# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7915 | 0 | 1.0000 | Deciphering antibiotic resistance genes and microbial community of anammox consortia under sulfadiazine and chlortetracycline stress. The responses of anammox consortia to typical antibiotics sulfadiazine (SDZ) and chlortetracycline (CTC) were evaluated on the aspects of general performance, microbial activity, diversity and abundance of antibiotic resistance genes (ARGs), and microbial host of ARGs in anammox system. Results showed the anammox consortia had a stable performance and great resistance to 10 mg/L of SDZ, while 1 mg/L of CTC induced an unrecoverable inhibitory influence on nitrogen removal performance and anammox activity without any special treatment. The absolute abundances of anammox functional genes (nirS, hzsA and hdh) were stimulated by the acclimation to SDZ stress, however, they were much lower than the initial levels under CTC stress. In anammox consortia, ARGs comprised 18 types (94 subtypes) derived from over 20 genera. Strikingly, the anammox bacteria (AnAOB) "Ca. Brocadia" occupied 46.81% of the SDZ resistance genes (sul1 and sul2) and 38.63% of CTC resistance genes (tetX, tetG and rpsJ), and thus were identified as the dominant antibiotic resistance bacteria (ARB). Therefore, harboring the corresponding ARGs by AnAOB could be the primary protective mechanism to interpret the resistance of anammox consortia to antibiotics stress. Meanwhile, co-occurring of ARGs in anammox consortia suggested the synergistic cooperation of different ARGs could be an essential strategy to alleviate the SDZ and CTC stress. The present study proposed a new interpretation of possible mechanism that cause antibiotic resistance of anammox consortia. | 2022 | 35259594 |
| 8044 | 1 | 0.9998 | Effect of tetracycline on nitrogen removal in Moving Bed Biofilm Reactor (MBBR) System. The effect of tetracycline (TC) on nitrogen removal in wastewater treatment plants has become a new problem. This study investigated the effects of TC on nitrogen removal using a Moving Bed Biofilm Reactor system. The results showed that there was no significant effect on nitrogen removal performance when the concentration of TC was 5 mg/L, and that the total nitrogen (TN) removal efficiency could reach 75-77%. However, when the concentration of TC increased to 10 mg/L, the denitrification performance was affected and the TN removal efficiency decreased to 58%. The abundance of denitrifying bacteria such as those in the genus Thauera decreased, and TC-resistant bacteria gradually became dominant. At a TC concentration of 10 mg/L, there were also increases and decreases, respectively, in the abundance of resistance and denitrification functional genes. The inhibitory effect of TC on denitrification was achieved mainly by the inhibition of nitrite-reducing bacteria. | 2022 | 35007308 |
| 7902 | 2 | 0.9998 | Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge: Both nitrifying bacteria and heterotrophic bacteria matter. Antibiotics can be biodegraded in activated sludge via co-metabolism and metabolism. In this study, we investigated the biodegradation pathways of sulfamethoxazole (SMX) and antibiotic resistant genes' (ARGs) fate in different autotrophic and heterotrophic microorganisms, by employing aerobic sludge, mixed sludge, and nitrifying sludge. A threshold concentration of SMX activating the degradation pathways in the initial stage of antibiotics degradation was found and proved in different activated sludge systems. Heterotrophic bacteria played an important role in SMX biodegradation. However, ammonia-oxidizing bacteria (AOB) had a faster metabolic rate, which was about 15 times higher than heterotrophic bacteria, contributing much to SMX removal via co-metabolism. As SMX concentration increases, the amoA gene and AOB relative abundance decreased in aerobic sludge due to the enrichment of functional heterotrophic bacteria, while it increased in nitrifying sludge. Microbial community analysis showed that functional bacteria which possess the capacity of SMX removal and antibiotic resistance were selected by SMX pressure. Potential ARGs hosts could increase their resistance to the biotoxicity of SMX and maintain system performance. These findings are of practical significance to guide antibiotic biodegradation and ARGs control in wastewater treatment plants. | 2022 | 34799165 |
