Microplastics accelerate nitrification, shape the microbial community, and alter antibiotic resistance during the nitrifying process. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
794101.0000Microplastics accelerate nitrification, shape the microbial community, and alter antibiotic resistance during the nitrifying process. Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.2 % - 15.5 % and 8.0 % - 11.6 %, respectively, via enrichment of nitrifying microorganisms, Nitrospira and Nitrosomonas. Moreover, ARGs were selectively enriched in nitrifying sludge and microplastic biofilms under stress from different MPs. Compared with PE-MPs (23.9 %) and PVC-MPs (21.4 %), exposure to PLA-MPs significantly increased intI1 abundance by 51.6 %. The results of the variance decomposition analysis implied that MPs and the microbial community play important roles in the behavior of ARGs. Network analysis indicated that Nitrosomonas and potentially pathogenic bacteria emerged as possible hosts, harboring ARGs and intI1 genes in the nitrifying sludge and microplastic biofilms. Critically, PLA-MPs were found to enrich both ARGs and potential pathogenic bacteria during nitrification, which should be considered in their promotion of application processes due to their biodegradability.202539740624
792910.9998Size-dependent effects of microplastics on antibiotic resistance genes fate in wastewater treatment systems: The role of changed surface property and microbial assemblages in a continuous exposure mode. Microplastics (MPs) were continuously transported to wastewater treatment systems and accumulated in sludge constantly, potentially affecting systems function and co-occurrent contaminants fate. However, previous studies were based on acute exposure of MPs, which could not reflect the dynamics of MPs accumulation. Herein, this study firstly raised a more realistic method to evaluate the practical impacts of MPs on systems purification efficiency and antibiotic resistance genes (ARGs) fate. Continuous exposure of MPs did not pose negative effects on nutrients removal, but significantly changed the occurrence patterns of ARGs. ARGs abundances increased by 42.8 % and 54.3 % when exposed to millimeter-size MPs (mm-MPs) polyamide and polyethylene terephthalate, but increased by 31.3 % and 39.4 % to micron-size MPs (μm-MPs), respectively. Thus, mm-MPs posed severer effects on ARGs than μm-MPs. Further, mm-MPs surface properties were obviously altered after long-term exposure (higher specific surface area and O-containing species), which benefited microbes attachment. More importantly, more taxa linkages and changed topological properties (higher average degree and average weight) of co-occurrent network were observed in sludge with mm-MPs than with μm-MPs, as well as totally different potential host bacteria of ARGs. Rough surface of MPs and closer relations between ARGs and bacteria taxa contributed to the propagation of ARGs, which accounted for the observed higher ARGs abundances of mm-MPs. This study demonstrated that long-term accumulation of MPs in wastewater treatment systems affected ARGs fate, and mm-MPs caused severer risk due to their enrichment of ARGs. The results would promote the understanding of MPs real environmental behavior and influences.202236037899
858920.9997Impacts of microplastic type on the fate of antibiotic resistance genes and horizontal gene transfer mechanism during anaerobic digestion. Microplastics (MPs) and antibiotic resistance genes (ARGs) are important pollutants in waste activated sludge (WAS), but their interactions during anaerobic digestion (AD) still need to be further explored. This study investigated variations in ARGs, mobile genetic elements (MGEs), and host bacteria during AD under the pressure of polyamide (PA), polyethylene (PE), and polypropylene (PP). The results showed that the MPs increased methane production by 11.7-35.5%, and decreased ARG abundance by 5.6-24.6%. Correlation analysis showed that the decrease of MGEs (plasmid, prophage, etc.) promoted the decrease of the abundance of multidrug, aminoglycoside and tetracycline resistance genes. Metagenomic annotation revealed that the reduction of key host bacteria (Arenimonas, Lautropia, etc.) reduced the abundance of major ARGs (rsmA, rpoB2, etc.). Moreover, PP MPs contributed to a reduction in the abundance of functional genes related to the production of reactive oxygen species, ATP synthesis, and cell membrane permeability, which was conducive to reducing the potential for horizontal gene transfer of ARGs. These findings provide insights into the treatment of organic waste containing MPs.202438772228
