential degradation pathways. Analysis of the microbial community revealed shifts in diversity and a decrease in the abundance of hydrogen-producing bacteria, whereas bacteria harboring tetracycline resistance genes became more prevalent. This study provides a possibility to treat tetracycline-contaminated wastewater and to produce clean energy simultaneously by anaerobic fermentation.202439168318
7584170.9997Responses of microbial community and antibiotic resistance genes to co-existence of chloramphenicol and salinity. In recent years, the risk from environmental pollution caused by chloramphenicol (CAP) has emerged as a serious concern worldwide, especially for the co-selection of antibiotic resistance microorganisms simultaneously exposed to CAP and salts. In this study, the multistage contact oxidation reactor (MCOR) was employed for the first time to treat the CAP wastewater under the co-existence of CAP (10-80 mg/L) and salinity (0-30 g/L NaCl). The CAP removal efficiency reached 91.7% under the co-existence of 30 mg/L CAP and 10 g/L NaCl in the influent, but it fluctuated around 60% with the increase of CAP concentration and salinity. Trichococcus and Lactococcus were the major contributors to the CAP and salinity shock loads. Furthermore, the elevated CAP and salinity selection pressures inhibited the spread of CAP efflux pump genes, including cmlA, tetC, and floR, and significantly affected the composition and abundance of antibiotic resistance genes (ARGs). As the potential hosts of CAP resistance genes, Acinetobacter, Enterococcus, and unclassified_d_Bacteria developed resistance against high osmotic pressure and antibiotic environment using the efflux pump mechanism. The results also revealed that shifting of potential host bacteria significantly contributed to the change in ARGs. Overall, the co-existence of CAP and salinity promoted the enrichment of core genera Trichococcus and Lactococcus; however, they inhibited the proliferation of ARGs. KEY POINTS: • Trichococcus and Lactococcus were the core bacteria related to CAP biodegradation • Co-existence of CAP and salinity inhibited proliferation of cmlA, tetC, and floR • The microorganism resisted the CAP using the efflux pump mechanism.202236205764
7596180.9997The impact and fate of clarithromycin in anaerobic digestion of waste activated sludge for biogas production. Clarithromycin retained in waste activated sludge (WAS) inevitably enters the anaerobic digestion system. So far, the complex impacts and fate of clarithromycin in continuous operated WAS anaerobic digestion system are still unclear. In this study, two semi-continuous long-term reactors were set up to investigate the effect of clarithromycin on biogas production and antibiotic resistance genes (ARGs) during WAS anaerobic digestion, and a batch test was carried out to explore the potential metabolic mechanism. Experimental results showed that clarithromycin at lower concentrations (i.e., 0.1 and 1.0 mg/L) did not affect biogas production, whereas the decrease in biogas production was observed when the concentration of clarithromycin was further increased to 10 mg/L. Correspondingly, the relative abundance of functional bacteria in WAS anaerobic digestion (i.e., Anaerolineaceae and Microtrichales) was reduced with long-term clarithromycin exposure. The investigation of ARGs suggested that the effect of methylation belonging to the target site modification played a critical role for the anaerobic microorganisms in the expression of antibiotic resistance, and ermF, played dominated ARGs, presented the most remarkable proliferation. In comparison, the role of efflux pump was weakened with a significant decrease of two detected efflux genes. During WAS anaerobic digestion, clarithromycin could be partially degraded into metabolites with lower antimicrobial activity including oleandomycin and 5-O-desosaminyl-6-O-methylerythronolide and other metabolites without antimicrobial activity.202133545126
8093190.9997Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure. Manure pH may vary depending on its inherent composition or additive contents. However, the effect of pH on the fate of antibiotics and antibiotic resistance determinants in manure remains unclear. This work demonstrated that pH adjustment promoted the removal of different sulfonamide antibiotics (SAs) within swine manure under incubation conditions, which increased from 26-60.8% to 75.0-86.0% by adjusting the initial pH from neutral (7.4) to acidic (5.4-4.8). Acidification was also demonstrated to inhibit the accumulation of antibiotic resistance genes in manure during incubation. Acidified manure contained both lower absolute and relative abundances of sul1 and sul2 than those at a neutral pH like 7.4. Further investigation indicated that acidification promoted the reduction of sul genes in manure by restricting sulfonamide-resistant bacteria (SRB) proliferation and inhibiting IntI1 accumulation. Furthermore, pH adjustment significantly influenced the composition of the manure bacterial community after incubation, which increased Firmicutes and decreased Proteobacteria. Close relationships were observed between pH-induced enrichment of the Firmicutes bacterial phylum, enhanced SAs degradation, and the fates of antibiotic resistance determinants. Overall, lowering the pH of manure promotes the degradation of SAs, decreases sul genes and SRB, and inhibits horizontal sul gene transfer, which could be a simple yet highly-effective manure management option to reduce antibiotic resistance.202032302890