Removal of antibiotic microbial resistance by micro- and ultrafiltration of secondary wastewater effluents at pilot scale. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
793301.0000Removal of antibiotic microbial resistance by micro- and ultrafiltration of secondary wastewater effluents at pilot scale. Low-pressure membrane filtration was investigated at pilot scale with regard to its removal of antimicrobial resistance genes (ARGs) in conventional secondary treated wastewater plant effluents. While operating microfiltration (MF) and ultrafiltration (UF) membranes, key operational parameters for antimicrobial resistance (AMR) studies and key factors influencing AMR removal efficiencies of low-pressure membrane filtration processes were examined. The main factor for AMR removal was the pore size of the membrane. The formation of the fouling layer on capillary membranes had only a small additive effect on intra- and extrachromosomal ARG removal and a significant additive effect on mobile ARG removal. Using feeds with different ARGs abundances revealed that higher ARG abundance in the feed resulted in higher ARG abundance in the filtrate. Live-Dead cell counting in UF filtrate showed intact bacteria breaking through the UF membrane. Strong correlations between 16S rRNA genes (as surrogate for bacteria quantification) and the sul1 gene in UF filtrate indicated ARBs likely breaking through UF membranes.202235598662
793410.9998Mitigated membrane fouling and enhanced removal of extracellular antibiotic resistance genes from wastewater effluent via an integrated pre-coagulation and microfiltration process. Antibiotic resistance genes (ARGs) have been regarded as an emerging pollutant in municipal wastewater treatment plant (WWTP) effluents due to their potential risk to human health and ecological safety when reused for landscape and irrigation. Conventional wastewater treatment processes generally fail to effectively reduce ARGs, especially extracellular ARGs (eARGs), which are persistent in the environment and play an important role in horizontal gene transfer via transformation. Herein, an integrated process of pre-coagulation and microfiltration was developed for removal of ARGs, especially eARGs, from wastewater effluent. Results show that the integrated process could effectively reduce the absolute abundances of total ARGs (tARGs) (>2.9 logs) and eARGs (>5.2 logs) from the effluent. The excellent performance could be mainly attributed to the capture of antibiotic resistant bacteria (ARB) and eARGs by pre-coagulation and co-rejection during subsequent microfiltration. Moreover, the integrated process exhibited a good performance on removing common pollutants (e.g., dissolved organic carbon and phosphate) from the effluent to improve water quality. Besides, the integrated process also greatly reduced membrane fouling compared with microfiltration. These findings suggest that the integrated process of pre-coagulation and microfiltration is a promising advanced wastewater treatment technology for ARGs (especially eARGs) removal from WWTP effluents to ensure water reuse security.201931085389
754720.9997Mechanism concerning the occurrence and removal of antibiotic resistance genes in composting product with ozone post-treatment. The soil application of composting product will probably cause the spread of antibiotic resistance genes (ARGs) to environment, thereby it is crucial to remove ARGs in composting product. Ozone was adopted for the first time as a post-treatment method to remove the ARGs in composting product in this study. Ozone treatment significantly removed the total ARGs and mobile genetic elements (MGEs) once ozonation process finished. After 10-day storage stage, although the amount of total intracellular ARGs and MGEs increased, the total extracellular ARGs and MGEs decreased in the ozone-treated compost product. Correlation analysis revealed that the reduction in intracellular 16S rRNA contributed to intracellular tetQ and tetW removal, while the variations of other ARGs after ozonation related to MGEs abundance. Network analysis suggested that the reduction of potential host bacteria, as well as the decline in NH(4)(+)-N and TOC after the ozonation, contributed to the intracellular ARGs removal.202133257169
756630.9997Antibiotic sulfadiazine degradation by persulfate oxidation: Intermediates dependence of ecotoxicity and the induction of antibiotic resistance genes. To preserve the water resources, this study has analyzed the ecotoxicity and antibiotic resistance genes (ARGs) induction capacity of sulfadiazine degradation intermediates resulting from persulfate activation oxidation enhanced by ultraviolet, ultrasound and microwave. The five degradation pathways caused by the contribution discrepancy of electron transfer and singlet oxygen ((1)O(2)) and variations in the ecotoxicity of different degradation products were analyzed. Microcosm experiment exhibited that the microbial community in actual water changed significantly with SDZ and degradation intermediates, in which the dominant genera were Aeromonas, Cupriavidus, Elizabethkingia and Achromobacter. Except for the selective pressure on bacteria, the degradation intermediates also exert a certain degree or even stronger induction on sulfonamide ARGs (sul4, sul1 and sul2) than SDZ. Furthermore, the potential hosts for sulfonamide ARGs were revealed by network analysis. These results provide a better understanding of antibiotics degradation mechanism and ARGs occurrence, which is useful for controlling the spread of ARGs.202336372382