794230.9997Insight into effects of polyethylene microplastics in anaerobic digestion systems of waste activated sludge: Interactions of digestion performance, microbial communities and antibiotic resistance genes. The environmental risks of microplastics (MPs) have raised an increasing concern. However, the effects of MPs in anaerobic digestion (AD) systems of waste activated sludge (WAS), especially on the fate of antibiotic resistance genes (ARGs), have not been clearly understood. Herein, the variation and interaction of digestion performance, microbial communities and ARGs during AD process of WAS in the presence of polyethylene (PE) MPs with two sizes, PE MPs-180μm and PE MPs-1mm, were investigated. The results showed that the presence of PE MPs, especially PE MPs-1mm, led to the increased hydrolysis of soluble polysaccharides and proteins and the accumulation of volatile fatty acids. The methane production decreased by 6.1% and 13.8% in the presence of PE MPs-180μm and PE MPs-1mm, respectively. Together with this process, hydrolytic bacteria and acidogens were enriched, and methanogens participating in acetoclastic methanogenesis were reduced. Meanwhile, ARGs were enriched obviously by the presence of PE MPs, the abundances of which in PE MPs-180μm and PE MPs-1mm groups were 1.2-3.0 times and 1.5-4.0 times higher than that in the control by the end of AD. That was associated with different co-occurrence patterns between ARGs and bacterial taxa and the enrichment of ARG-hosting bacteria caused by the presence of PE MPs. Together these results suggested the adverse effects of PE MPs on performance and ARGs removal during AD process of WAS through inducing the changes of microbial populations.202235944782
790240.9997Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge: Both nitrifying bacteria and heterotrophic bacteria matter. Antibiotics can be biodegraded in activated sludge via co-metabolism and metabolism. In this study, we investigated the biodegradation pathways of sulfamethoxazole (SMX) and antibiotic resistant genes' (ARGs) fate in different autotrophic and heterotrophic microorganisms, by employing aerobic sludge, mixed sludge, and nitrifying sludge. A threshold concentration of SMX activating the degradation pathways in the initial stage of antibiotics degradation was found and proved in different activated sludge systems. Heterotrophic bacteria played an important role in SMX biodegradation. However, ammonia-oxidizing bacteria (AOB) had a faster metabolic rate, which was about 15 times higher than heterotrophic bacteria, contributing much to SMX removal via co-metabolism. As SMX concentration increases, the amoA gene and AOB relative abundance decreased in aerobic sludge due to the enrichment of functional heterotrophic bacteria, while it increased in nitrifying sludge. Microbial community analysis showed that functional bacteria which possess the capacity of SMX removal and antibiotic resistance were selected by SMX pressure. Potential ARGs hosts could increase their resistance to the biotoxicity of SMX and maintain system performance. These findings are of practical significance to guide antibiotic biodegradation and ARGs control in wastewater treatment plants.202234799165
793050.9997Fates of extracellular and intracellular antibiotic resistance genes in activated sludge and plastisphere under sulfadiazine pressure. Microplastics, antibiotics, and antibiotic resistance genes (ARGs) represent prominent emerging contaminants that can potentially hinder the efficacy of biological wastewater treatment and pose health risks. Plastisphere as a distinct ecological niche for microorganisms, acts as a repository for ARGs and potential pathogenic bacteria. Nonetheless, the spread pattern of extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in plastisphere under antibiotic exposure was not yet known. This study aimed to investigate disparities in extracellular polymeric substances (EPS) production, extracellular and intracellular microbial community structures, as well as the transmission