Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
794501.0000Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems. Overloading of nutrients such as nitrogen causes eutrophication of freshwater bodies. The spread of antibiotic resistance genes (ARGs) poses a threat to ecosystems. However, studies on the enrichment and spread of ARGs from increased nitrogen loading in algal-bacterial symbiotic systems are limited. In this study, the transfer of extracellular kanamycin resistance (KR) genes from large (RP4) small (pEASY-T1) plasmids into the intracellular and extracellular DNA (iDNA, eDNA) of the inter-algal environment of Chlorella pyrenoidosa was investigated, along with the community structure of free-living (FL) and particle-attached (PA) bacteria under different nitrogen source concentrations (0-2.5 g/L KNO(3)). The results showed that KR gene abundance in the eDNA adsorbed on solid particles (D-eDNA) increased initially and then decreased with increasing nitrogen concentration, while the opposite was true for the rest of the free eDNA (E-eDNA). Medium nitrogen concentrations promoted the transfer of extracellular KR genes into the iDNA attached to algal microorganisms (A-iDNA), eDNA attached to algae (B-eDNA), and the iDNA of free microorganisms (C-iDNA); high nitrogen contributed to the transfer of KR genes into C-iDNA. The highest percentage of KR genes was found in B-eDNA with RP4 plasmid treatment (66.2%) and in C-iDNA with pEASY-T1 plasmid treatment (86.88%). In addition, dissolved oxygen (DO) significantly affected the bacterial PA and FL community compositions. Nephelometric turbidity units (NTU) reflected the abundance of ARGs in algae. Proteobacteria, Cyanobacteria, Bacteroidota, and Actinobacteriota were the main potential hosts of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in the phytoplankton inter-algal environment.202438493856
794410.9998Effects of nitrogen-driven eutrophication on the horizontal transfer of extracellular antibiotic resistance genes in water-sediment environments. Excessive nitrogen and other nutrients can trigger the eutrophication of freshwater bodies. Antibiotic resistance genes (ARGs) are now recognized as environmental pollutants, with extracellular ARGs (eARGs) being the dominant form in sediments. However, research on the propagation characteristics of eARGs remains limited. This study investigated the transfer characteristics of kanamycin resistance (KR) genes in the pEASY-T1 plasmid to intracellular DNA (iDNA) and extracellular DNA (eDNA) in water and sediment microenvironments under increasing nitrogen concentrations, as well as the community structure of free-living (FL) and particle-attached (PA) bacteria. The results revealed KR genes relative abundance in free extracellular DNA (f-eDNA) and adsorbed extracellular DNA (a-eDNA) of the water initially decreased and then increased with rising nitrogen concentrations. Its abundance in iDNA of the sediments decreased significantly with increasing nitrogen content, with relative abundance ranging from 5.09 × 10(-4) to 1.14 × 10(-3) copies/16SrRNA. The transfer from eDNA to iDNA in the water showed a rising and then falling trend as nitrogen concentration rose. The transfer of iDNA from the water to iDNA in sediments exhibited the opposite pattern. Additionally, copper (Cu) and zinc (Zn) were identified as key factors influencing the abundance of KR genes in the water, but total phosphorus (TP) was the primary determinant of KR gene distribution in sediments according to random forest analysis. These findings reveal novel mechanisms of eARG propagation in eutrophic environments, providing a theoretical foundation for managing antibiotic resistance in aquatic ecosystems.202540057108
792920.9995Size-dependent effects of microplastics on antibiotic resistance genes fate in wastewater treatment systems: The role of changed surface property and microbial assemblages in a continuous exposure mode. Microplastics (MPs) were continuously transported to wastewater treatment systems and accumulated in sludge constantly, potentially affecting systems function and co-occurrent contaminants fate. However, previous studies were based on acute exposure of MPs, which could not reflect the dynamics of MPs accumulation. Herein, this study firstly raised a more realistic method to evaluate the practical impacts of MPs on systems purification efficiency and antibiotic resistance genes (ARGs) fate. Continuous exposure of MPs did not pose negative effects on nutrients removal, but significantly changed the occurrence patterns of ARGs. ARGs abundances increased by 42.8 % and 54.3 % when exposed to millimeter-size MPs (mm-MPs) polyamide and polyethylene terephthalate, but increased by 31.3 % and 39.4 % to micron-size MPs (μm-MPs), respectively. Thus, mm-MPs posed severer effects on ARGs than μm-MPs. Further, mm-MPs surface properties were obviously altered after long-term exposure (higher specific surface area and O-containing species), which benefited microbes attachment. More importantly, more taxa linkages and changed topological properties (higher average degree and average weight) of co-occurrent network were observed in sludge with mm-MPs than with μm-MPs, as well as totally different potential host bacteria of ARGs. Rough surface of MPs and closer relations between ARGs and bacteria taxa contributed to the propagation of ARGs, which accounted for the observed higher ARGs abundances of mm-MPs. This study demonstrated that long-term accumulation of MPs in wastewater treatment systems affected ARGs fate, and mm-MPs caused severer risk due to their enrichment of ARGs. The results would promote the understanding of MPs real environmental behavior and influences.202236037899
793630.9995Impact of uranium on antibiotic resistance in activated sludge. The emergence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment is well established as a human health crisis. The impact of radioactive heavy metals on ecosystems and ultimately on human health has become a global issue, especially for the regions suffering various nuclear activities or accidents. However, whether the radionuclides can affect the fate of antibiotic resistance in bacteria remains poorly understood. Here, the dynamics of ARB, three forms of ARGs-intracellular ARGs (iARGs), adsorbed extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs)-and microbial communities were investigated following exposure to uranium (U), a representative radioactive heavy metal. The results showed that 90-d of U exposure at environmentally relevant concentrations of 0.05 mg/L or 5 mg/L significantly increased the ARB concentration in activated sludge (p < 0.05). Furthermore, 90-d of U exposure slightly elevated the absolute abundance of aeARGs (except tetO) and sulfonamide iARGs, but decreased tetracycline iARGs. Regarding feARGs, the abundance of tetC, tetO, and sul1 decreased after 90-d of U stress, whereas sul2 showed the opposite trend. Partial least-squares path model analysis revealed that the abundance of aeARGs and iARGs under U stress was predominantly driven by increased cell membrane permeability/intI1 abundance and cell membrane permeability/reactive oxygen species concentration, respectively. Conversely, the changes in feARGs abundance depended on the composition of the microbial community and the expression of efflux pumps. Our findings shed light on the variations of ARGs and ARB in activated sludge under U exposure, providing a more comprehensive understanding of antibiotic resistance risks aggravated by radioactive heavy metal-containing wastewater.202438278272
858940.9995Impacts of microplastic type on the fate of antibiotic resistance genes and horizontal gene transfer mechanism during anaerobic digestion. Microplastics (MPs) and antibiotic resistance genes (ARGs) are important pollutants in waste activated sludge (WAS), but their interactions during anaerobic digestion (AD) still need to be further explored. This study investigated variations in ARGs, mobile genetic elements (MGEs), and host bacteria during AD under the pressure of polyamide (PA), polyethylene (PE), and polypropylene (PP). The results showed that the MPs increased methane production by 11.7-35.5%, and decreased ARG abundance by 5.6-24.6%. Correlation analysis showed that the decrease of MGEs (plasmid, prophage, etc.) promoted the decrease of the abundance of multidrug, aminoglycoside and tetracycline resistance genes. Metagenomic annotation revealed that the reduction of key host bacteria (Arenimonas, Lautropia, etc.) reduced the abundance of major ARGs (rsmA, rpoB2, etc.). Moreover, PP MPs contributed to a reduction in the abundance of functional genes related to the production of reactive oxygen species, ATP synthesis, and cell membrane permeability, which was conducive to reducing the potential for horizontal gene transfer of ARGs. These findings provide insights into the treatment of organic waste containing MPs.202438772228
