# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7890 | 0 | 1.0000 | The control of red water occurrence and opportunistic pathogens risks in drinking water distribution systems: A review. Many problems in drinking water distribution systems (DWDSs) are caused by microbe, such as biofilm formation, biocorrosion and opportunistic pathogens growth. More iron release from corrosion scales may induce red water. Biofilm played great roles on the corrosion. The iron-oxidizing bacteria (IOB) promoted corrosion. However, when iron-reducing bacteria (IRB) and nitrate-reducing bacteria (NRB) became the main bacteria in biofilm, they could induce iron redox cycling in corrosion process. This process enhanced the precipitation of iron oxides and formation of more Fe(3)O(4) in corrosion scales, which inhibited corrosion effectively. Therefore, the IRB and NRB in the biofilm can reduce iron release and red water occurrence. Moreover, there are many opportunistic pathogens in biofilm of DWDSs. The opportunistic pathogens growth in DWDSs related to the bacterial community changes due to the effects of micropollutants. Micropollutants increased the number of bacteria with antibiotic resistance genes (ARGs). Furthermore, extracellular polymeric substances (EPS) production was increased by the antibiotic resistant bacteria, leading to greater bacterial aggregation and adsorption, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in DWDSs. Moreover, O(3)-biological activated carbon filtration-UV-Cl(2) treatment could be used to control the iron release, red water occurrence and opportunistic pathogens growth in DWDSs. | 2021 | 34593198 |
| 8512 | 1 | 0.9996 | Dissolved oxygen facilitates efficiency of chlorine disinfection for antibiotic resistance. Controlling the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is a global concern. While commonly used chlorine disinfectants can damage or even kill ARB, dissolved oxygen (DO) may affect the formation of reactive chlorine species. This leads to the hypothesis that DO may play roles in mediating the effectiveness of chlorine disinfection for antibiotic resistance. To this end, this study investigated the impacts of DO on the efficiency of chlorine disinfection for antibiotic resistance. The results revealed that DO could increase the inactivation efficiency of ARB under chloramine and free chlorine exposure at practically relevant concentrations. Reactive species induced by DO, including H(2)O(2), O(2)(-), and OH, inactivated ARB strains by triggering oxidative stress response and cell membrane damage. In addition, the removal efficiency of extracellular ARGs (i.e. tetA and bla(TEM)) was enhanced with increasing dosage of free chlorine or chloramine under aerobic conditions. DO facilitated the fragmentation of plasmids, contributing to the degradation of extracellular ARGs under exposure to chlorine disinfectants. The findings suggested that DO facilitates disinfection efficiency for antibiotic resistance in water treatment systems. | 2024 | 38750753 |
| 7891 | 2 | 0.9996 | Co-selective effect of dissolved organic matter and chlorine on the bacterial community and their antibiotic resistance in biofilm of drinking water distribution pipes. The proliferation of pathogenic bacteria and antibiotic resistance genes (ARGs) in the biofilm of drinking water distribution pipes poses a serious threat to human health. This work adopted 15 polyethylene (PE) pipes to study the co-selective effect of dissolved organic matter (DOM) and chlorine on the bacterial community and their antibiotic resistance in biofilm. The results indicated that ozone and granular activated carbon (O(3)-GAC) filtration effectively removed lignins and proteins from DOM, and chlorine disinfection eliminated carbohydrate and unsaturated hydrocarbons, which both contributed to the inhibition of bacterial growth and biofilm formation. After O(3)-GAC and disinfection treatment, Porphyrobacter, unclassified_d_bacteria, and Sphingopyxis dominated in the biofilm bacterial community. Correspondingly, the bacterial metabolism pathways, including the phosphotransferase system, phenylalanine, tyrosine and tryptophan biosynthesis, ABC transporters, and starch and sucrose metabolism, were downregulated significantly (p < 0.05), compared to the sand filtration treatment. Under such a situation, extracellular polymeric substances (EPS) secretion was inhibited in biofilm after O(3)-GAC and disinfection treatment, postponing the interaction between EPS protein and pipe surface, preventing bacteria, especially pathogens, from adhering to the pipe surface to form biofilm, and restraining the spread of ARGs. This study revealed the effects of various water filtration and disinfection processes on bacterial growth, metabolism, and biofilm formation on a molecular level, and validated that the O(3)-GAC filtration followed by chlorine disinfection is an effective and promising pathway to control the microbial risk of drinking water. | 2025 | 39490093 |