| 7916 | 3 | 0.9998 | Effects of combined antibiotics on nitrification, bacteria and antibiotic resistance genes in activated sludge: Insights from legacy effect of antibiotics. The effect of combined antibiotics exposure on nitrogen removal, microbial community assembly and proliferation of antibiotics resistance genes (ARGs) is a hotspot in activated sludge system. However, it is unclear that how the historical antibiotic stress affects the subsequent responses of microbes and ARGs to combined antibiotics. In this study, the effects of combined sulfamethoxazole (SMX) and trimethoprim (TMP) pollution on activated sludge under legacy of SMX or TMP stress with different doses (0.005-30 mg/L) were investigated to clarify antibiotic legacy effects. Nitrification activity was inhibited under higher level of combined exposure but a high total nitrogen removal (∼70%) occurred. Based on the full-scale classification, the legacy effect of past antibiotic stress had a marked effect on community composition of conditionally abundant taxa (CAT) and conditionally rare or abundant taxa (CRAT). Rare taxa (RT) were the keystone taxa in the microbial network, and the responses of hub genera were also affected by the legacy of antibiotic stress. Nitrifying bacteria and genes were inhibited by the antibiotics and aerobic denitrifying bacteria (Pseudomonas, Thaurea and Hydrogenophaga) were enriched under legacy of high dose, as were the key denitrifying genes (napA, nirK and norB). Furthermore, the occurrences and co-selection relationship of 94 ARGs were affected by legacy effect. While, some shared hosts (eg., Citrobacter) and hub ARGs (eg., mdtD, mdtE and acrD) were identified. Overall, antibiotic legacy could affect responses of activated sludge to combined antibiotic and the legacy effect was stronger at higher exposure levels. | 2023 | 37225384 |
| 7913 | 4 | 0.9997 | Response of the partial denitrification coupled with anaerobic ammonia oxidation system to disinfectant residues stress. The extensive use of disinfectants, especially NaClO, has resulted in chlorine disinfectant residues entering and impairing the biological treatment system. This study combined with long-term stress and transient shock of chlorine residues to comprehensively evaluate the variations of nitrogen removal performance, microbial community and antibiotic resistance genes composition in the PD/A system. The results showed that low concentration NaClO had no obvious harm to the system, but high concentration (>1 mg/L) NaClO would destroy the nitrogen removal performance of PD/A system. Interestingly, microorganisms in biofilm were more resistant to chlorine residues than that in sludge. Anaerobic ammonia oxidizing bacteria suffered more harm than denitrifying microorganisms, and chlorine residues mainly inhibited the process of converting N(2)H(4) to N(2) in anammox reaction. In addition, this study found that sludge showed a more significant increase in ARGs abundance and risk than biofilm. Moreover, risk assessments indicated that chlorine residues increased the risk of ARGs in PD/A systems. | 2025 | 40010223 |
| 7918 | 5 | 0.9997 | Robustness of the partial nitrification-anammox system exposing to triclosan wastewater: Stress relieved by extracellular polymeric substances and resistance genes. The partial nitrification-anammox (PN/A) process is a promising method for the treatment of municipal wastewater. It is necessary to clarify the responses of PN/A system to antimicrobial agent triclosan (TCS) widely existed in the influent of wastewater treatment plants. In this study, it was found that PN/A system was robust to cope with 0.5 mg/L TCS. Specifically, the control reactor reached 80% total nitrogen removal efficiency (TNRE) on day 107, while the reactor feeding with 0.5 mg/L TCS reached the same TNRE on day 84. The results of the activity test, high-throughput sequencing and DNA-based stable isotope probing showed that 0.5 mg/L TCS did not impede the performance of ammonia oxidizing archaea, ammonia oxidizing bacteria (Nitrosomonas) and anammox bacteria (Candidatus Brocadia and Ca. Kuenenia), but significant inhibited the nitrite oxidizing bacteria (Nitrospira and Ca. Nitrotoga) and denitrifying bacteria. The influent TCS led to the increase of EPS content and enrichment of four resistance genes (RGs) (intI1, sul1, mexB, and tnpA), which might be two principal mechanisms by which PN/A can resist TCS. In addition, functional bacteria carrying multiple RGs also contributed to the maintenance of PN/A system function. These findings improved the understandings of antimicrobial effects on the PN/A system. | 2022 | 34954146 |