755340.9996Does the biological treatment or membrane separation reduce the antibiotic resistance genes from swine wastewater through a sequencing-batch membrane bioreactor treatment process. Swine wastes are the reservoir of antibiotic resistance genes (ARGs), which can potentially spread from swine farms to the environment. This study establishes a sequencing-batch membrane bioreactor (SMBR) for ARG removal from swine wastewater, and analyzes the effect of biological treatment and membrane separation on the ARG removal at different solid retention times (SRTs). The SMBR removed 2.91 logs (copy number) of ARGs at a short SRT (12 days). Raising the SRT reduced the removal rates of the detected genes by the biological treatment. Under the relative long SRT (30 days), ARGs and mobile genetic elements (MGEs) were maximized within the reactor and were well removed by membrane separation, with the average genes removal rate of 2.95 (copy number) and 1.18 logs (abundance). At the relatively low SRT, the biological treatment showed the dominant ARG removal effect, while the membrane separation took the advantages of ARG removal especially at the relatively long SRT. The ARG profile was related to the shift of the microbial community structure. The ARGs coexisted with the functional bacteria (ammonia oxidizing bacteria, nitrite oxidizing bacteria and denitrifiers), suggesting they are hosted by the functional bacteria.201829906721
790050.9996Biochar-amended constructed wetlands enhance sulfadiazine removal and reduce resistance genes accumulation in treatment of mariculture wastewater. With the rapid development of mariculture, an increasing amount of antibiotics are being discharged into the marine environment. Effectively removing antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater with a relatively high salinity and low C/N presents challenges. Biochar-amended constructed wetlands (CWs) can effectively remove antibiotics, However, few studies have compared the impacts of biochar-amended CWs pyrolyzed at different temperatures on the treatment of mariculture wastewater. Thus, this study utilized biochar prepared at three temperatures as substrate for CWs (CW-300, CW-500, and CW-700), aiming to evaluate their efficiency to treat mariculture wastewater containing antibiotic sulfadiazine (SDZ). The results demonstrated that compared to traditional quartz sand-filled CW (NCW), the addition of biochar with a larger specific surface area significantly enhanced the removal efficiency of SDZ by 21.72%-46.96%. Additionally, the addition of biochar effectively reduced the relative abundance of one integron gene (int1) and antibiotic resistance genes (ARGs) including sul1, sul2, and sul3 in both effluent and substrates. The addition of biochar reduced the accumulation of extracellular polymeric substances within the substrate of CWs, thereby mitigating the proliferation and spread of ARGs. The microbial community structure indicated that the addition of biochar increased the abundance of the potential antibiotic-degrading bacteria such as Proteobacteria and Bacteroidota, facilitating the degradation of SDZ and mitigating the accumulation of ARGs. This study demonstrated that biochar can be a promising substrate in CWs for treating mariculture wastewater containing antibiotics.202539986428
762160.9996Pre-chlorination in source water endows ARB with resistance to chlorine disinfection in drinking water treatment. Chlorine disinfection is widely used to ensure biosafety of drinking water. However, antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are often detected in treated drinking water. The impact of chlorine disinfection on the abundance of ARGs in drinking water is currently contradictory. Some studies suggested that chlorine disinfection could reduce the abundance of ARGs, while others had found that chlorine disinfection increased the abundance of ARGs. Pre-chlorination is widely applied in raw water to kill the algae cells in source water Pump Station. Different distances between the source water Pump Station and the drinking water treatment plants (DWTPs) resulted in different degrees of residual chlorine decay in the incoming raw water. This study found that the abundance of ARGs in drinking water would be increased during chlorine disinfection when the chlorine concentration in raw water was higher (> 0.2 mg/L). On the contrary, chlorine disinfection would decrease the abundance of ARGs in drinking water when the chlorine concentration in raw water was lower (< 0.09 mg/L). Pre-chlorination in source water with sub-lethal concentration could allow ARB to adapt to the chlorine environment in advance, endowing ARB with chlorine resistance, which resulted in ineffective removal of ARB and increased ARGs abundance during subsequent chlorine disinfection. High abundance of chlorine and antibiotics co-resistance bacteria in raw water was the main reason for the increase in ARGs abundance in chlorine treated drinking water. It should be noticed that, pre-chlorination treatment in source water would increase the difficulty of removing ARGs in subsequent chlorine disinfection process.202540398032