of eARGs and iARGs between activated sludge and plastisphere in an anaerobic/anoxic/oxic system under sulfadiazine (SDZ) exposure. SDZ was found to enhance EPS production in activated sludge and plastisphere. Interestingly, as SDZ removal efficiency increased, EPS content decreased in activated sludge and plastisphere collected from oxic zone, and continued to increase in plastisphere samples collected from anaerobic and anoxic zones. There were significant differences in microbial community structure between activated sludge and plastisphere, and the DNA fragments of potential pathogenic bacteria were detected in extracellular samples. SDZ exhibited a promoting effect on the propagation of eARGs, which were more abundant in the plastisphere than in activated sludge, thus heightening the risk of ARGs dissemination. Extracellular mobile genetic elements played a pivotal role in driving the spread of eARGs, while the microbial community induced the changes of iARGs. Potential pathogenic bacteria emerged as potential hosts for ARGs and mobile genetic elements within activated sludge and plastisphere, leading to more serious environmental threats.202337898001
805960.9997Particle size of zero-valent iron affects the risks from antibiotic resistance genes in waste activated sludge during anaerobic digestion. Zero-valent iron (ZVI) is the promising enhancer for sludge anaerobic digestion (AD) performance and for mitigating the proliferation of antibiotic resistance genes (ARGs). However, concerns about its size effects in shifting the behavior and risk of ARGs in sludge, during the AD process. Here, the metagenomics-based profile of ARGs, along with their potential (pathogenic) hosts in sludge were investigated, during mesophilic AD enhanced by ZVI with three different sizes. Results showed that the size of ZVI affected the profiles of ARGs, with nano-ZVI (nZVI, 50 nm) demonstrating the most significant reduction in abundance (by 45.0 %) and diversity (by 8.6 %) of total ARGs, followed by micron-ZVI (150 μm) and iron scrap (1 mm). Similar trends were also observed for high-risk ARGs, pathogens, and potential pathogenic hosts for ARGs. Notably, nZVI achieved the greatest reductions in the abundance of risk ARGs and potential pathogenic hosts (superbugs) by 58.8 % and 53.9 %, respectively. Correlation and redundancy analyses revealed that, the size of ZVI induced concentration differences in ammonium nitrogen, pH, carbonaceous matters, iron, and potential microbial hosts were the main reasons for the variation in the risk of ARGs. Moreover, the down-regulation of genes involved in oxidative stress contributed to the lower risk of ARGs in the three ZVI groups, especially in nZVI. This study provides insights into AD processes of solid wastes using ZVI enhancers.202540043404
705170.9997Polyvinyl chloride microplastics in the aquatic environment enrich potential pathogenic bacteria and spread antibiotic resistance genes in the fish gut. Microplastics and antibiotics coexist in aquatic environments, especially in freshwater aquaculture areas. However, as the second largest production of polyvinyl chloride (PVC) in the world, the effects of co-exposure to microplastics particles and antibiotics on changes in antibiotic resistance gene (ARG) profiles and the microbial community structure of aquatic organism gut microorganisms are poorly understood. Therefore, in this study, carp (Cyprinus carpio) were exposed to single or combined PVC microplastic contamination and oxytetracycline (OTC) or sulfamethazine (SMZ) for 8 weeks. PVC microplastics can enrich potential pathogenic bacteria, such as Enterobacter and Acinetobacter, among intestinal microorganisms. The presence of PVC microplastics enhanced the selective enrichment and dissemination risk of ARGs. PVC microplastics combined with OTC (OPVC) treatment significantly increased the abundance of tetracycline resistance genes (1.40-fold) compared with that in the OTC exposure treatment, revealing an obvious co-selection effect. However, compared with those in the control group, the total abundance of ARGs and MGEs in the OPVC treatment groups were significantly lower, which was correlated with the reduced abundances of the potential host Enterobacter. Overall, our results emphasized the diffusion and spread of ARGs are more influenced by PVC microplastics than by antibiotics, which may lead to antibiotic resistance in aquaculture.202438878444
