The stress response of tetracycline resistance genes and bacterial communities under the existence of microplastics in typical leachate biological treatment system. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
793101.0000The stress response of tetracycline resistance genes and bacterial communities under the existence of microplastics in typical leachate biological treatment system. Landfill leachate is an important source of microplastics (MPs) and antibiotic-resistance genes (ARGs). Here, in the presence of polystyrene MPs (PS-MPs) and polyethylene MPs (PE-MPs), the nitrogen and phosphorus removal effect and sludge structure performance were affected in an anaerobic-anoxic-aerobic system, a typical biological leachate treatment process. The abundance of tetracycline-resistance genes (tet genes) in biofilms on the two types of MP was significantly higher than that in the leachate and sludge, and the load on PE-MPs was higher than that on PS-MPs because of the porous structure of PE-MPs. Aging of the MPs increased their surface roughness and abundance of oxygen-containing functional groups and shaped the profile of ARGs in the MP biofilms. The biofilm biomass and growth rate on the two types of MP increased with the incubation time in the first 30 days, and was affected by environmental factors. Structural equation models and co-occurrence network analysis demonstrated that the MPs indirectly affected the spectrum of ARGs by affecting biofilm formation, and, to a lesser extent, had a direct impact on the selective enrichment of ARGs. We discuss the mechanisms of the relationships between MPs and ARGs in the leachate treatment system, which will have guiding significance for future research. Our data on the colonization of microorganisms and tet genes in MPs biofilms provide new evidence concerning the accumulation and transmission of these ARGs, and are important for understanding the mechanisms of MPs in spreading pollution.202439018858
793010.9999Fates of extracellular and intracellular antibiotic resistance genes in activated sludge and plastisphere under sulfadiazine pressure. Microplastics, antibiotics, and antibiotic resistance genes (ARGs) represent prominent emerging contaminants that can potentially hinder the efficacy of biological wastewater treatment and pose health risks. Plastisphere as a distinct ecological niche for microorganisms, acts as a repository for ARGs and potential pathogenic bacteria. Nonetheless, the spread pattern of extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in plastisphere under antibiotic exposure was not yet known. This study aimed to investigate disparities in extracellular polymeric substances (EPS) production, extracellular and intracellular microbial community structures, as well as the transmission of eARGs and iARGs between activated sludge and plastisphere in an anaerobic/anoxic/oxic system under sulfadiazine (SDZ) exposure. SDZ was found to enhance EPS production in activated sludge and plastisphere. Interestingly, as SDZ removal efficiency increased, EPS content decreased in activated sludge and plastisphere collected from oxic zone, and continued to increase in plastisphere samples collected from anaerobic and anoxic zones. There were significant differences in microbial community structure between activated sludge and plastisphere, and the DNA fragments of potential pathogenic bacteria were detected in extracellular samples. SDZ exhibited a promoting effect on the propagation of eARGs, which were more abundant in the plastisphere than in activated sludge, thus heightening the risk of ARGs dissemination. Extracellular mobile genetic elements played a pivotal role in driving the spread of eARGs, while the microbial community induced the changes of iARGs. Potential pathogenic bacteria emerged as potential hosts for ARGs and mobile genetic elements within activated sludge and plastisphere, leading to more serious environmental threats.202337898001