754970.9996Fate of antibiotic resistance genes during sludge anaerobic fermentation: Roles of different sludge pretreatment. Excess sludge, the primary by-product of wastewater treatment plants, is the source and sink of antibiotic resistance genes (ARGs). Sludge pretreatments are an indispensable pathway to improve the resource recovery and harmfulness for anaerobic digestion sludge. However, fewer studies have compared the effects of different pretreatment technologies on the distribution of ARGs during anaerobic sludge digestion. Here, this study established seven anaerobic digesters, and four typical ARGs and one integrase gene of class 1 integron (intI1) regarded as the representative mobile genetic elements (MGEs) were examined during the whole anaerobic digestion process. It was found anaerobic digestion could effectively remove ARGs with about 70.86% removal rate of total ARGs. Among these pretreatments, the reduce efficiency of ARGs was the highest in 50 °C pretreatment, followed by oxidant, and the last was acid-alkaline. The microbial community analysis demonstrated the microbial community structure, including ARGs hosts and antibiotic resistant bacteria, was significantly changed and influenced by high temperature pretreatment. In addition, high temperature and K(2)S(2)O(8) observably decrease the level of ROS production. Macro transcriptome analysis indicated that sludge pretreatment, except for 50 °C pretreatment, up-regulated the genes relevant to lyases and transferase, but down-regulated the genes responsible for peroxidase, antioxidant enzymes and T4SS gene. This study emphasized and compared the different sludge pretreatments on the fate of ARGs in anaerobic sludge, and highlighted concerns regarding the environmental and health risks to our society.202439393457
755680.9996The fate and behavior mechanism of antibiotic resistance genes and microbial communities in anaerobic reactors treating oxytetracycline manufacturing wastewater. In this study, two parallel-operated expanded granular sludge bed (EGSB) reactors, one used to treat oxytetracycline (OTC) manufacturing wastewater with gradual increase of OTC concentration as experimental reactor and the other fed with the same wastewater without OTC as control reactor, were operated to investigate the behavior of antibiotics resistance genes (ARGs) and mobile genetic elements (MGEs) and their possible relationships with bacterial community among influent, sludge and effluent environments. Though the average absolute abundance of ARGs slightly decreased (0.26 - log), the ARGs' relative abundance normalized to 16S-rRNA gene copy numbers showed a significant upward trend in effluent (2 multiples - increase) and the absolute and relative abundances both extremely increased in anaerobic sludge, indicating that anaerobic treatment process cannot reduce ARGs efficiently, inversely can increase the risk of ARGs through the proliferation of antibiotics resistance bacteria (ARB) under the suppression of OTC. MGEs, bacterial communities and OTC concentration mainly impacted the ARGs profiles, which contributed 88.4% to the variation of ARGs. The differences and correlations of hosts in influent, effluent and sludge were further confirmed by network analysis. Overall, this study enhanced the understanding of the prevalence and transfer of ARGs in OTC production effluents during anaerobic treatment.202234740157
755090.9996Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes. The effects of activated carbon (AC) on methane production and the fate of antibiotic resistance genes (ARGs) were evaluated through comparing the anaerobic digestion performance and transformation of ARGs among anaerobic mono-digestion of food waste, co-digestion of food waste and chicken manure, and co-digestion of food waste and waste activated sludge. Results showed that adding AC in anaerobic digesters improved methane yield by at least double through the enrichment of bacteria and archaea. Conventional digestion process showed ability in removing certain types of ARGs, such as tetA, tetX, sul1, sul2, cmlA, floR, and intl1. Supplementing AC in anaerobic digester enhanced the removal of most of the ARGs in mono-digestion of food waste. The effects tended to be minimal in co-digestion of co-substrates such as chicken manure and waste activated sludge, both of which contain a certain amount of antibiotics.201829096147