| 7886 | 6 | 0.9997 | Resistance of anammox granular sludge to copper nanoparticles and oxytetracycline and restoration of performance. Nanoparticles and antibiotics, the two most frequently detected emerging pollutants from different wastewater sources, are eventually discharged into wastewater treatment plants. In this study, the widely used materials CuNPs and oxytetracycline (OTC) were selected as target pollutants to investigate their joint effects on anaerobic ammonium oxidation (anammox). The results indicated that the environmental concentration slightly inhibited the performance of the reactors, while the performance rapidly deteriorated within a week under high-level combined shocks (5.0 mg L(-1) CuNPs and 2.0 mg L(-1) OTC). After the second shock (2.5 mg L(-1) CuNPs and 2.0 mg L(-1) OTC), the resistance of anammox bacteria was enhanced, with an elevated relative abundance of Candidatus Kuenenia and absolute abundance of hzsA, nirS, and hdh. Moreover, the extracellular polymeric substance (EPS) content and specific anammox activity (SAA) showed corresponding changes. Improved sludge resistance was observed with increasing CuNP and OTC doses, which accelerated the recovery of performance. | 2020 | 32244076 |
| 7959 | 7 | 0.9997 | Evolution of microbial community and antibiotic resistance genes in anammox process stressed by oxytetracycline and copper. The individual and combined impacts of copper ion (Cu(2+)) and oxytetracycline (OTC) on anaerobic ammonium oxidation (anammox) performance and its self-recovery process were examined. Experimental results showed that the anammox performance and activity of anammox bacteria were inhibited by 1.0 mg L(-1) OTC, Cu(2+) and OTC + Cu(2+), and both single and combined inhibitions were reversible. The abundance of functional genes and parts of antibiotic resistance genes (ARGs) were positively related to the dominant bacterium Ca. Kuenenia, implying that the recovery of the performance was associated with the progressive induction of potentially resistant species after inhibition. The above outcomes illustrated that anammox bacteria were stressed by metals and antibiotics, but they still could remove nitrogen at a rate higher than 20.6 ± 0.8 kg N m(-3) d(-1), providing guidance for engineering applications of anammox processes. | 2021 | 32949830 |
| 8043 | 8 | 0.9997 | Effect of tetracycline on bio-electrochemically assisted anaerobic methanogenic systems: Process performance, microbial community structure, and functional genes. Bio-electrochemically assisted anaerobic methanogenic systems (An-BES) are highly effective in wastewater treatment for methane production and degradation of toxic compounds. However, information on the treatment of antibiotic-bearing wastewater in An-BES is still very limited. This study therefore investigated the effect of tetracycline (TC) on the performance, microbial community, as well as functional and antibiotic resistance genes of An-BES. TC at 1 and 5 mg/L inhibited methane production by less than 4.8% compared to the TC-free control. At 10 mg/L TC, application of 0.5 and 1.0 V decreased methane production by 14 and 9.6%, respectively. Under the effect of 1-10 mg/L TC, application of 1.0 V resulted in a decrease of current from 42.3 to 2.8 mA. TC was mainly removed by adsorption; its removal extent increased by 19.5 and 32.9% with application of 0.5 and 1.0 V, respectively. At 1.0 V, current output was not recovered with the addition of granular activated carbon, which completely removed TC by adsorption. Metagenomic analysis showed that propionate oxidizing bacteria and methanogens were more abundant in electrode biofilms than in suspended culture. Antibiotic resistance genes (ARGs) were less abundant in biofilms than in suspended culture, regardless of whether voltage was applied or not. Application of 1.0 V resulted in the enrichment of Geobacter in the anode and Methanobacterium in the cathode. TC inhibited exoelectrogens, propionate oxidizing bacteria, and the methylmalonyl CoA pathway, leading to a decrease of current output, COD consumption, and methane production. These findings deepen our understanding of the inhibitory effect of TC in An-BES towards efficient bioenergy recovery from antibiotic-bearing wastewater, as well as the response of functional microorganisms to TC in such systems. | 2022 | 35533856 |