794080.9996Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. Microplastics (MPs) and antibiotic resistance genes (ARGs), as emerging pollutants, are frequently detected in wastewater treatment plants, and their threats to the environment have received extensive attentions. However, the effects of MPs on the nitrification of aerobic granular sludge (AGS) and the spread patterns of intracellular and extracellular ARGs (iARGs and eARGs) in AGS were still unknown. In this study, the responses of AGS to the exposure of 1, 10 and 100 mg/L of typical MPs (polyvinyl chloride (PVC), polyamide (PA), polystyrene (PS) and polyethylene (PE)) and tetracycline were focused on in 3 L nitrifying sequencing batch reactors. 10 mg/L MPs decreased the nitrification function, but nitrification could recover. Furthermore, MPs inhibited ammonia-oxidizing bacteria and enriched nitrite-oxidizing bacteria, leading partial nitrification to losing stability. PVC, PA and PS stimulated the secretion of extracellular polymeric substances and reactive oxygen species. PE had less negative effect on AGS than PVC, PA and PS. The abundances of iARGs and eARGs (tetW, tetE and intI1) increased significantly and the intracellular and extracellular microbial communities obviously shifted in AGS system under MPs stress. Potential pathogenic bacteria might be the common hosts of iARGs and eARGs in AGS system and were enriched in AGS and MPs biofilms.202133387747
705290.9996Plastisphere enrich antibiotic resistance genes and potential pathogenic bacteria in sewage with pharmaceuticals. Microplastics (MPs) and pharmaceuticals are common emerging pollutants in sewage, and their coexistence may have more negative effects on the environments. This study chose tetracycline (TC), ampicillin (AMP) and triclosan (TCS) to investigate the responses of antibiotic resistance genes (ARGs) and microbial communities on different MPs (polyvinyl chloride (PVC), polyethylene (PE)) biofilms (plastisphere). The adsorption capacity of three pharmaceuticals on PVC and PE decreased in the order of AMP > TC > TCS. PE was more conducive to microbial attachment than PVC. MPs led to the increase of the total copies of ARGs and mobile genetic elements (MGEs) in the sewage. Importantly, multidrug ARGs and MGEs were enriched on plastisphere. Furthermore, the co-occurrence of TC and MPs led to higher risks of spreading ARGs and MGEs. In addition, potential pathogenic bacteria Legionella, Mycobacterium, Neisseria and Arcobacter were more abundant on plastisphere than those in sewage, and these bacteria might be the hosts for ARGs and MGEs. This study showed that plastisphere could be repositories of ARGs and MGEs in sewage and accumulated potential pathogenic bacteria.202133454495
8060100.9996Responses of bacterial communities and antibiotic resistance genes to nano-cellulose addition during pig manure composting. Treatment with exogenous additives during composting can help to alleviate the accumulation of antibiotic resistance genes (ARGs) caused by the direct application of pig manure to farmland. In addition, nano-cellulose has an excellent capacity for adsorbing pollutants. Thus, the effects of adding 300, 600, and 900 mg/kg nano-cellulose to compost on the bacterial communities, mobile genetic elements (MGEs), and ARGs were determined in this study. After composting, treatment with nano-cellulose significantly reduced the relative abundance of ARGs, which was lowest in the compost product with 600 mg/kg added nano-cellulose. Nano-cellulose inhibited the rebound in ARGs from the cooling period to the maturity period, and weakened the selective pressure of heavy metals on microorganisms by passivating bio-Cu. The results also showed that MGEs explained most of the changes in the abundances of ARGs, and MGEs had direct effects on ARGs. The addition of 600 mg/kg nano-cellulose reduced the abundances of bacterial genera associated with ermQ, tetG, and other genes, and the number of links (16) between ARGs and MGEs was lowest in the treatment with 600 mg/kg added nano-cellulose. Therefore, adding 600 mg/kg nano-cellulose reduced the abundances of ARGs by affecting host bacteria and MGEs. The results obtained in this study demonstrate the positive effect of nano-cellulose on ARG pollution in poultry manure, where adding 600 mg/kg nano-cellulose was most effective at reducing the abundances of ARGs.202134649327