| 8520 | 3 | 0.9996 | Antibiotics can alter the bacterial extracellular polymeric substances and surface properties affecting the cotransport of bacteria and antibiotics in porous media. Currently, studies on the environmental impact of antibiotics have focused on toxicity and resistance genes, and gaps exist in research on the effects of antibiotics entering the environment on bacterial surface properties and the synergistic transport of antibiotics and bacteria in porous media. To fill the gaps, we investigated the interactions between bacteria and antibiotics in synergistic transport in saturated porous media and the effects of media particle size, flow rate, and ionic concentration on this synergistic transport. This study revealed that although synergistic transport was complex, the mechanism of action was clear. Antibiotics could affect bacterial extracellular polymeric substances (EPS), thus altering their surface hydrophobicity and roughness, thereby affecting bacterial transport. The effects of antibiotics on bacterial transport were dominated by altering bacterial roughness. Antibiotics had a relatively high adsorption on bacteria, so bacterial transport directly affected antibiotic transport. The antibiotic concentrations below a certain threshold increased the bacterial EPS quality, and above the threshold decreased the bacterial EPS quality. This threshold was related to antibiotic toxicity and bacterial type. Bacterial surface hydrophobicity was determined by the combination of proteins and sugars in the EPS, and roughness was positively correlated with the EPS quality. | 2024 | 37748312 |
| 7612 | 4 | 0.9996 | Sulfadiazine/ciprofloxacin promote opportunistic pathogens occurrence in bulk water of drinking water distribution systems. Effects of sulfadiazine and ciprofloxacin on the occurrence of free-living and particle-associated opportunistic pathogens in bulk water of simulated drinking water distribution systems (DWDSs) were investigated. It was found that sulfadiazine and ciprofloxacin greatly promoted the occurrence of opportunistic pathogens including Pseudomonas aeruginosa, Legionella pneumophila, Mycobacterium avium and its broader genus Mycobacterium spp., as well as the amoebae Acanthamoeba spp. and Hartmanella vermiformis, in bulk water of DWDSs. Moreover, sulfadiazine and ciprofloxacin exhibited much stronger combined effects on the increase of these opportunistic pathogens. Based on the analysis of the antibiotic resistance genes (ARGs) and extracellular polymeric substances (EPS), it was verified that EPS production was increased by the antibiotic resistant bacteria arising from the effects of sulfadiazine/ciprofloxacin. The combined effects of sulfadiazine and ciprofloxacin induced the greatest increase of EPS production in DWDSs. Furthermore, the increased EPS with higher contents of proteins and secondary structure β-sheet led to greater bacterial aggregation and adsorption. Meanwhile, large numbers of suspended particles were formed, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in bulk water of DWDSs with sulfadiazine/ciprofloxacin. Therefore, sulfadiazine and ciprofloxacin promoted the occurrence of particle-associated opportunistic pathogens in bulk water of DWDSs due to the role of EPS produced by the bacteria with ARGs. | 2018 | 29161575 |
| 7498 | 5 | 0.9996 | The resistance change and stress response mechanisms of chlorine-resistant bacteria under microplastic stress in drinking water distribution system. The presence of both chlorine-resistant bacteria (CRB) and microplastics (MPs) in drinking water distribution systems (DWDS) poses a threat to water quality and human health. However, the risk of CRB bio evolution under the stress of MPs remains unclear. In this study, polypropylene (PP) and polyethylene (PE) were selected to study the adsorption and desorption behavior of sulfamethoxazole (SMX), and it was clear that MPs had the risk of carrying pollutants into DWDS and releasing them. The results of the antibiotic susceptibility test and disinfection experiment confirmed that MPs could enhance the resistance of CRB to