| 7903 | 9 | 0.9997 | Effects of zero-valent iron (ZVI) on nitrogen conversion, transformation of sulfamethoxazole (SMX) and abundance of antibiotic resistance genes (ARGs) in aerobic granular sludge process. Even after pre-treatment, livestock and poultry wastewater still contain high concentrations of ammonia and residual antibiotics. These could be removed economically using the aerobic granular sludge (AGS) process with zero-valent iron (ZVI). The interaction of antibiotics and nitrogen in this process needs to be clarified and controlled, however, to achieve good removal performance. Otherwise, antibiotics might generate transformation products (TPs) with higher toxicity and lead to the emergence of antibiotic-resistant bacteria carrying antibiotic resistance genes (ARGs), which could cause persistent toxicity and the risk of disease transmission to the ecological environment. This study investigated the impact of ZVI on AGS for nitrogen and sulfamethoxazole (SMX) removal. The results show that AGS could maintain good ammonia removal performance and that the existence of SMX had a negative impact on ammonia oxidation activities. ZVI contributed to an increase in the abundance of nitrite oxidation bacteria, denitrifying bacteria and the functional genes of nitrogen removal. This led to better total nitrogen removal and a decrease in N(2)O emission. Accompanied by biological nitrogen transformation, SMX could be transformed into 14 TPs through five pathways. ZVI has the potential to enhance transformation pathways with TPs of lower ecotoxicity, thereby reducing the acute and chronic toxicity of the effluent. Unfortunately, ZVI might enhance the abundance of sul1, sul2, and sul3 in AGS, which increases the risk of sulfonamide antibiotic resistance. In AGS, Opitutaceae, Xanthomonas, Spartobacteria and Mesorhizobium were potential hosts for ARGs. This study provides theoretical references for the interaction of typical antibiotics and nitrogen in the biological treatment process of wastewater and bioremediation of natural water bodies. | 2023 | 37832300 |
| 8071 | 10 | 0.9997 | Impact of ciprofloxacin and copper combined pollution on activated sludge: Abundant-rare taxa and antibiotic resistance genes. This study aimed to explore the impacts of ciprofloxacin (CIP, 0.05-40 mg/L) and copper (3 mg/L) combined pollution on nitrification, microbial community and antibiotic resistance genes (ARGs) in activated sludge system during stress- and post-effect periods. Higher CIP concentration inhibited nitrification and an average of 50% total nitrogen removal occurred under 40 mg/L of CIP pressure. The stress- and post-effects on bacterial diversity and structure were obviously distinct. Abundant genera were more sensitive to combined pollution than rare genera based on full-scale classification and conditionally rare or abundant taxa were keystone taxa in their interactions. Ammonia oxidation genes were inhibited under high CIP level, but some aerobic denitrifying bacteria (Thauera, Comamonas and Azoarcus) and key genes increased. 96 ARG subtypes were detected with complex positive relationships and their potential hosts (abundant-rare-functional genera) changed in two periods. This study highlights the different stress- and post-effects of combined pollution on activated sludge. | 2022 | 35217161 |
| 7901 | 11 | 0.9997 | Responses of antibiotic resistance genes and microbial community in the microalgae-bacteria system under sulfadiazine: Mechanisms and implications. Microalgae-bacteria system is an emerging alternative for sustainable wastewater treatment. Exploring the structure and diversity of microbial community in microalgae-bacteria system under sulfadiazine stress can contribute to the understanding of the sulfadiazine behavior in environments. Furthermore, as important carriers of antibiotic resistance genes (ARGs), microalgae can influence the profiles of ARGs either directly or indirectly through the secretion of metabolites. However, the effects of sulfadiazine on ARGs dissemination of microalgae-bacteria systems remain underreported. Herein, the impacts of sulfadiazine (1 mg/L) on the structural diversity and metabolic activity