755650.9995The fate and behavior mechanism of antibiotic resistance genes and microbial communities in anaerobic reactors treating oxytetracycline manufacturing wastewater. In this study, two parallel-operated expanded granular sludge bed (EGSB) reactors, one used to treat oxytetracycline (OTC) manufacturing wastewater with gradual increase of OTC concentration as experimental reactor and the other fed with the same wastewater without OTC as control reactor, were operated to investigate the behavior of antibiotics resistance genes (ARGs) and mobile genetic elements (MGEs) and their possible relationships with bacterial community among influent, sludge and effluent environments. Though the average absolute abundance of ARGs slightly decreased (0.26 - log), the ARGs' relative abundance normalized to 16S-rRNA gene copy numbers showed a significant upward trend in effluent (2 multiples - increase) and the absolute and relative abundances both extremely increased in anaerobic sludge, indicating that anaerobic treatment process cannot reduce ARGs efficiently, inversely can increase the risk of ARGs through the proliferation of antibiotics resistance bacteria (ARB) under the suppression of OTC. MGEs, bacterial communities and OTC concentration mainly impacted the ARGs profiles, which contributed 88.4% to the variation of ARGs. The differences and correlations of hosts in influent, effluent and sludge were further confirmed by network analysis. Overall, this study enhanced the understanding of the prevalence and transfer of ARGs in OTC production effluents during anaerobic treatment.202234740157
756360.9995Polystyrene microplastics alleviate the effects of sulfamethazine on soil microbial communities at different CO(2) concentrations. Microplastics were reported to adsorb antibiotics and may modify their effects on soil systems. But there has been little research investigating how microplastics may affect the toxicities of antibiotics to microbes under future climate conditions. Here, we used a free-air CO(2) enrichment system to investigate the responses of soil microbes to sulfamethazine (SMZ, 1 mg kg(-1)) in the presence of polystyrene microplastics (PS, 5 mg kg(-1)) at different CO(2) concentrations (ambient at 380 ppm and elevated at 580 ppm). SMZ alone decreased bacterial diversity, negatively affected the bacterial structure and inter-relationships, and enriched the sulfonamide-resistance genes (sul1 and sul2) and class 1 integron (intl1). PS, at both CO(2) conditions, showed little effect on soil bacteria but markedly alleviated SMZ's adverse effects on bacterial diversity, composition and structure, and inhibited sul1 transmission by decreasing the intl1 abundance. Elevated CO(2) had limited modification in SMZ's disadvantages to microbial communities but markedly decreased the sul1 and sul2 abundance. Results indicated that increasing CO(2) concentration or the presence of PS affected the responses of soil microbes to SMZ, providing new insights into the risk prediction of antibiotics under future climate conditions.202133592488
790170.9995Responses of antibiotic resistance genes and microbial community in the microalgae-bacteria system under sulfadiazine: Mechanisms and implications. Microalgae-bacteria system is an emerging alternative for sustainable wastewater treatment. Exploring the structure and diversity of microbial community in microalgae-bacteria system under sulfadiazine stress can contribute to the understanding of the sulfadiazine behavior in environments. Furthermore, as important carriers of antibiotic resistance genes (ARGs), microalgae can influence the profiles of ARGs either directly or indirectly through the secretion of metabolites. However, the effects of sulfadiazine on ARGs dissemination of microalgae-bacteria systems remain underreported. Herein, the impacts of sulfadiazine (1 mg/L) on the structural diversity and metabolic activity of microorganisms were examined in microalgae-bacteria systems. Results showed that microalgae-bacteria system could remove NH(4)(+)-N better (about 72.3 %) than activated sludge system, and hydrolysis was the first step in sulfadiazine degradation. A high level of intI1 (5.7 × 10(4) copies/mL) was detected in the initial media of the microalgae-bacteria system. Microalgae could hamper the rate of horizontal gene transfer activation. Compared with activated sludge system, the abundance of sul genes (sul1, sul2, sul3, and sulA) was significantly lowered after treating with microalgae-bacteria system. Additionally, the number of proteins and the sum of polysaccharides in the extracellular polymeric substances of the activated sludge system were lower than those of the microalgae-bacteria system. Microalgae can alter microbial communities. The genus Rozellomycota predominated all samples. Fungi with relatively high abundance increased in the microalgae-bacteria system, including Dipodascaceae, Rhodotorula, and Geotrichum. These results offer valuable insights into the application processes involving microalgae-bacteria system.202540602895