antibiotics and disinfectants. Bacteria epigenetic resistance mechanisms were approached from multiple perspectives, including physiological and biochemical characteristics, as well as molecular regulatory networks. When MPs enter DWDS, CRB could attach to the surface of MPs and directly interact with both MPs and the antibiotics they release. This attachment process promoted changes in the composition and content of extracellular polymers (EPS) within cells, enhanced surface hydrophobicity, stimulated oxidative stress function, and notably elevated the relative abundance of certain antibiotic resistance genes (ARGs). This study elucidates the mechanism by which MPs alter the intrinsic properties of CRB, providing valuable insights into the effective avoidance of biological risks to water quality during CRB evolution. | 2024 | 38848962 |
| 7892 | 6 | 0.9995 | Nitrite Production by Nitrifying Bacteria in Urban Groundwater Used in a Chlorinated Public Bath System in Japan. In contrast to pathogens, the effects of environmental microbes on the water quality in baths have not yet been examined in detail. We herein focused on a public bath in which groundwater was pumped up as bath water and disinfected by chlorination. Ammonia in groundwater is oxidized to nitrite, thereby reducing residual chlorine. A batch-culture test and bacterial community ana-lysis revealed that ammonia-oxidizing bacteria accumulated nitrite and had higher resistance to chlorination than nitrite-oxidizing bacteria. These results demonstrate that the difference in resistance to chlorination between ammonia-oxidizing and nitrite-oxidizing bacteria may lead to the accumulation of nitrite in baths using groundwater. | 2022 | 36198516 |
| 8563 | 7 | 0.9995 | Overlooked role of extracellular polymeric substances in antibiotic-resistance gene transfer within microalgae-bacteria system. Controlling the spread of antibiotic-resistance genes (ARGs) under antibiotic stress has become an increasingly urgent issue. Microalgae possess the capability to remove antibiotics while concurrently inhibiting ARGs. Microalgae-bacteria systems can produce significant quantities of extracellular polymeric substances (EPS). However, the roles of EPS in the spread of ARGs have not been sufficiently explored, resulting in an insufficient understanding of the contribution of each EPS component and a lack of analysis on the complex interactions between EPS and ARGs. This study systematically explored the overlooked role of EPS in the transmission of ARGs within microalgae-bacteria systems. The current results showed that the potential of the microalgae-bacteria system for treating antibiotic wastewater. The tightly bound-EPS (TB-EPS) can acquire the higher absolute abundances of ARGs compared with the loosely bound-EPS (LB-EPS). The correlation coefficient between polysaccharides and TB-EPS ARGs was higher than that between polysaccharides and LB-EPS ARGs. The gene patterns of LB-EPS closely clustered with those of TB-EPS, while intracellular ARG gene patterns differed from both TB-EPS and LB-EPS. Metagenomic analyses indicated that the relative abundances of sul1 and sul2 were considerably higher at the beginning stage compared to the end stage. The abundance of Achromobacter, increased by the end stage, aligning with its potential to produce exopolysaccharide. Additionally, the absolute abundance of genes encoding exopolysaccharides (nagB and galE) and conjugative transfer transcription regulator (traF), increased over time. These findings enhanced our comprehension of the significance of EPS on the fate of ARGs in microalgae-bacteria systems during the treatment of antibiotic-contaminated wastewater. | 2025 | 39879767 |
| 7913 | 8 | 0.9995 | Response of the partial denitrification coupled with anaerobic ammonia oxidation system to disinfectant residues stress. The extensive use of disinfectants, especially NaClO, has resulted in chlorine disinfectant residues entering and impairing the biological treatment system. This study combined with long-term stress and transient shock of chlorine residues to comprehensively evaluate the variations of nitrogen removal performance, microbial community and antibiotic resistance genes composition in the PD/A system. The results showed that low concentration NaClO had no obvious harm to the system, but high concentration (>1 mg/L) NaClO would destroy the nitrogen removal performance of PD/A system. Interestingly, microorganisms in biofilm were more resistant to chlorine residues than that in sludge. Anaerobic ammonia oxidizing bacteria suffered more harm than denitrifying microorganisms, and chlorine residues mainly inhibited the process of converting N(2)H(4) to N(2) in anammox reaction. In addition, this study found that sludge showed a more significant increase in ARGs abundance and risk than biofilm. Moreover, risk assessments indicated that chlorine residues increased the risk of ARGs in PD/A systems. | 2025 | 40010223 |