of microorganisms were examined in microalgae-bacteria systems. Results showed that microalgae-bacteria system could remove NH(4)(+)-N better (about 72.3 %) than activated sludge system, and hydrolysis was the first step in sulfadiazine degradation. A high level of intI1 (5.7 × 10(4) copies/mL) was detected in the initial media of the microalgae-bacteria system. Microalgae could hamper the rate of horizontal gene transfer activation. Compared with activated sludge system, the abundance of sul genes (sul1, sul2, sul3, and sulA) was significantly lowered after treating with microalgae-bacteria system. Additionally, the number of proteins and the sum of polysaccharides in the extracellular polymeric substances of the activated sludge system were lower than those of the microalgae-bacteria system. Microalgae can alter microbial communities. The genus Rozellomycota predominated all samples. Fungi with relatively high abundance increased in the microalgae-bacteria system, including Dipodascaceae, Rhodotorula, and Geotrichum. These results offer valuable insights into the application processes involving microalgae-bacteria system. | 2025 | 40602895 |
| 7938 | 12 | 0.9997 | Temporal dynamics of antibiotic resistant bacteria and antibiotic resistance genes in activated sludge upon exposure to starvation. The activated sludge represents a huge reservoir for antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Owing to the wastewater fluctuation, annual maintenance and storage requirement, the activated sludge in wastewater treatment plants (WWTPs) may suffer from substrate deficiency (i.e., starvation). Whereas the starvation has been confirmed to regulate the antibiotic resistance in numerous pure bacteria, its impacts on the antibiotic resistance in activated sludge remain unclear. Here, the dynamics of sulfonamide and tetracycline ARB and corresponding ARGs in three forms including intracellular ARGs (iARGs), adsorbed extracellular ARGs (aeARGs) and free extracellular ARGs (feARGs) in activated sludge upon exposure to starvation were investigated. The results showed that, among the different electron donors (i.e., carbon, nitrogen and phosphate), carbon starvation could effectively reduce the absolute abundance of ARB and aeARGs by up to 1.68 lgs and 2.62 lgs, respectively, and released a small amount of feARGs in wastewater with the maximum value of 1.1 × 10(5) copies/mL due to the high degree of sludge cell lysis and DNA adsorption/degradation. For the different acceptor conditions (that is, alternating anaerobic-aerobic, anaerobic, anoxic and aerobic), the anaerobic-aerobic starvation obviously mitigated the absolute abundance of ARB, aeARGs and iARGs by 0.71 lgs, 3.41 lgs and 1.35 lgs, respectively, via the substantial sludge cell lysis and DNA degradation. These findings demonstrated the response patterns and mechanisms of bacterial resistance in activated sludge to starvation stress, and thus provide clues to control the risk of antibiotic resistance in WWTPs by the starvation strategy. | 2022 | 35690205 |
| 8041 | 13 | 0.9997 | Insights into the microalgae-bacteria consortia treating swine wastewater: Symbiotic mechanism and resistance genes analysis. This study investigated the effects of microalgae-bacteria consortia (MBC) (Chlorella pyrenoidosa-activated sludge (AS)) treating swine wastewater with low C/N ratios. After co-culture, the removal rates of NH(4)(+)-N and PO(4)(3-)-P increased by 53.84% and 43.52%. Furthermore, the sulfamethoxazole (SMX) degradation rates in MBC were slightly higher than in the activated sludge process. Interestingly, the absolute abundance of antibiotic resistance genes (ARGs) in effluent from MBC is relatively less than in the AS process. C. pyrenoidosa has a negative zeta potential that allows bacteria to adhere to its surface. The concentrations of carbohydrates and proteins in extracellular polymeric substance (EPS) of MBC dramatically increased compared with the AS process. At the phylum level, Proteobacteria, Bacteroidota, and Cyanobacteria were the main bacteria, while Ascomycota and Basidiomycota were the primary fungi in MBC. Overall, those findings lead to a better understanding of the swine wastewater containing antibiotic treatment by MBC. | 2022 | 35217162 |