8592110.9996Effects of persulfate treatment on the fates of antibiotic resistance genes in waste activated sludge fermentation process and the underlying mechanism. The occurrence of antibiotic resistance genes (ARGs) in waste activated sludge (WAS) fermentation was investigated with persulfate (PS)-based treatment. ARGs affiliated with multidrug (mexP), macrolide (bla(OXA-129)), tetracycline (tetB), sulfonamide (sul1), and vancomycin (vanRG) types were significantly decreased by PS/Fe treatment. Mechanistic investigations revealed that PS/Fe possessed oxidating potential and exhibited devastating effects on WAS fermentation. First, PS/Fe promoted cell structure damage, which facilitated ARGs release from potential hosts. A co-occurrence network analysis indicated that Fe/PS suppressed the proliferation of potential host bacteria. In addition, the PS/Fe treatment induced the decreased abundance of certain functional genes involved in pathways associated with ARGs dissemination. Finally, variation partitioning analysis demonstrated that the microbial community structure exhibited more vital effects on ARGs fates than physicochemical factors (i.e., pH and ORP) and gene expression (i.e., two-component system). This work provided a deeper understanding of the critical factors used to determine ARGs fates during WAS fermentation.202234864181
7556120.9996The fate and behavior mechanism of antibiotic resistance genes and microbial communities in anaerobic reactors treating oxytetracycline manufacturing wastewater. In this study, two parallel-operated expanded granular sludge bed (EGSB) reactors, one used to treat oxytetracycline (OTC) manufacturing wastewater with gradual increase of OTC concentration as experimental reactor and the other fed with the same wastewater without OTC as control reactor, were operated to investigate the behavior of antibiotics resistance genes (ARGs) and mobile genetic elements (MGEs) and their possible relationships with bacterial community among influent, sludge and effluent environments. Though the average absolute abundance of ARGs slightly decreased (0.26 - log), the ARGs' relative abundance normalized to 16S-rRNA gene copy numbers showed a significant upward trend in effluent (2 multiples - increase) and the absolute and relative abundances both extremely increased in anaerobic sludge, indicating that anaerobic treatment process cannot reduce ARGs efficiently, inversely can increase the risk of ARGs through the proliferation of antibiotics resistance bacteria (ARB) under the suppression of OTC. MGEs, bacterial communities and OTC concentration mainly impacted the ARGs profiles, which contributed 88.4% to the variation of ARGs. The differences and correlations of hosts in influent, effluent and sludge were further confirmed by network analysis. Overall, this study enhanced the understanding of the prevalence and transfer of ARGs in OTC production effluents during anaerobic treatment.202234740157
7903130.9996Effects of zero-valent iron (ZVI) on nitrogen conversion, transformation of sulfamethoxazole (SMX) and abundance of antibiotic resistance genes (ARGs) in aerobic granular sludge process. Even after pre-treatment, livestock and poultry wastewater still contain high concentrations of ammonia and residual antibiotics. These could be removed economically using the aerobic granular sludge (AGS) process with zero-valent iron (ZVI). The interaction of antibiotics and nitrogen in this process needs to be clarified and controlled, however, to achieve good removal performance. Otherwise, antibiotics might generate transformation products (TPs) with higher toxicity and lead to the emergence of antibiotic-resistant bacteria carrying antibiotic resistance genes (ARGs), which could cause persistent toxicity and the risk of disease transmission to the ecological environment. This study investigated the impact of ZVI on AGS for nitrogen and sulfamethoxazole (SMX) removal. The results show that AGS could maintain good ammonia removal performance and that the existence of SMX had a negative impact on ammonia oxidation activities. ZVI contributed to an increase in the abundance of nitrite oxidation bacteria, denitrifying bacteria and the functional genes of