7545100.9996Sulfidated nanoscale zero-valent iron is an efficient material for the removal and regrowth inhibition of antibiotic resistance genes. Antibiotic resistance genes (ARGs) and mobile gene elements (MGEs), the emerging genetic contaminants, are regarded as severe risks to public health for impairing the inactivation efficacy of antibiotics. Secondary effluents from wastewater treatment plants are the hotspots for spreading these menaces. Herein, sulfidated nanoscale zero-valent iron (S-nZVI) was occupied to remove ARGs and MGEs in secondary effluents and weaken the regrowth capacity of their bacterial carriers. The effects of S/Fe molar ratios (S/Fe), initial pH and dosages on 16S rRNA and ARGs removal were also investigated. Characterization, mass balance and scavenging experiments were conducted to explore the mechanisms of the gene removal. Quantitative PCR (qPCR) and high throughput fluorescence qPCR showed more than 3 log unit of 16S rRNA and seven out of 10 ARGs existed in secondary effluent could be removed after S-nZVI treatment. The mechanisms might be that DNA accepted the electron provided by the Fe(0) core of S-nZVI after being adsorbed onto S-nZVI surface, causing the decrease of 16S rRNA, ARGs and lost their regrowth capacity, especially for typical MGE (intI1) and further inhibiting the vertical gene transfer (VGT) and intI1-induced horizontal gene transfer (HGT). Fe(0) core was oxidized to iron oxides and hydroxides at the same time. High throughput sequencing, network analysis and variation partitioning analysis revealed the complex correlations between bacteria and ARGs in secondary effluent, S/Fe could directly influence ARGs variations, and bacterial genera made the greatest contribution to ARGs variations, followed by MGEs and operational parameters. As a result, S-nZVI could be an available reductive approach to deal with bacteria and ARGs.202032283399
7837110.9996Reducing the risk of exposure of airborne antibiotic resistant bacteria and antibiotic resistance genes by dynamic continuous flow photocatalytic reactor. In this study, based on the dynamic photocatalytic reactor constructed by the new photocatalyst TiO(2)/MXene, the purification process of different biological particles in aerosol was systematically studied. Multidrug resistant bacteria were easier to inactivate than common bacteria of the same kind, whether under UV conditions or photocatalysis. Photocatalyst was loaded on porous polyurethane sponge filler so that the combined effect of adsorption and advanced oxidation significantly improved the antibiotic resistant bacteria (ARB) disinfection effect. The inactivation efficiency of two ARBs under UV254 increased by 1.2 lg and 2.1 lg. In addition, it was found that the microorganisms treated by UV had slight self-repair phenomenon in a short time, while the microbial activity decreased continuously after photocatalysis. With the addition of photocatalyst, the particle size distribution of airborne Escherichia coli decreased and the micro morphology of cells was more seriously damaged. Antibiotic resistance genes (ARGs) carried by ARB can be dissociated into the environment after cell destruction, but it can be removed at a high level (sul2 can achieve 2.11 lg) in the continuous reactor at the same time. While avoiding secondary pollution, it also provides a powerful solution for airborne ARGs control.202235074752
7619120.9996Removal of antibiotic resistance genes in an algal-based wastewater treatment system employing Galdieria sulphuraria: A comparative study. In this study, we compared removal of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in two wastewater treatment systems fed with the same primary effluent: a conventional wastewater treatment system (consisting of a trickling filter followed by an activated sludge process) versus an algal-based system, employing an extremophilic alga, Galdieria sulphuraria. Our results demonstrated that the algal system can reduce concentrations of erythromycin- and sulfamethoxazole-resistant bacteria in the effluent more effectively than the conventional treatment system. A decreasing trend of total bacteria and ARGs was observed in both the treatment systems. However, the relative ratio of most ARGs (qnrA, qnrB, qnrS, sul1) and intI1 in the surviving bacteria increased in the conventional system; whereas, the algal system reduced more of the relative abundance of qnrA, qnrS, tetW and intⅠ1 in the surviving bacteria. The role of bacteriophages in horizontal gene transfer (HGT) of ARGs in the two systems was indicated by a positive correlation between ARG absolute abundance in bacteriophage and ARG relative abundance in the bacteria. Four of the five detectable genes (qnrS, tetW, sul1 and intI1) were significantly reduced in the algal system in bacteriophage phase which signified a decrease in phage-mediated ARG transfer in the algal system. Results of this study demonstrate the feasibility of the algal-based wastewater treatment system in decreasing ARGs and ARB and in minimizing the spread of antibiotic resistance to the environment.202031810689