| 7611 | 9 | 0.9995 | Response of microorganisms in biofilm to sulfadiazine and ciprofloxacin in drinking water distribution systems. Effects of sulfadiazine and ciprofloxacin on microorganisms in biofilm of drinking water distribution systems (DWDSs) were studied. The results verified that the increases of 16S rRNA for total bacteria and bacterial genus Hyphomicrobium were related to the promotion of antibiotic resistance genes (ARGs) and class 1 integrons (int1) in DWDSs with sulfadiazine and ciprofloxacin. Moreover, the bacteria showed higher enzymatic activities in DWDSs with sulfadiazine and ciprofloxacin, which resulted in more production of extracellular polymeric substances (EPS). The higher contents of EPS proteins and secondary structure β-sheet promoted bacterial aggregation and adsorption onto surface of pipelines to form biofilm. EPS can serve as a barrier for the microorganisms in biofilm. Therefore, the biofilm bacterial communities shifted and the 16S rRNA for total bacteria increased in DWDSs with antibiotics, which also drove the ARGs promotion. Furthermore, the two antibiotics exhibited stronger combined effects than that caused by sulfadiazine and ciprofloxacin alone. | 2019 | 30471500 |
| 8564 | 10 | 0.9995 | Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater. The formation and transmission of antibiotic resistance genes (ARGs) have attracted increasing attention. It is unclear whether the internal mechanisms by which antibiotics affect horizontal gene transfer (HGT) of ARGs during anaerobic digestion (AD) were influenced by dose and type. We investigated the effects of two major antibiotics (oxytetracycline, OTC, and sulfamethoxazole, SMX) on ARGs during AD according to antibiotic concentration in livestock wastewater influent. The low-dose antibiotic (0.5 mg/L) increased ROS and SOS responses, promoting the formation of ARGs. Meanwhile, low-dose antibiotics could also promote the spread of ARGs by promoting pili, communication responses, and the type IV secretion system (T4SS). However, different types and doses of antibiotics would lead to changes in the above functional modules and then affect the enrichment of ARGs. With the increasing dose of SMX, the advantages of pili and communication responses would gradually change. In the OTC system, low-dose has the strongest promoting ability in both pili and communication responses. Similarly, an increase in the dose of SMX would change T4SS from facilitation to inhibition, while OTC completely inhibits T4SS. Microbial and network analysis also revealed that low-dose antibiotics were more favorable for the growth of host bacteria. | 2023 | 36063716 |
| 7912 | 11 | 0.9995 | Distinct effects of hypochlorite types on the reduction of antibiotic resistance genes during waste activated sludge fermentation: Insights of bacterial community, cellular activity, and genetic expression. The effectiveness of hypochlorites (NaClO and Ca(ClO)(2)) on the reduction of antibiotic resistance genes (ARGs) during waste activated sludge (WAS) fermentation was determined by the quantitative PCR. NaClO and Ca(ClO)(2) exhibited distinct effects on ARGs fates. Ca(ClO)(2) was effective in removing all investigated ARGs, and the efficiency was highly dose-dependent. Unexpectedly, the NaClO treatment attenuated ARGs with lower efficiency and even caused the propagation of certain ARGs (i.e., aadA1 and tetQ) at higher doses. The extracellular polymeric substances dissolution and membrane integrity suggested that unstable NaClO had acute effects on bacteria initially, while it was ineffective to further attenuate ARGs released from hosts due to the rapid consumption of oxidative ClO(-). Without lasting and strong oxidative stress, the microbial activities of tolerant ARGs hosts will partially recover and then contribute to the ARGs dissemination across genera. In contrast, solid-state Ca(ClO)(2) was slowly released and exhibited prolonged effects on bacteria by disrupting cell membranes and removing the susceptible ARGs released from hosts. Furthermore, bacterial taxa-ARG network analysis indicated that Ca(ClO)(2) reduced the abundance of potential hosts, and the metabolic pathway and gene expression related to ARGs propagation were significantly downregulated by Ca(ClO)(2), which contributed to efficient ARGs attenuation. | 2021 | 33265039 |