| 7904 | 14 | 0.9997 | Effect of the coexposure of sulfadiazine, ciprofloxacin and zinc on the fate of antibiotic resistance genes, bacterial communities and functions in three-dimensional biofilm-electrode reactors. Three-dimensional biofilm electrode reactors (3D-BERs) with high treatment efficiency were constructed to treat wastewater containing sulfadiazine (SDZ) and ciprofloxacin (CIP) coexposure with Zinc (Zn). The results showed that coexposure to target antibiotics and Zn increased the absolute and relative abundances of target antibiotic resistance genes (ARGs). Additionally, the target ARG abundances were higher on cathode of 3D-BER compared with ordinary anaerobic reactor while the abundances of total ARGs were decreased in the effluent. Meanwhile, redundancy analysis results revealed that the composition of bacteria carrying ARGs was greatly influenced in the cathode by the accumulation of Zn and antibiotic, which dominated the changes of ARG abundances. Additionally, ARGs with their host bacteria revealed by network analysis were partially deposited on electrode substrates when being removed from wastewater. Thus, 3D-BER exhibits capability of simultaneously eliminating antibiotic and Zn, and greatly reduces the risks of ARGs spread. | 2020 | 31677404 |
| 7919 | 15 | 0.9997 | Bioaugmentation using HN-AD consortia for high salinity wastewater treatment: Synergistic effects of halotolerant bacteria and nitrogen removal bacteria. Bioaugmentation shows promise in enhancing nitrogen removal efficiency of high-salt wastewater, yet the impact of microbial associations on ecosystem function and community stability remains unclear. This study innovatively introduced a novel heterotrophic nitrification-aerobic denitrification bacterial consortium to improve the performance of SBR reactor for removing nitrogen from saline wastewater. The results revealed that the bioaugmented reactor (R2) exhibited superior removal performance, achieving maximum removal efficiencies of 87.8 % for COD and 97.8 % for NH(4)(+)-N. Moreover, proper salinity (2 % and 4 %) promoted the secretion of EPS and ectoine, further enhancing the resistance and stability of bacterial consortia. 16S rRNA gene sequencing and metagenomics analysis revealed the key denitrifying bacteria Pseudomonas and salt-tolerant bacteria Halomonas were successfully coexistence and the relative abundances of crucial genes (napB, nirS, norB, norC and nosZ) were increased obviously, which were benefit for the excellent nitrogen removal performance in R2. These findings elucidate microbial interactions in response to salinity in bioaugmentation, providing a valuable reference for the efficient treatment of high-saline wastewater. | 2025 | 40233618 |
| 7958 | 16 | 0.9997 | Microbial response and recovery strategy of the anammox process under ciprofloxacin stress from pure strain and consortia perspectives. Ciprofloxacin (CIP) poses a high risk of resistance development in water environments. Therefore, comprehensive effects and recovery strategies of CIP in anaerobic ammonia oxidation (anammox) process were systematically elucidated from consortia and pure strains perspectives. The anammox consortia was not significantly affected by the stress of 10 mg L(-1) CIP, while the higher concentration (20 mg L(-1)) of CIP caused a dramatic reduction in the nitrogen removal performance of anammox system. Simultaneously, the abundances of dominant functional bacteria and corresponding genes also significantly decreased. Such inhibition could not be mitigated by the recovery strategy of adding hydrazine and hydroxylamine. Reducing nitrogen load rate from 5.1 to 1.4 kg N m(-3) d(-)(1) promoted the restoration of three reactors. In addition, the robustness and recovery of anammox systems was evaluated using starvation and shock strategies. Simultaneously, antibiotic resistance genes and key metabolic pathways of anammox consortia were upregulated, such as carbohydrate and energy metabolisms. In addition, 11 pure stains were isolated from the anammox system and identified through phylogenetic analysis, 40 % of which showed multidrug resistance, especially Pseudomonas. These findings provide deep insights into the responding mechanism of anammox consortia to CIP stress and promote the application of anammox process for treating wastewater containing antibiotics. | 2024 | 38554504 |