nitrogen removal. This led to better total nitrogen removal and a decrease in N(2)O emission. Accompanied by biological nitrogen transformation, SMX could be transformed into 14 TPs through five pathways. ZVI has the potential to enhance transformation pathways with TPs of lower ecotoxicity, thereby reducing the acute and chronic toxicity of the effluent. Unfortunately, ZVI might enhance the abundance of sul1, sul2, and sul3 in AGS, which increases the risk of sulfonamide antibiotic resistance. In AGS, Opitutaceae, Xanthomonas, Spartobacteria and Mesorhizobium were potential hosts for ARGs. This study provides theoretical references for the interaction of typical antibiotics and nitrogen in the biological treatment process of wastewater and bioremediation of natural water bodies.202337832300
7543140.9996Aerobic granular sludge for swine wastewater treatment: Implications for antibiotic and antibiotic resistance gene elimination. Swine wastewater (SW) contains high levels of traditional pollutants, antibiotics, and antibiotic resistance genes (ARGs), necessitating effective elimination. Two parallel aerobic granular sludge (AGS) reactors, R(1) and R(2), were constructed and optimized for treating SW from two pig farms, identified as SW(1) and SW(2). R(2) showed higher antibiotic removal efficiency, particularly in the removal of sulfonamides, while fluoroquinolones tended to adsorb onto the sludge. Process optimization by introducing an additional anoxic phase enhanced denitrification and reduced effluent ARG levels, also aiding in the improved removal of fluoroquinolones. The nitrite-oxidizing bacteria (NOB) Nitrospira accumulated after the treatment process, reaching 12.8 % in R(1) and 14.1 % in R(2), respectively. Mantel's test revealed that pH, NH(4)(+)-N, and Mg significantly affected ARGs and microbial community. Sulfadiazine and sulfamethazine were found to significantly impact ARGs and the microbial communities. This study provides innovative insights into the application of AGS for the treatment of real SW.202439153702
8061150.9996The addition of nano zero-valent iron during compost maturation effectively removes intracellular and extracellular antibiotic resistance genes by reducing the abundance of potential host bacteria. Applying compost to soil may lead to the spread of antibiotic resistance genes (ARGs) in the environment. Therefore, removing ARGs from compost is critical. In this study, for the first time, nano zero-valent iron (nZVI) was added to compost during the maturation stage to remove ARGs. After adding 1 g/kg of nZVI, the abundance of total intracellular and total extracellular ARGs was decreased by 97.62% and 99.60%, and that of total intracellular and total extracellular mobile genetic elements (MGEs) was decreased by 92.39% and 99.31%, respectively. A Mantel test and network analysis indicated that the reduction in potential host bacteria and intI1 after nZVI treatment promoted the removal of intracellular and extracellular ARGs. The addition of nZVI during composting reduced the horizontal transfer of ARGs and improve the total nitrogen and germination index of compost, allowing it to meet the requirements for organic fertilizers.202337352990
7577160.9996Microplastics can selectively enrich intracellular and extracellular antibiotic resistant genes and shape different microbial communities in aquatic systems. Microplastics (MPs), as emerging contaminants, are posing potential risks to environment, and animal and human health. The ubiquitous presence of MPs in natural ecosystems provides favorable platform to selectively adsorb antibiotic resistant genes (ARGs) and bacteria (ARB) and bacterial assemblages, especially in wastewater which is hotspot for MPs, ARGs and ARB. In this study, the selective capture of intracellular ARGs (iARGs), extracellular ARGs (eARGs), and bacterial assemblages by MPs with different materials (i.e. polyethylene, polyvinylchloride, and polyethylene terephthalate) and sizes (200 μm and 100 μm) was investigated. The results showed that iARGs (i.e. i-TetA, i-TetC, i-TetO, i-sul1), integron-integrase gene (intI1), and eARGs (i.e. e-TetA and e-bla(TEM)) were selectively enriched on MPs. Relative abundances of i-sul1, i-TetA, and intI1 were generally higher than that of i-TetC and i-TetO on all MPs. Moreover, MPs also have strong effects on the formation of microflora in wastewater, which resulted in different bacterial communities and functions in the wastewater and on the MPs. These findings suggested that MPs could affect the selective enrichment of ARB and ARGs in water environment.202235101514