7932130.9996How multi-walled carbon nanotubes in wastewater influence the fate of coexisting antibiotic resistant genes in the subsequent disinfection process. Wastewater treatment plants (WWTPs) are important hubs for the spread of antibiotic resistance genes (ARGs). Engineered nanoparticles, which was inevitably released to WWTPs, could change environmentally sensitive of antibiotic resistant bacteria (ARB). This would influence the fate of ARGs in subsequent disinfection process and consequent health risk. In this study, the ARGs fate of the effluent in conventional sodium hypochlorite (NaClO) disinfection process was investigated as multi-walled carbon nanotubes (MWCNTs) existed in sequencing batch reactor (SBR). The results showed the existence of MWCNTs in SBR could enhance the removal efficiency of intracellular 16S rRNA gene and intI1, extracellular intI1, sul2 and tetX in the effluent by NaClO. This is mainly due to the variation of bacterial physiological status, bacterial population structure and the activation of NaClO under the role of MWCNTs. MWCNTs in SBR could increase in membrane permeability of bacterial cells, which would be conducive to the penetration of chlorination to cytoplasm. MWCNTs in SBR also could change the bacterial population structure and induce the chlorine-sensitive bacteria; thus the potential hosts of ARGs in the effluent would be more easily inactivated by NaClO. Moreover, the residual MWCNTs in the effluent could activate NaClO to generate various free radical, which would enhance the oxidizing capacity of chlorination.202235500623
7617140.9996Ozone pretreatment of wastewater containing aromatics reduces antibiotic resistance genes in bioreactors: The example of p-aminophenol. Aromatic matters are widely present in wastewater, especially industrial wastewater, and may lead to a high abundance of antibiotic resistance genes (ARGs) in wastewater treatment bioreactors and stimulate horizontal transfers of ARGs. Here, we investigated a practical approach that applying ozone pretreatment to mitigate ARGs in bioreactors treating wastewater containing a typical aromatic pollutant, p-aminophenol (PAP). The results showed that ozone pretreatment could effectively reduce the aromaticity of wastewater, and the relative abundance of ARGs in the bioreactor fed with ozone treated wastewater decreased by over 70% compared to the control reactor. Multidrug, quinolone, mupirocin, polymyxin, aminoglycoside, glycopeptide, beta-lactam, and trimethoprim resistance genes were all reduced in the bioreactors receiving wastewater pretreated by ozone. Metagenomic analysis suggested that the reduction of ARGs could be attributed to the co-occurrence of ARGs and aromatic degradation genes in bacteria. Furthermore, we expanded our analysis to investigate 71 metagenomes from different environments, and the results indicated that the impact of aromatics on ARG abundance widely occurs in various ecosystems and confirmed that high levels of aromatics could lead to high abundance of ARGs. Taken together, our work confirmed that the aromatics played critical roles in selecting ARGs and proposed a feasible approach to reduce ARGs in wastewater treatment bioreactors.202032563772
7559150.9996Fate of antibiotic resistance genes and resistant bacteria under various operating temperatures of sludge anaerobic digestion. This study investigates the impact of varying temperatures on reducing antibiotic resistance genes (ARGs) during anaerobic digestion (AD) of mixed raw sludge in wastewater treatment plants. Employing three different operating temperatures, i.e., 37, 55, and 65 °C, the research aims to identify how these conditions affect the diminution of resistant genes. The results, based on quantitative PCR analysis and metagenomic sequencing, show that higher temperatures significantly enhance the reduction of ARGs, with the most substantial decreases observed at 65 °C. This temperature-dependent reduction correlates with changes in the microbial community structure, where specific bacterial genera like Alicycliphilus, Macellibacteroides, Dokdonella, Ahniella, Thauera, and Zoogloea associated with ARGs exhibit decreased abundance at elevated temperatures. The study infers that AD at higher temperatures could be a more effective strategy in mitigating the spread of antibiotic resistance in the environment, suggesting a pivotal role of operational temperature in optimizing wastewater treatment processes for ARGs attenuation. The findings highlight the need for further research to refine AD protocols, aiming to minimize the environmental impact of antibiotic resistance dissemination.202540662898
7551160.9996Microbial community evolution and fate of antibiotic resistance genes during sludge treatment in two full-scale anaerobic digestion plants with thermal hydrolysis pretreatment. Anaerobic digestion (AD) with thermal hydrolysis pretreatment is widely used as an efficient sludge treatment nowadays. However, the evolution of microbial community (especially for the archaea community), the fate of antibiotic resistance genes (ARGs), and their associations during such process in full-scale sludge treatment plants are rarely reported. Therefore, these scientific questions were explored at two full-scale sludge treatment plants through high-throughput sequencing and quantitative PCR. Results showed that Methanobacterium and Methanosphaera were the dominant archaea in thermal hydrolyzed sludge. The predominant bacteria in the sludge first shifted from nutrients removal functional bacteria to spore-forming bacteria after thermal hydrolysis, and then shifted to fermentative bacteria after AD. The full-scale plants could select ermB, ermF, mefA/E, qnrS and tetM. Though the bacteria and archaea biomass and community largely influenced the fate of ARGs, multiple linear regression analysis showed that the total ARGs were mainly affected by mobile genetic elements (MGEs).201931158777