| 8562 | 12 | 0.9994 | Nitrogen and phosphorus limitations promoted bacterial nitrate metabolism and propagation of antibiotic resistome in the phycosphere of Auxenochlorella pyrenoidosa. Despite that nitrogen (N) and phosphorus (P) play critical roles in the lifecycle of microalgae, how N and P further affect the distribution of bacteria and antibiotic resistance genes (ARGs) in the phycosphere is still poorly understood. In this study, the effects of N and P on the distribution of ARGs in the phycosphere of Auxenochlorella pyrenoidosa were investigated. Results showed that the growth and chlorophyll synthesis of microalgae were inhibited when N or P was limited, regardless of the N/P ratios, but the extracellular polymeric substances content and nitrate assimilation efficiency were enhanced in contrast. Metagenomic sequencing revealed that N or P limitation resulted in the recruitment of specific bacteria that highly contribute to the nitrate metabolism in the phycosphere. Besides, N or P limitation promoted the propagation of phycosphere ARGs, primarily through horizontal gene transfer mediated by mobile genetic elements. The enrichment of specific bacteria induced by changes in the algal physiology also contributed to the ARGs proliferation under nutrient limitation. Our results demonstrated that the reduction of algal cells caused by nutrient limitation could promote the propagation of ARGs, which provides new insights into the occurrence and spread of ARGs in the phycosphere. | 2024 | 38367442 |
| 7618 | 13 | 0.9994 | Anaerobic sludge digestion elevates dissemination risks of bacterial antibiotic resistance in effluent supernatant. Anaerobic digestion following a variety of pretreatments is a promising technique for the reduction of excess sludge in municipal wastewater treatment plants (MWWTPs), and eliminations of possible pathogens, viruses, protozoa, and other disease-causing organisms. Notwithstanding a rapidly increasing health concern of antibiotic resistant bacteria (ARB) in MWWTPs, dissemination risks of ARB in anaerobic digestion processes are still poorly understood, especially in the digested supernatant. Taking the representative ARB with respect to the common tetracycline-, sulfamethoxazole-, clindamycin- and ciprofloxacin resistance, we investigated the compositions of ARB in the sludge and supernatant, and quantified their variations along the entire anaerobic sludge digestion process following ultrasonication-, alkali-hydrolysis- and alkali-ultrasonication pretreatments, respectively. Results showed that the abundance of ARB was diminished by up to 90% from the sludge along anaerobic digestion coupling with the pretreatments. Surprisingly, pretreatments clearly boosted the abundance of specific ARB (e.g., 2.3 × 10(2) CFU/mL of tetracycline-resistant bacteria) in the supernatant that otherwise remained relatively low value of 0.6 × 10(2) CFU/mL from the direct digestion. Measurements of the soluble-, loosely-bound- and tightly-bound extracellular polymeric substances components revealed a gradually intensified destruction of the sludge aggregates along the entire anaerobic digestion processes, which could be likely responsible to the increase of the ARB abundance in the supernatant. Furthermore, analysis of the bacterial community components showed that the ARB populations were strongly correlated with the occurrence of Bacteroidetes, Patescibacteria, and Tenericutes. Interestingly, intensified conjugal transfer (0.015) of antibiotic resistance genes (ARGs) was observed upon returning of the digested supernatant to the biological treatment system. It implies the likelihood of ARGs spreading and subsequent ecological risks upon anaerobic digestion towards reducing excess sludge, and therefore requires further attentions for the excess sludge treatments especially of supernatant. | 2023 | 37023605 |