7978170.9996Metagenomic insight into the enrichment of antibiotic resistance genes in activated sludge upon exposure to nanoplastics. Activated sludge is an important reservoir for the co-occurring emerging contaminants including nanoplastics (NPs) and antibiotic resistance genes (ARGs). However, the impacts and potential mechanisms of NPs on the fate of ARGs in activated sludge are not fully understood. Herein, we used metagenomic approach to investigate the responses of ARGs, host bacteria, mobile genetic elements (MGEs), and functional genes to polystyrene (PS) NPs at environmentally relevant (0.5 mg/L) and high stress concentrations (50 mg/L) in activated sludge. The results showed that 0.5 and 50 mg/L PS NPs increased the relative abundance of ARGs in the activated sludge by 58.68% and 46.52%, respectively (p < 0.05). Host tracking analysis elucidated that the hosts of ARGs were significantly enriched by PS NPs (p < 0.05), with Proteobacteria being the predominant host bacteria. Additionally, the occurrence of new ARGs hosts and the enrichment of MGEs and functional genes (i.e., genes related to SOS response, cell membrane permeability, and secretion system, etc.) indicated that PS NPs promoted horizontal gene transfer (HGT) of ARGs. Finally, path modeling analysis revealed that the proliferation of ARGs caused by PS NPs was primarily attributed to the enhancement of HGT and the enrichment of host bacteria. Our findings contribute to a comprehensive understanding of the spread risk of ARGs in activated sludge under NPs pollution.202439510298
8062180.9996Nanoscale zero-valent iron inhibits the horizontal gene transfer of antibiotic resistance genes in chicken manure compost. Livestock manure has been identified as a significant hotspot for antibiotic resistance genes (ARGs). However, the impact of nanoscale zero-valent iron (nZVI) on the fate of ARGs during livestock manure composting remains poorly understood. Here, we investigated the evolution of ARGs in chicken manure compost exposed to 100 and 600 mg kg(-1) nZVI. The results showed that nZVI addition reduced the concentration of some antibiotics such as doxycycline and sulfamethoxazole. Furthermore, nZVI addition decreased the abundances of most ARGs at the end of composting, but nZVI dosage did not have any significant effect. The abundances of the dominant ARGs (sul1 and sul2) were significantly correlated to the class 1 integron-integrase gene (intI1). A network analysis revealed that the genera Bacteroides, Bacillus, Corynebacterium, Thiopseudomonas and Pseudomonas were the main potential hosts for multiple ARGs, and the decreased abundance of these bacteria contributed to the removal of ARGs. Structural equation models demonstrated that the reduction in intI1 played a predominant role in ARG removal. The nZVI also had direct effects on the intI1 abundance. These findings suggest that the addition of nZVI is a promising strategy to minimize ARG release in chicken manure compost.202234416685
8098190.9996Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. This study used a metagenomic approach to investigate the effects of earthworms on ARGs and HPB during the vermicomposting of dewatered sludge. Results showed that 139 types of ARGs were found in sludge vermicompost, affiliated to 30 classes. Compared with the control, the total abundance of ARGs in sludge vermicompost decreased by 41.5%. Moreover, the types and sequences of plasmids and integrons were also decreased by vermicomposting. Proteobacteria and Actinobacteria were the most dominant hosts of ARGs in sludge vermicompost. In addition, earthworms reduced the total HPB abundance and modified their diversity, thus leading to higher abundance of Enterobacteriaceae in sludge vermicompost. However, the sludge vermicompost was still ARG and HPB enriched, indicating a remaining environmental risk for agricultural purpose. The observed change of microbial community and the reduction of mobile genetic elements caused by earthworm activity are the main reasons for the alleviation of ARG pollution during vermicomposting.202031787516