858420.9999Microplastics enhance the prevalence of antibiotic resistance genes in mariculture sediments by enriching host bacteria and promoting horizontal gene transfer. Microplastics (MPs) and antibiotic resistance genes (ARGs) pose significant challenges to the One Health framework due to their intricate and multifaceted ecological and environmental impacts. However, the understanding of how MP properties influence ARG prevalence in mariculture sediments remains limited. Herein, the polystyrene (PS) and polyvinyl chloride (PVC) MPs with different sizes (20-120 μm and 0.5-2.0 mm) were selected to evaluate their impacts and underlying mechanisms driving ARGs dissemination. The results showed that PS and PVC MPs increased the relative abundance of ARGs by 1.41-2.50-fold and 2.01-2.84-fold, respectively, compared with control, particularly high-risk genes. The polymer type effect was identified as more influential than the size effect in driving the sediment resistome evolution. PVC shifted the microbial community assembly from stochastic to deterministic processes, thus enriching ARG host pathogens. Furthermore, the highly hydrophobic PS not only recruited the host bacteria colonization but also facilitated ARG exchange within the plastisphere. The exogenous additives released by PVC (e.g., heavy metals, bisphenol A, and tridecyl ester) and the particles synergistically promoted ARG conjugative transfer by inducing oxidative stress and enhancing cell membrane permeability. These findings revealed how MPs characteristics facilitated the spread of ARGs in marine benthic ecosystems, underscoring the importance of mitigating MPs pollution to maintain mariculture ecosystem health, prevent zoonotic diseases, and balance global mariculture with ecological health.202540052062
857930.9998Microplastics and chemical leachates from plastic pipes are associated with increased virulence and antimicrobial resistance potential of drinking water microbial communities. There is increasing recognition of the potential impacts of microplastics (MPs) on human health. As drinking water is the most direct route of human exposure to MPs, there is an urgent need to elucidate MPs source and fate in drinking water distribution system (DWDS). Here, we showed polypropylene random plastic pipes exposed to different water quality (chlorination and heating) and environmental (freeze-thaw) conditions accelerated MPs generation and chemical leaching. MPs showed various morphology and aggregation states, and chemical leaches exhibited distinct profiles due to different physicochemical treatments. Based on the physiological toxicity of leachates, oxidative stress level was negatively correlated with disinfection by-products in the leachates. Microbial network analysis demonstrated exposure to leachates (under three treatments) undermined microbial community stability and increased the relative abundance and dominance of pathogenic bacteria. Leachate physical and chemical properties (i.e., MPs abundance, hydrodynamic diameter, zeta potential, total organic carbon, dissolved ECs) exerted significant (p < 0.05) effects on the functional genes related to virulence, antibiotic resistance and metabolic pathways. Notably, chlorination significantly increased correlations among pathogenic bacteria, virulence genes, and antibiotic resistance genes. Overall, this study advances the understanding of direct and indirect risks of these MPs released from plastic pipes in the DWDS.202437935064
705340.9998Plastisphere showing unique microbiome and resistome different from activated sludge. Plastisphere (the biofilm on microplastics) in wastewater treatment plants (WWTPs) may enrich pathogens and antibiotic resistance genes (ARGs) which can cause risks to the ecological environment by discharging into receiving waters. However, the microbiome and resistome of plastisphere in activated sludge (AS) systems remain inconclusive. Here, metagenome was applied to investigate the microbial composition, functions and ARGs of the Polyvinyl chloride (PVC) plastisphere in lab-scale reactors, and revealed the effects of tetracycline (TC) and/or Cu(II) pressures on them. The results indicated that the plastisphere provided a new niche for microbiota showing unique functions distinct from the AS. Particularly, various potentially pathogenic bacteria tended to enrich in PVC plastisphere. Moreover, various ARGs were detected in plastisphere and AS, but the plastisphere had more potential ARGs hosts and a stronger correlation with ARGs. The ARGs abundances increased after exposure to TC and/or Cu(II) pressures, especially tetracycline resistance genes (TRGs), and the results further showed that TRGs with different resistance mechanisms were separately enriched in plastisphere and AS. Furthermore, the exogenous pressures from Cu(II) or/and TC also enhanced the association of potential pathogens with TRGs in PVC plastisphere. The findings contribute to assessing the potential risks of spreading pathogens and ARGs through microplastics in WWTPs.202236041613