7573170.9996Chlorine and UV combination sequence: Effects on antibiotic resistance control and health risks of ARGs. The effective control of antibiotic resistance in aquatic environments is urgent. The combined chlorine and UV processes (Cl(2)-UV, UV/Cl(2), and UV-Cl(2)) are considered potential control processes for controlling antibiotic resistance. This study compared the effectiveness of these three processes in real water bodies and the potential health risks associated with antibiotic resistance genes (ARGs) after treatments. The removal of various antibiotic-resistant bacteria (ARB) and ARGs by the combined processes was analysed. The UV/Cl(2) process was less effective than the others in inactivating β-lactam-resistant bacteria (BRB) and sulfamethoxazole-resistant bacteria (SRB), which are more challenging to remove, though its performance might improve with increased UV fluence. Nevertheless, the UV/Cl(2) process showed an advantage in removing ARGs. The absolute abundance of aminoglycoside resistance genes (AmRGs), sulfonamide resistance genes (SRGs), macrolide resistance genes (MRGs), and multidrug efflux-associated ARGs detected after the UV/Cl(2) process was relatively low, and this process outperformed the others in removing a greater number of ARGs. Additionally, certain ARGs and bacterial genera were found to be enriched after the combined processes, with lower and more similar abundance levels of ARGs and genera observed after UV/Cl(2) and UV-Cl(2) processes compared to the Cl(2)-UV process. Health risk assessments indicated that the Cl(2)-UV process posed the highest risk, followed by UV/Cl(2) and UV-Cl(2) processes. Overall, the UV/Cl(2) process may offer the most practical advantages for controlling antibiotic resistance.202539708685
7555180.9996Deciphering the factors influencing the discrepant fate of antibiotic resistance genes in sludge and water phases during municipal wastewater treatment. The discrepant fate of antibiotic resistance genes (ARGs) in sludge and water phases was investigated in a municipal wastewater treatment plant, and a lab-scale A(2)O-MBR was operated to provide background value of ARGs. The influencing factors of ARGs including microbial community, co-selection from heavy metals, biomass and horizontal gene transfer were concerned. Results showed that iA(2)O (inversed A(2)O) showed better ARGs reduction, and longer SRT (sludge retention time) increased ARGs relative abundance while reduced the gene copies of ARGs in the effluent, but significantly increased the ARGs in sludge phase. Compared to background value, the most enriched ARG was tetX in water phase, while it was intI1 in sludge phase. There existed higher abundance of multi-resistant bacteria in sludge phase, and microbial community determined the fate of ARGs in both water and sludge phase, while the direct effects from horizontal gene transfer should not be overlooked especially in water phase.201829909361
7614190.9996Biodegradation of sulfamethoxazole by microalgae-bacteria consortium in wastewater treatment plant effluents. Sulfamethoxazole (SMX) has been commonly detected in wastewater treatment plant (WWTP) effluents. SMX and other antibiotics can be considered as environmental contaminants of emerging concern. Due to their toxicity effects and their potential for the development of bacterial resistance their presence in aquatic compartment becomes a threat to human health. This study evaluated the bioremediation of SMX in WWTP effluents using a tertiary treatment composed by microalgae-bacteria consortium under low intensity artificial LED illumination, and also the assessment of sulfonamide resistance gene (sul1). The removal of SMX from WWTP effluents were 54.34 ± 2.35%, in which the microalgae-bacteria consortium improves the removal performance of SMX. The main process of SMX removal can be attributed to the symbiotic biodegradation by bacteria due to the increase of oxygen released by the microalgae photosynthetic process. Therefore, the microalgae-bacteria consortium used in this study, demonstrated to be a promising alternative for bioremediation of SMX, with potential for removal others contaminants from wastewater effluent. However, the residual SMX and the relative abundance of antibiotics resistance genes (ARG) found in this study suggest that SMX contributes to selective pressure for ARG maintenance and proliferation in WWTP effluent. Thus, further studies to removal ARG from WWTP effluent are needed.202032836119