| 7932 | 14 | 0.9994 | How multi-walled carbon nanotubes in wastewater influence the fate of coexisting antibiotic resistant genes in the subsequent disinfection process. Wastewater treatment plants (WWTPs) are important hubs for the spread of antibiotic resistance genes (ARGs). Engineered nanoparticles, which was inevitably released to WWTPs, could change environmentally sensitive of antibiotic resistant bacteria (ARB). This would influence the fate of ARGs in subsequent disinfection process and consequent health risk. In this study, the ARGs fate of the effluent in conventional sodium hypochlorite (NaClO) disinfection process was investigated as multi-walled carbon nanotubes (MWCNTs) existed in sequencing batch reactor (SBR). The results showed the existence of MWCNTs in SBR could enhance the removal efficiency of intracellular 16S rRNA gene and intI1, extracellular intI1, sul2 and tetX in the effluent by NaClO. This is mainly due to the variation of bacterial physiological status, bacterial population structure and the activation of NaClO under the role of MWCNTs. MWCNTs in SBR could increase in membrane permeability of bacterial cells, which would be conducive to the penetration of chlorination to cytoplasm. MWCNTs in SBR also could change the bacterial population structure and induce the chlorine-sensitive bacteria; thus the potential hosts of ARGs in the effluent would be more easily inactivated by NaClO. Moreover, the residual MWCNTs in the effluent could activate NaClO to generate various free radical, which would enhance the oxidizing capacity of chlorination. | 2022 | 35500623 |
| 7939 | 15 | 0.9994 | Metagenomic insights into the distribution, mobility, and hosts of extracellular antibiotic resistance genes in activated sludge under starvation stress. Extracellular antibiotic resistance genes (eARGs) are important emerging environmental pollutants in wastewater treatment plants (WWTPs). Nutritional substrate deficiency (i.e., starvation) frequently occurs in WWTPs owing to annual maintenance, water quality fluctuation, and sludge storage; and it can greatly alter the antibiotic resistance and extracellular DNA content of bacteria. However, the fate and corresponding transmission risk of eARGs in activated sludge under starvation stress remain largely unknown. Herein, we used metagenomic sequencing to explore the effects of starvation scenarios (carbon, nitrogen, and/or phosphorus deficiency) and environmental conditions (alternating anaerobic-aerobic, anaerobic, anoxic, and aerobic) on the distribution, mobility, and hosts of eARGs in activated sludge. The results showed that 30 days of starvation reduced the absolute abundances of eARGs by 40.9%-88.2%, but high-risk dual and multidrug resistance genes persisted. Starvation, particularly the simultaneous lack of carbon, nitrogen, and phosphorus under aerobic conditions, effectively alleviated eARGs by reducing the abundance of extracellular mobile genetic elements (eMGEs). Starvation also altered the profile of bacterial hosts of eARGs and the bacterial community composition, the latter of which had an indirect positive effect on eARGs via changing eMGEs. Our findings shed light on the response patterns and mechanisms of eARGs in activated sludge under starvation conditions and highlight starvation as a potential strategy to mitigate the risk of previously neglected eARGs in WWTPs. | 2023 | 37060877 |
| 7909 | 16 | 0.9994 | Simultaneous efficient removal of tetracycline and mitigation of antibiotic resistance genes enrichment by a modified activated sludge process with static magnetic field. To address the increasing issue of antibiotic wastewater, this study applied a static magnetic field (SMF) to the activated sludge process to increase the efficiency of tetracycline (TC) removal from swine wastewater and to reveal its enhanced mechanisms. The results demonstrated that the SMF-modified activated sludge process could achieve almost complete TC removal at sludge loading rates of 0.3 mg TC/g MLSS/d. Analysis of zeta potential and extracellular polymeric substances composition of the activated sludge revealed that SMF increased electrostatic interactions between TC and activated sludge and made activated sludge has much more binding sites, finally resulting in the increased TC biosorption. Metagenomic analysis showed that SMF promoted the enrichment of ammonia-oxidizing bacteria, TC-degrading bacteria, and aromatic compounds-degrading bacteria; it also enhanced ammonia monooxygenase- and cytochrome P450-mediated TC metabolism while upregulating functional genes associated with oxidase, reductase, and dehydrogenase - all contributing to increased TC biodegradation. Additionally, SMF mitigated the enrichment and spread of antibiotic resistance genes (ARGs) by decreasing the abundance of potential hosts of ARGs and inhibiting the upregulation of genes encoding ABC transporters and putative transposase. Based on these findings, this study demonstrates that magnetic field is an enhancement strategy with great potential to relieve the harmful impacts of the growing antibiotic wastewater problem on human health and the ecosystem. | 2024 | 39038424 |