643350.9998Do microplastic biofilms promote the evolution and co-selection of antibiotic and metal resistance genes and their associations with bacterial communities under antibiotic and metal pressures? Microplastic (MP) biofilms with heterogeneous bacterial compositions and structure have become a hotspot of antibiotic resistance genes (ARGs) in aquatic environments. The evolutionary features of ARGs and their related factors including class 1 integron (intI1), metal resistance genes (MRGs), and bacterial communities in MP biofilms under exogenous pressures and how they compared with natural substrates (NS) are unclear. The individual and combined pressures of sulfamethoxazole, tetracycline, and zinc were used to drive the dynamic evolution of ARGs, intI1, MRGs, and bacterial communities in the MP and NS biofilms. The exogenous pressures from the combined selection of sulfamethoxazole, tetracycline, and zinc and their increasing concentrations both significantly enhanced the abundances of ARGs on the MP compared to the NS. Meanwhile, the selective pressures resulted in obvious dissimilarities between the MP and NS bacterial communities. The core bacterial taxa and the co-occurrence patterns of ARGs and bacterial genera in the biofilms of MP and NS were obviously different, and more potential ARG host bacteria selectively colonized the MP. Metal pressure also enhanced the enrichment of ARGs in the MP biofilms by promoting the spread of intI1 via the co-selection mechanism.202234597934
792860.9998Insight into the responses of antibiotic resistance genes in microplastic biofilms to zinc oxide nanoparticles and zinc ions pressures in landfill leachate. Microplastic (MP) biofilms are hotspots of antibiotic resistance genes (ARGs) in landfill environment. MP biofilms in landfill leachate coexist with heavy metals and metallic nanoparticles (NPs) that considered to be the selective agents of ARGs. However, the effects of these selective pressures on ARGs in MP biofilms and their differences in MP-surrounding leachate have not been well understood. Herein, the changes of ARG abundances in MP biofilms and corresponding leachate under zinc oxide (ZnO) NPs and zinc ion (Zn(2+)) pressures were comparatively analyzed. The presence of ZnO NPs and Zn(2+) promoted the enrichment of ARGs in MP biofilms, and the enrichment was more pronounced in ZnO NPs groups. ZnO NPs and especially Zn(2+) mainly decreased the abundances of ARGs in leachate. The increase of integron abundances and reactive oxygen species production in MP biofilms implied the enhanced potential for horizontal transfer of ARGs under ZnO NPs and Zn(2+) pressures. Meanwhile, the co-occurrence pattern between ARGs and bacterial genera in MP biofilms with more diverse potential ARG hosts was more complex than in leachate, and the enrichment of ARG-hosting bacteria in MP biofilms under ZnO NPs and Zn(2+) pressures supported the enrichment of ARGs.202337480611
750770.9998Impact of different organic matters on the occurrence of antibiotic resistance genes in activated sludge. The occurrence of antibiotic resistance genes (ARGs) in various environments has drawn worldwide attention due to their potential risks. Previous studies have reported that a variety of substances can enhance the occurrence and dissemination of ARGs. However, few studies have compared the response of ARGs under the stress of different organic matters in biological wastewater treatment systems. In this study, seven organic pollutants were added into wastewater treatment bioreactors to investigate their impacts on the ARG occurrence in activated sludge. Based on high-throughput sequencing, it was found that the microbial communities and ARG patterns were significantly changed in the activated sludge exposed to these organic pollutants. Compared with the non-antibiotic refractory organic matters, antibiotics not only increased the abundance of ARGs but also significantly changed the ARG compositions. The increase of Gram-negative bacteria (e.g., Archangium, Prosthecobacter and Dokdonella) carrying ARGs could be the main cause of ARG proliferation. In addition, significant co-occurrence relationships between ARGs and mobile genetic elements were also observed in the sludge samples, which may also affect the ARG diversity and abundance during the organic matter treatment in the bioreactors. Overall, these findings provide new information for better understanding the ARG occurrence and dissemination caused by organic pollutants in wastewater treatment systems.202336522059