797380.9995Microplastic and antibiotic proliferated the colonization of specific bacteria and antibiotic resistance genes in the phycosphere of Chlorella pyrenoidosa. Despite that the phycosphere was an important niche for the proliferation of various bacteria and antibiotic resistance genes (ARGs), the factors that affect the colonization of bacteria and ARGs in the phycosphere are still poorly understood. In this study, sterile C. pyrenoidosa co-cultured with bacteria from different sources and provided with polylactic acid microplastic (PLA MPs) and florfenicol (FF) was examined. Results showed that bacteria promoted the growth of C. pyrenoidosa and increased its chlorophyll contents. PLA MPs and FF also showed positive effects on C. pyrenoidosa due to the "Hormesis effect". The occurrence of bacteria in the phycosphere was significantly affected by their sources and the addition of PLA MPs and FF. However, the core microbiota of the phycosphere in each group was similar. Additionally, PLA MPs and FF proliferated the abundance of phenicol-related ARGs (especially floR) and mobile genetic elements in the phycosphere. Notably, PLA MPs and FF enhanced the abundance of Flavobacterium, a potential host of ARGs. Our results highlighted the important roles of bacteria in microalgae and demonstrated exogenous pollutants could promote the spread of ARGs between surrounding environments and the phycosphere, which provide new insights into the occurrence and spread of ARGs in the phycosphere.202337201280
859290.9995Effects of persulfate treatment on the fates of antibiotic resistance genes in waste activated sludge fermentation process and the underlying mechanism. The occurrence of antibiotic resistance genes (ARGs) in waste activated sludge (WAS) fermentation was investigated with persulfate (PS)-based treatment. ARGs affiliated with multidrug (mexP), macrolide (bla(OXA-129)), tetracycline (tetB), sulfonamide (sul1), and vancomycin (vanRG) types were significantly decreased by PS/Fe treatment. Mechanistic investigations revealed that PS/Fe possessed oxidating potential and exhibited devastating effects on WAS fermentation. First, PS/Fe promoted cell structure damage, which facilitated ARGs release from potential hosts. A co-occurrence network analysis indicated that Fe/PS suppressed the proliferation of potential host bacteria. In addition, the PS/Fe treatment induced the decreased abundance of certain functional genes involved in pathways associated with ARGs dissemination. Finally, variation partitioning analysis demonstrated that the microbial community structure exhibited more vital effects on ARGs fates than physicochemical factors (i.e., pH and ORP) and gene expression (i.e., two-component system). This work provided a deeper understanding of the critical factors used to determine ARGs fates during WAS fermentation.202234864181
7902100.9994Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge: Both nitrifying bacteria and heterotrophic bacteria matter. Antibiotics can be biodegraded in activated sludge via co-metabolism and metabolism. In this study, we investigated the biodegradation pathways of sulfamethoxazole (SMX) and antibiotic resistant genes' (ARGs) fate in different autotrophic and heterotrophic microorganisms, by employing aerobic sludge, mixed sludge, and nitrifying sludge. A threshold concentration of SMX activating the degradation pathways in the initial stage of antibiotics degradation was found and proved in different activated sludge systems. Heterotrophic bacteria played an important role in SMX biodegradation. However, ammonia-oxidizing bacteria (AOB) had a faster metabolic rate, which was about 15 times higher than heterotrophic bacteria, contributing much to SMX removal via co-metabolism. As SMX concentration increases, the amoA gene and AOB relative abundance decreased in aerobic sludge due to the enrichment of functional heterotrophic bacteria, while it increased in nitrifying sludge. Microbial community analysis showed that functional bacteria which possess the capacity of SMX removal and antibiotic resistance were selected by SMX pressure. Potential ARGs hosts could increase their resistance to the biotoxicity of SMX and maintain system performance. These findings are of practical significance to guide antibiotic biodegradation and ARGs control in wastewater treatment plants.202234799165