| 7509 | 17 | 0.9994 | Assessing biofilm formation and resistance of vibrio parahaemolyticus on UV-aged microplastics in aquatic environments. UV degradation of marine microplastics (MPs) could increase their vector potential for pathogenic bacteria and threaten human health. However, little is known about how the degree of UV aging affects interactions between MPs and pathogens and how various types of MPs differ in their impact on seafood safety. This study investigated five types of UV-aged MPs and their impact on Vibrio parahaemolyticus, a seafood pathogen. MPs exposed to UV for 60 days showed similar physicochemical changes such as surface cracking and hydrophobicity reduction. Regardless of the type, longer UV exposure of MPs resulted in more biofilm formation on the surface under the same conditions. V. parahaemolyticus types that formed biofilms on the MP surface showed 1.4- to 5.0-fold upregulation of virulence-related genes compared to those that did not form biofilms, independently of UV exposure. However, longer UV exposure increased resistance of V. parahaemolyticus on MPs to chlorine, heat, and human gastrointestinal environment. This study implies that the more UV degradation occurs on MPs, the more microbial biofilm formation is induced, which can significantly increase virulence and environmental resistance of bacteria regardless of the type of MP. | 2024 | 38422694 |
| 8517 | 18 | 0.9994 | Influences of graphene on microbial community and antibiotic resistance genes in mouse gut as determined by high-throughput sequencing. Graphene is a promising candidate as an antibacterial material owning to its bacterial toxicity. However, little information on influence of graphene on gut microbiota is available. In this study, mice were exposed to graphene for 4 weeks, and high-throughput sequencing was applied to characterize the changes in microbial community and antibiotic resistance genes (ARGs) in mouse gut. The results showed that graphene exposure increased biodiversity of gut microbiota, and changed their community. The 1 μg/d graphene exposure had higher influences on the gut microbiota than 10 μg/d and 100 μg/d graphene exposures, which might be due to higher aggregation of high-level graphene. The influence of graphene on gut microbiota might attribute to that graphene could induce oxidative stress and damage of cell membrane integrity. The results were verified by the increase of ratio of Gram-negative bacteria. Outer membrane of Gram-negative bacteria could reduce the membrane damage induced by graphene and make them more tolerance to graphene. Further, we found that graphene exposure significantly increased the abundance and types of ARGs, indicating a potential health risk of graphene. This study firstly provides new insight to the health effects of graphene on gut microbiota. | 2016 | 26476051 |
| 7565 | 19 | 0.9994 | Microalgae Enhances the Adaptability of Epiphytic Bacteria to Sulfamethoxazole Stress and Proliferation of Antibiotic Resistance Genes Mediated by Integron. The transmission of ARGs in the microalgae-associated epiphytic bacteria remains unclear under antibiotic exposure, apart from altering the microbial community structure. In this study, Chlorella vulgaris cocultured with bacteria screened from surface water was examined to explore the spread of ARGs in the presence of sulfamethoxazole (SMX). The extracellular polymers released by Chlorella vulgaris could reduce antibiotic-induced collateral damage to bacteria, thus increasing the diversity of the microalgae-associated epiphytic bacteria. The abundances of sul1 and intI1 in the phycosphere at 1 mg/L SMX dose increased by 290 and 28 times, respectively. Metagenomic sequencing further confirmed that SMX bioaccumulation stimulated the horizontal transfer of sul1 mediated by intI1 in the microalgae-associated epiphytic bacteria, while reactive oxygen species (ROS)-mediated oxidative stress induced the SOS response and thus enhanced the transformation of sul1 in the J group. This is the first study to verify that microalgae protect bacteria from antibiotic damage and hinder the spread of ARGs mediated by SOS response, while the transfer of ARGs mediated by integron is promoted due to the bioaccumulation of SMX in the phycosphere. The results contribute to present comprehensive understanding of the risk of ARG proliferation by the presence of emerging contaminants residues in river. | 2024 | 39417646 |