705280.9998Plastisphere enrich antibiotic resistance genes and potential pathogenic bacteria in sewage with pharmaceuticals. Microplastics (MPs) and pharmaceuticals are common emerging pollutants in sewage, and their coexistence may have more negative effects on the environments. This study chose tetracycline (TC), ampicillin (AMP) and triclosan (TCS) to investigate the responses of antibiotic resistance genes (ARGs) and microbial communities on different MPs (polyvinyl chloride (PVC), polyethylene (PE)) biofilms (plastisphere). The adsorption capacity of three pharmaceuticals on PVC and PE decreased in the order of AMP > TC > TCS. PE was more conducive to microbial attachment than PVC. MPs led to the increase of the total copies of ARGs and mobile genetic elements (MGEs) in the sewage. Importantly, multidrug ARGs and MGEs were enriched on plastisphere. Furthermore, the co-occurrence of TC and MPs led to higher risks of spreading ARGs and MGEs. In addition, potential pathogenic bacteria Legionella, Mycobacterium, Neisseria and Arcobacter were more abundant on plastisphere than those in sewage, and these bacteria might be the hosts for ARGs and MGEs. This study showed that plastisphere could be repositories of ARGs and MGEs in sewage and accumulated potential pathogenic bacteria.202133454495
703290.9998Free Radicals on Aging Microplastics Regulated the Prevalence of Antibiotic Resistance Genes in the Aquatic Environment: New Insight into the Effect of Microplastics on the Spreading of Biofilm Resistomes. The spread of antibiotic resistance genes (ARGs) by microplastics has received a great concern in coexisting "hotspots". Despite most microplastics suffering from natural aging, little is known about the effect of aging microplastics (A-MPs) on ARGs dissemination. Here, we demonstrated significant suppression of A-MPs on ARGs dissemination in natural rivers. Although ARGs and mobile genetic elements (MGEs) were effectively enriched on A-MPs, the relative abundance of ARGs and MGEs on A-MPs as well as in receiving water decreased by approximately 21.4% to 42.3% during a period of 30 days of dissemination. Further investigation revealed that (•)OH was consistently generated on A-MPs with a maximum value of 0.2 μmol/g. Importantly, scavenging of (•)OH significantly increased the relative abundance of ARGs and MGEs both on A-MPs and in receiving water 1.4-29.1 times, indicating the vital role of (•)OH in suppressing ARGs dissemination. Microbial analysis revealed that (•)OH inhibited the potential antibiotic-resistant bacteria in surface biofilms, such as Pseudomonas and Acinetobacter (with a decrease of 68.8% and 89.3%). These results demonstrated that (•)OH was extensively produced on A-MPs, which greatly reduced both the vertical and horizontal gene transfer of ARGs. This study provided new insights into the dissemination of ARGs through microplastics in natural systems.202540359213
7979100.9998Size-dependent promotion of micro(nano)plastics on the horizontal gene transfer of antibiotic resistance genes in constructed wetlands. Constructed wetlands (CWs) have been identified as significant sources of micro(nano)plastics (MPs/NPs) and antibiotic resistance genes (ARGs) in aquatic environments. However, little is known about the impact of MPs/NPs exposure on horizontal gene transfer (HGT) of ARGs and shaping the corresponding ARG hosts' community. Herein, the contribution of polystyrene (PS) particles (control, 4 mm, 100 μm, and 100 nm) to ARG transfer was investigated by adding an engineered fluorescent Escherichia coli harboring RP4 plasmid-encoded ARGs into CWs. It was found MPs/NPs significantly promoted ARG transfer in a size-dependent manner in each CW medium (p < 0.05). The 100 μm-sized PS exhibited the most significant promotion of ARG transfer (p < 0.05), whereas 100 nm-sized PS induced limited promotion due to its inhibitory activity on microbes. The altered RP4-carrying bacterial communities suggested that MPs/NPs, especially 100 µm-PS, could recruit pathogenic and nitrifying bacteria to acquire ARGs. The increased sharing of RP4-carrying core bacteria in CW medium further suggested that ARGs can spread into CW microbiome using MPs/NPs as carriers. Overall, our results highlight the high risks of ARG dissemination induced by MPs/NPs exposure and emphasize the need for better control of plastic disposal to prevent the potential health threats.202337657315