7930110.9994Fates of extracellular and intracellular antibiotic resistance genes in activated sludge and plastisphere under sulfadiazine pressure. Microplastics, antibiotics, and antibiotic resistance genes (ARGs) represent prominent emerging contaminants that can potentially hinder the efficacy of biological wastewater treatment and pose health risks. Plastisphere as a distinct ecological niche for microorganisms, acts as a repository for ARGs and potential pathogenic bacteria. Nonetheless, the spread pattern of extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in plastisphere under antibiotic exposure was not yet known. This study aimed to investigate disparities in extracellular polymeric substances (EPS) production, extracellular and intracellular microbial community structures, as well as the transmission of eARGs and iARGs between activated sludge and plastisphere in an anaerobic/anoxic/oxic system under sulfadiazine (SDZ) exposure. SDZ was found to enhance EPS production in activated sludge and plastisphere. Interestingly, as SDZ removal efficiency increased, EPS content decreased in activated sludge and plastisphere collected from oxic zone, and continued to increase in plastisphere samples collected from anaerobic and anoxic zones. There were significant differences in microbial community structure between activated sludge and plastisphere, and the DNA fragments of potential pathogenic bacteria were detected in extracellular samples. SDZ exhibited a promoting effect on the propagation of eARGs, which were more abundant in the plastisphere than in activated sludge, thus heightening the risk of ARGs dissemination. Extracellular mobile genetic elements played a pivotal role in driving the spread of eARGs, while the microbial community induced the changes of iARGs. Potential pathogenic bacteria emerged as potential hosts for ARGs and mobile genetic elements within activated sludge and plastisphere, leading to more serious environmental threats.202337898001
7978120.9994Metagenomic insight into the enrichment of antibiotic resistance genes in activated sludge upon exposure to nanoplastics. Activated sludge is an important reservoir for the co-occurring emerging contaminants including nanoplastics (NPs) and antibiotic resistance genes (ARGs). However, the impacts and potential mechanisms of NPs on the fate of ARGs in activated sludge are not fully understood. Herein, we used metagenomic approach to investigate the responses of ARGs, host bacteria, mobile genetic elements (MGEs), and functional genes to polystyrene (PS) NPs at environmentally relevant (0.5 mg/L) and high stress concentrations (50 mg/L) in activated sludge. The results showed that 0.5 and 50 mg/L PS NPs increased the relative abundance of ARGs in the activated sludge by 58.68% and 46.52%, respectively (p < 0.05). Host tracking analysis elucidated that the hosts of ARGs were significantly enriched by PS NPs (p < 0.05), with Proteobacteria being the predominant host bacteria. Additionally, the occurrence of new ARGs hosts and the enrichment of MGEs and functional genes (i.e., genes related to SOS response, cell membrane permeability, and secretion system, etc.) indicated that PS NPs promoted horizontal gene transfer (HGT) of ARGs. Finally, path modeling analysis revealed that the proliferation of ARGs caused by PS NPs was primarily attributed to the enhancement of HGT and the enrichment of host bacteria. Our findings contribute to a comprehensive understanding of the spread risk of ARGs in activated sludge under NPs pollution.202439510298
7562130.9994Nanoparticles and antibiotics stress proliferated antibiotic resistance genes in microalgae-bacteria symbiotic systems. The comprehensive effect of exogenous pollutants on the dispersal and abundance of antibiotic-resistance genes (ARGs) in the phycosphere, bacterial community and algae-bacteria interaction remains poorly understood. We investigated community structure and abundance of ARGs in free-living (FL) and particle-attached (PA) bacteria in the phycosphere under nanoparticles (silver nanoparticles (AgNPs) and hematite nanoparticles (HemNPs)) and antibiotics (tetracycline and sulfadiazine) stress using high-throughput sequencing and real-time quantitative PCR. Meanwhile, the intrinsic connection of algae-bacteria interaction was explored by transcriptome and metabolome. The results showed that the relative abundance of sulfonamide and tetracycline ARGs in PA and FL bacteria increased 103-129 % and 112-134 %, respectively, under combined stress of nanoparticles and antibiotics. Antibiotics have a greater effect on ARGs than nanoparticles at environmentally relevant concentrations. Proteobacteria, Firmicutes, and Bacteroidetes, as the primary potential hosts of ARGs, were the dominant phyla. Lifestyle, i.e., PA and FL, significantly determined the abundance of ARGs and bacterial communities. Moreover, algae can provide bacteria with nutrients (carbohydrates and amino acids), and can also produce antibacterial substances (fatty acids). This algal-bacterial interaction may indirectly affect the distribution and abundance of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in microalgae-bacteria symbiotic systems.202336283215