| 8541 | 17 | 0.9996 | Insights into the response of anammox process to oxytetracycline: Impacts of static magnetic field. The long-term effects of oxytetracycline (OTC) with a high concentration on the anaerobic ammonium oxidation (Anammox) process were evaluated, and the role of static magnetic field (SMF) was further explored. The stress of OTC at 50 mg/L had little effect on the nitrogen removal of anammox process at the first 16 days. With the continuous addition of OTC and the increase of nitrogen loading, the OTC inhibited the nitrogen removal and anammox activity severely. During the 32 days of recovery period without OTC addition, the nitrogen removal was further deteriorated, indicating the inhibition of OTC on anammox activity was irreversible and persistent. The application of SMF alleviated the inhibition of OTC on anammox to some extent, and the specific anammox activity was enhanced by 47.1% compared to the system without SMF during the OTC stress stage. Antibiotic efflux was the major resistance mechanism in the anammox process, and tetA, tetG and rpsJ were the main functional antibiotic resistance genes. The addition of OTC weakened the metabolic interactions between the anammox bacteria and the symbiotic bacteria involved in the metabolism of cofactors and secondary metabolites, leading to the poor anammox activity. The adaptability of microbes to the OTC stress was improved by the application of SMF, which can enhance the metabolic pathways related to bacterial growth and resistance to environmental stress. | 2023 | 37586490 |
| 8060 | 18 | 0.9996 | Responses of bacterial communities and antibiotic resistance genes to nano-cellulose addition during pig manure composting. Treatment with exogenous additives during composting can help to alleviate the accumulation of antibiotic resistance genes (ARGs) caused by the direct application of pig manure to farmland. In addition, nano-cellulose has an excellent capacity for adsorbing pollutants. Thus, the effects of adding 300, 600, and 900 mg/kg nano-cellulose to compost on the bacterial communities, mobile genetic elements (MGEs), and ARGs were determined in this study. After composting, treatment with nano-cellulose significantly reduced the relative abundance of ARGs, which was lowest in the compost product with 600 mg/kg added nano-cellulose. Nano-cellulose inhibited the rebound in ARGs from the cooling period to the maturity period, and weakened the selective pressure of heavy metals on microorganisms by passivating bio-Cu. The results also showed that MGEs explained most of the changes in the abundances of ARGs, and MGEs had direct effects on ARGs. The addition of 600 mg/kg nano-cellulose reduced the abundances of bacterial genera associated with ermQ, tetG, and other genes, and the number of links (16) between ARGs and MGEs was lowest in the treatment with 600 mg/kg added nano-cellulose. Therefore, adding 600 mg/kg nano-cellulose reduced the abundances of ARGs by affecting host bacteria and MGEs. The results obtained in this study demonstrate the positive effect of nano-cellulose on ARG pollution in poultry manure, where adding 600 mg/kg nano-cellulose was most effective at reducing the abundances of ARGs. | 2021 | 34649327 |
| 7566 | 19 | 0.9996 | Antibiotic sulfadiazine degradation by persulfate oxidation: Intermediates dependence of ecotoxicity and the induction of antibiotic resistance genes. To preserve the water resources, this study has analyzed the ecotoxicity and antibiotic resistance genes (ARGs) induction capacity of sulfadiazine degradation intermediates resulting from persulfate activation oxidation enhanced by ultraviolet, ultrasound and microwave. The five degradation pathways caused by the contribution discrepancy of electron transfer and singlet oxygen ((1)O(2)) and variations in the ecotoxicity of different degradation products were analyzed. Microcosm experiment exhibited that the microbial community in actual water changed significantly with SDZ and degradation intermediates, in which the dominant genera were Aeromonas, Cupriavidus, Elizabethkingia and Achromobacter. Except for the selective pressure on bacteria, the degradation intermediates also exert a certain degree or even stronger induction on sulfonamide ARGs (sul4, sul1 and sul2) than SDZ. Furthermore, the potential hosts for sulfonamide ARGs were revealed by network analysis. These results provide a better understanding of antibiotics degradation mechanism and ARGs occurrence, which is useful for controlling the spread of ARGs. | 2023 | 36372382 |