7978110.9998Metagenomic insight into the enrichment of antibiotic resistance genes in activated sludge upon exposure to nanoplastics. Activated sludge is an important reservoir for the co-occurring emerging contaminants including nanoplastics (NPs) and antibiotic resistance genes (ARGs). However, the impacts and potential mechanisms of NPs on the fate of ARGs in activated sludge are not fully understood. Herein, we used metagenomic approach to investigate the responses of ARGs, host bacteria, mobile genetic elements (MGEs), and functional genes to polystyrene (PS) NPs at environmentally relevant (0.5 mg/L) and high stress concentrations (50 mg/L) in activated sludge. The results showed that 0.5 and 50 mg/L PS NPs increased the relative abundance of ARGs in the activated sludge by 58.68% and 46.52%, respectively (p < 0.05). Host tracking analysis elucidated that the hosts of ARGs were significantly enriched by PS NPs (p < 0.05), with Proteobacteria being the predominant host bacteria. Additionally, the occurrence of new ARGs hosts and the enrichment of MGEs and functional genes (i.e., genes related to SOS response, cell membrane permeability, and secretion system, etc.) indicated that PS NPs promoted horizontal gene transfer (HGT) of ARGs. Finally, path modeling analysis revealed that the proliferation of ARGs caused by PS NPs was primarily attributed to the enhancement of HGT and the enrichment of host bacteria. Our findings contribute to a comprehensive understanding of the spread risk of ARGs in activated sludge under NPs pollution.202439510298
7498120.9998The resistance change and stress response mechanisms of chlorine-resistant bacteria under microplastic stress in drinking water distribution system. The presence of both chlorine-resistant bacteria (CRB) and microplastics (MPs) in drinking water distribution systems (DWDS) poses a threat to water quality and human health. However, the risk of CRB bio evolution under the stress of MPs remains unclear. In this study, polypropylene (PP) and polyethylene (PE) were selected to study the adsorption and desorption behavior of sulfamethoxazole (SMX), and it was clear that MPs had the risk of carrying pollutants into DWDS and releasing them. The results of the antibiotic susceptibility test and disinfection experiment confirmed that MPs could enhance the resistance of CRB to antibiotics and disinfectants. Bacteria epigenetic resistance mechanisms were approached from multiple perspectives, including physiological and biochemical characteristics, as well as molecular regulatory networks. When MPs enter DWDS, CRB could attach to the surface of MPs and directly interact with both MPs and the antibiotics they release. This attachment process promoted changes in the composition and content of extracellular polymers (EPS) within cells, enhanced surface hydrophobicity, stimulated oxidative stress function, and notably elevated the relative abundance of certain antibiotic resistance genes (ARGs). This study elucidates the mechanism by which MPs alter the intrinsic properties of CRB, providing valuable insights into the effective avoidance of biological risks to water quality during CRB evolution.202438848962
8578130.9998Impact of earthworms on suppressing dissemination of antibiotic resistance genes during vermicomposting treatment of excess sludge. Earthworms play a crucial role in suppressing the dissemination of antibiotic resistance genes (ARGs) during vermicomposting. However, there is still a lack of how earthworms influence the spread of ARGs. To address this gap, a microcosm experiment was conducted, incorporating earthworms and utilizing metagenomics and quantitative PCR to assess the impact of earthworms on microbial interactions and the removal of plasmid-induced ARGs. The findings revealed that vermicomposting led to a reduction in the relative abundance of ARGs by altering microbial communities and interactions. Significantly, vermicomposting demonstrated an impressive capability, reducing 92% of ARGs donor bacteria and impeding the transmission of 94% of the RP4 plasmid. Furthermore, through structural equation model analysis, it was determined that mobile genetic elements and environmental variables were the primary influencers of ARG reduction. Overall, this study offers a fresh perspective on the effects of vermicomposting and its potential to mitigate the spread of ARGs.202438885722