7543140.9994Aerobic granular sludge for swine wastewater treatment: Implications for antibiotic and antibiotic resistance gene elimination. Swine wastewater (SW) contains high levels of traditional pollutants, antibiotics, and antibiotic resistance genes (ARGs), necessitating effective elimination. Two parallel aerobic granular sludge (AGS) reactors, R(1) and R(2), were constructed and optimized for treating SW from two pig farms, identified as SW(1) and SW(2). R(2) showed higher antibiotic removal efficiency, particularly in the removal of sulfonamides, while fluoroquinolones tended to adsorb onto the sludge. Process optimization by introducing an additional anoxic phase enhanced denitrification and reduced effluent ARG levels, also aiding in the improved removal of fluoroquinolones. The nitrite-oxidizing bacteria (NOB) Nitrospira accumulated after the treatment process, reaching 12.8 % in R(1) and 14.1 % in R(2), respectively. Mantel's test revealed that pH, NH(4)(+)-N, and Mg significantly affected ARGs and microbial community. Sulfadiazine and sulfamethazine were found to significantly impact ARGs and the microbial communities. This study provides innovative insights into the application of AGS for the treatment of real SW.202439153702
8062150.9994Nanoscale zero-valent iron inhibits the horizontal gene transfer of antibiotic resistance genes in chicken manure compost. Livestock manure has been identified as a significant hotspot for antibiotic resistance genes (ARGs). However, the impact of nanoscale zero-valent iron (nZVI) on the fate of ARGs during livestock manure composting remains poorly understood. Here, we investigated the evolution of ARGs in chicken manure compost exposed to 100 and 600 mg kg(-1) nZVI. The results showed that nZVI addition reduced the concentration of some antibiotics such as doxycycline and sulfamethoxazole. Furthermore, nZVI addition decreased the abundances of most ARGs at the end of composting, but nZVI dosage did not have any significant effect. The abundances of the dominant ARGs (sul1 and sul2) were significantly correlated to the class 1 integron-integrase gene (intI1). A network analysis revealed that the genera Bacteroides, Bacillus, Corynebacterium, Thiopseudomonas and Pseudomonas were the main potential hosts for multiple ARGs, and the decreased abundance of these bacteria contributed to the removal of ARGs. Structural equation models demonstrated that the reduction in intI1 played a predominant role in ARG removal. The nZVI also had direct effects on the intI1 abundance. These findings suggest that the addition of nZVI is a promising strategy to minimize ARG release in chicken manure compost.202234416685
8083160.9994Alteration of the migration trajectory of antibiotic resistance genes by microplastics in a leachate activated sludge system. The environmental behavior of emerging contaminants of microplastics (MPs), antibiotics and antibiotic resistance genes (ARGs) in the leachate activated sludge system has been monitored and analyzed comprehensively. The results suggested that MPs could effectively alter the migration trajectory of tetracycline resistance genes (tet genes) in the leachate activated sludge system under intermittent and continuous influent conditions. After adding MPs, the total average abundance of tet genes in leachate increased from 0.74 ± 0.07 to 0.78 ± 0.07 (log(10)tet genes/log(10) 16S rRNA) and that in sludge increased from 0.65 ± 0.08 to 0.70 ± 0.06 (log(10)tet genes/log(10) 16S rRNA). Except for tetA, the abundance of tetB, tetO, tetM and tetQ on MPs increased with increasing TC concentration under both aerobic and anaerobic conditions. MPs not only significantly affect the abundance level and migration trajectory of ARGs in the leachate activated sludge system, but also remarkably improve the level of heavy metals in the ambient environment, indirectly promoting the selective effect of antibiotic-resistant bacteria (ARB) and promoting the development of antibiotic resistance (AR). In addition, MPs changed their physicochemical properties and released hazardous substances with aging to force tet genes to migrate from the leachate activated sludge system to the MPs, making AR more difficult to eliminate and persisted in wastewater treatment plants. Meanwhile, microorganisms played a driving role, making MPs serve as a niche for ARGs and ARB colonization. The co-occurrence network analysis indicated the specific distribution pattern of tet genes and microorganisms in different media, and the potential host was speculated. This study improves the understanding of the environmental behavior of emerging contaminants in leachate activated sludge system and lays a theoretical for protecting the ecological environment.202337321316