7929140.9998Size-dependent effects of microplastics on antibiotic resistance genes fate in wastewater treatment systems: The role of changed surface property and microbial assemblages in a continuous exposure mode. Microplastics (MPs) were continuously transported to wastewater treatment systems and accumulated in sludge constantly, potentially affecting systems function and co-occurrent contaminants fate. However, previous studies were based on acute exposure of MPs, which could not reflect the dynamics of MPs accumulation. Herein, this study firstly raised a more realistic method to evaluate the practical impacts of MPs on systems purification efficiency and antibiotic resistance genes (ARGs) fate. Continuous exposure of MPs did not pose negative effects on nutrients removal, but significantly changed the occurrence patterns of ARGs. ARGs abundances increased by 42.8 % and 54.3 % when exposed to millimeter-size MPs (mm-MPs) polyamide and polyethylene terephthalate, but increased by 31.3 % and 39.4 % to micron-size MPs (μm-MPs), respectively. Thus, mm-MPs posed severer effects on ARGs than μm-MPs. Further, mm-MPs surface properties were obviously altered after long-term exposure (higher specific surface area and O-containing species), which benefited microbes attachment. More importantly, more taxa linkages and changed topological properties (higher average degree and average weight) of co-occurrent network were observed in sludge with mm-MPs than with μm-MPs, as well as totally different potential host bacteria of ARGs. Rough surface of MPs and closer relations between ARGs and bacteria taxa contributed to the propagation of ARGs, which accounted for the observed higher ARGs abundances of mm-MPs. This study demonstrated that long-term accumulation of MPs in wastewater treatment systems affected ARGs fate, and mm-MPs caused severer risk due to their enrichment of ARGs. The results would promote the understanding of MPs real environmental behavior and influences.202236037899
8582150.9998Effects of freeze-thaw dynamics and microplastics on the distribution of antibiotic resistance genes in soil aggregates. This is the first study investigating the effects of freeze-thaw (FT) and microplastics (MPs) on the distribution of antibiotic resistance genes (ARGs) in soil aggregates (i.e., soil basic constituent and functional unit) via microcosm experiments. The results showed that FT significantly increased the total relative abundance of target ARGs in different aggregates due to the increase in intI1 and ARG host bacteria. However, polyethylene MPs (PE-MPs) hindered the increase in ARG abundance caused by FT. The host bacteria carrying ARGs and intI1 varied with aggregate size, and the highest number of hosts was observed in micro-aggregates (<0.25 mm). FT and MPs altered host bacteria abundance by affecting aggregate physicochemical properties and bacterial community and enhanced multiple antibiotic resistance via vertical gene transfer. Although the dominant factors affecting ARGs varied with aggregate size, intI1 was a co-dominant factor in various-sized aggregates. Furthermore, other than ARGs, FT, PE-MPs, and their integration promoted the proliferation of human pathogenic bacteria in aggregates. These findings suggested that FT and its integration with MPs significantly affected ARG distribution in soil aggregates. They amplified antibiotic resistance environmental risks, contributing to a profound understanding of soil antibiotic resistance in the boreal region.202337059196
8576160.9998Biochar can mitigate co-selection and control antibiotic resistant genes (ARGs) in compost and soil. Heavy metals (HMs) contamination raises the expression of antibiotic resistance (AR) in bacteria through co-selection. Biochar application in composting improves the effectiveness of composting and the quality of compost. This improvement includes the elimination and reduction of antibiotic resistant genes (ARGs). The use of biochar in contaminated soils reduces the bioaccessibility and bioavailability of the contaminants hence reducing the biological and environmental toxicity. This decrease in contaminant bioavailability reduces contaminants induced co-selection pressure. Conditions which favour reduction in HMs bioavailable fraction (BF) appear to favour reduction in ARGs in compost and soil. Biochar can prevent horizontal gene transfer (HGT) and can eliminate ARGs carried by mobile genetic elements (MGEs). This effect reduces maintenance and propagation of ARGs. Firmicutes, Proteobacteria, and Actinobacteria are the major bacteria phyla identified to be responsible for dissipation, maintenance, and propagation of ARGs. Biochar application rate at 2-10% is the best for the elimination of ARGs. This review provides insight into the usefulness of biochar in the prevention of co-selection and reduction of AR, including challenges of biochar application and future research prospects.202235663734