8567170.9994System-dependent divergence of microbial community and resistome in two anaerobic niches under sulfamethoxazole selection. The prevalence of sulfamethoxazole (SMX) in high-strength wastewater poses a significant threat to the stability and efficiency of anaerobic biological treatment systems, particularly when deployed as initial treatment units. However, the complex interactions arising from SMX biodegradation and their resultant effects on typical anaerobic digestion (AD) and sulfate-reducing (SR) systems are not thoroughly understood. This study revealed that SMX exposure stimulated methanogenesis in the AD system and sulfate reduction in the SR system, driven primarily by enriched key functional taxa (e.g., methanogens, sulfate-reducing bacteria). Organic matter removal efficiency increased significantly in the AD system under SMX stress, attributed to the enrichment of fermentative bacteria. Notably, the enriched class Actinomycetes was capable of SMX biodegradation, thereby likely mitigating SMX stress for other microorganisms. In contrast, the SR system exhibited significantly diminished organic matter removal despite developing a more functionally specialized community under SMX exposure. This community harbored fewer SMX degraders, perpetuating selective pressure on the microbiota. Increasing SMX concentrations failed to induce significant shifts in overall community structure in either system, while significantly promoted the proliferation of antibiotic resistance genes (ARGs), particularly pronounced in the SR system exhibiting high SMX accumulation. Moreover, mobile genetic elements mediated the horizontal transfer of the sulfonamide resistance gene sul1 and other co-occurring ARGs located on plasmids. This study provides novel insights into the convergent and divergent microbial responses in the AD and SR systems under SMX exposure, highlighting the dual effects (both stimulatory and inhibitory) of SMX on the functionality of these anaerobic systems.202541130171
7577180.9994Microplastics can selectively enrich intracellular and extracellular antibiotic resistant genes and shape different microbial communities in aquatic systems. Microplastics (MPs), as emerging contaminants, are posing potential risks to environment, and animal and human health. The ubiquitous presence of MPs in natural ecosystems provides favorable platform to selectively adsorb antibiotic resistant genes (ARGs) and bacteria (ARB) and bacterial assemblages, especially in wastewater which is hotspot for MPs, ARGs and ARB. In this study, the selective capture of intracellular ARGs (iARGs), extracellular ARGs (eARGs), and bacterial assemblages by MPs with different materials (i.e. polyethylene, polyvinylchloride, and polyethylene terephthalate) and sizes (200 μm and 100 μm) was investigated. The results showed that iARGs (i.e. i-TetA, i-TetC, i-TetO, i-sul1), integron-integrase gene (intI1), and eARGs (i.e. e-TetA and e-bla(TEM)) were selectively enriched on MPs. Relative abundances of i-sul1, i-TetA, and intI1 were generally higher than that of i-TetC and i-TetO on all MPs. Moreover, MPs also have strong effects on the formation of microflora in wastewater, which resulted in different bacterial communities and functions in the wastewater and on the MPs. These findings suggested that MPs could affect the selective enrichment of ARB and ARGs in water environment.202235101514
8588190.9994Does lipid stress affect performance, fate of antibiotic resistance genes and microbial dynamics during anaerobic digestion of food waste? The dissemination of antibiotic resistance genes (ARGs) in food waste (FW) disposal can pose severe threats to public health. Lipid is a primary composition in FW, while whether lipid stress can affect ARGs dynamics during anaerobic digestion (AD) process of FW is uncertain. This study focused on the impacts of lipid stress on methane production, fate of ARGs and its microbial mechanisms during AD of FW. Results showed that high lipid content increased methane yield but prolonged hydrolysis and lag time of methane production compared to AD of FW without oil. Moreover, variations of ARGs were more susceptible to lipid stress. Lipid stress could facilitate the reduction of total ARGs abundances compared to the group without oil, particularly restraining the proliferation of sul1, aadA1 and mefA in AD systems (P < 0.05). Mantel test suggested that integrons (intl1 and intl2) were significantly correlated with all detected ARGs (r: 0.33, P < 0.05), indicating that horizontal gene transfer mediated by integrons could be the driving force on ARGs dissemination. Network analysis suggested that Firmicutes, Bacteroidetes, Synergistetes and Proteobacteria were the main potential hosts of ARGs. In addition, under the lipid stress, the reduction of host bacteria was responsible for the elimination of several specific ARGs, thereby affecting ARGs profiles. These findings firstly deciphered ARGs dynamics and their driving factors responding to lipid stress during anaerobic biological treatment of FW.202133250254