7562170.9998Nanoparticles and antibiotics stress proliferated antibiotic resistance genes in microalgae-bacteria symbiotic systems. The comprehensive effect of exogenous pollutants on the dispersal and abundance of antibiotic-resistance genes (ARGs) in the phycosphere, bacterial community and algae-bacteria interaction remains poorly understood. We investigated community structure and abundance of ARGs in free-living (FL) and particle-attached (PA) bacteria in the phycosphere under nanoparticles (silver nanoparticles (AgNPs) and hematite nanoparticles (HemNPs)) and antibiotics (tetracycline and sulfadiazine) stress using high-throughput sequencing and real-time quantitative PCR. Meanwhile, the intrinsic connection of algae-bacteria interaction was explored by transcriptome and metabolome. The results showed that the relative abundance of sulfonamide and tetracycline ARGs in PA and FL bacteria increased 103-129 % and 112-134 %, respectively, under combined stress of nanoparticles and antibiotics. Antibiotics have a greater effect on ARGs than nanoparticles at environmentally relevant concentrations. Proteobacteria, Firmicutes, and Bacteroidetes, as the primary potential hosts of ARGs, were the dominant phyla. Lifestyle, i.e., PA and FL, significantly determined the abundance of ARGs and bacterial communities. Moreover, algae can provide bacteria with nutrients (carbohydrates and amino acids), and can also produce antibacterial substances (fatty acids). This algal-bacterial interaction may indirectly affect the distribution and abundance of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in microalgae-bacteria symbiotic systems.202336283215
7503180.9998Microplastics exhibit accumulation and horizontal transfer of antibiotic resistance genes. Although the fates of microplastics (0.1-5 mm) in marine environments and freshwater are increasingly studied, little is known about their vector effect in wastewater treatment plants (WWTPs). Previous studies have evaluated the accumulation of antibiotic resistance genes (ARGs) on microplastics, but there is no direct evidence for the selection and horizontal transfer of ARGs on different microplastics in WWTPs. Here, we show biofilm formation as well as bacterial community and ARGs in these biofilms grown on four kinds of microplastics via incubation in the aerobic and anaerobic tanks of a WWTP. Microplastics showed differential capacities for bacteria and ARGs enrichment, differing from those of the culture environment. Furthermore, ARGs in microplastic biofilms were horizontally transferred at frequencies higher than those in water samples in both tanks. Therefore, microplastics in WWTPs can act as substrates for horizontal transfer of ARGs, potentially causing a great harm to the ecological environment and adversely affecting human health.202336921474
7042190.9998Response of antibiotic resistance genes abundance by graphene oxide during the anaerobic digestion of swine manure with copper pollution. The pollution of various environments with antibiotic resistance genes (ARGs) is an urgent problem that needs to be addressed, especially in heavy metal-polluted environments. This study investigated the responses of ARGs and mobile genetic elements (MGEs) to the addition of graphene oxide (GO) to swine manure containing a high concentration copper during anaerobic digestion. The total copy numbers of ARGs and MGEs were significantly enhanced by the pressure due to Cu. GO significantly decreased the ARG and MGE copy numbers, where the low GO concentration performed better than the high GO concentration. Network analysis showed that most of the ARGs and MGEs co-occurred and they shared the same major potential host bacteria. The contributions of different factors to ARG abundances were assessed by redundancy analysis and MGEs had the most important effect on the fate of ARGs. Thus, GO may reduce the abundance of ARGs mainly by removing MGEs.201930445329