Double-edged sword effects of sulfate reduction process in sulfur autotrophic denitrification system: Accelerating nitrogen removal and promoting antibiotic resistance genes spread. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
788701.0000Double-edged sword effects of sulfate reduction process in sulfur autotrophic denitrification system: Accelerating nitrogen removal and promoting antibiotic resistance genes spread. This study proposed the double-edged sword effects of sulfate reduction process on nitrogen removal and antibiotic resistance genes (ARGs) transmission in sulfur autotrophic denitrification system. Excitation-emission matrix-parallel factor analysis identified the protein-like fraction in soluble microbial products as main endogenous organic matter driving the sulfate reduction process. The resultant sulfide tended to serve as bacterial modulators, augmenting electron transfer processes and mitigating oxidative stress, thereby enhancing sulfur oxidizing bacteria (SOB) activity, rather than extra electron donors. The cooperation between SOB and heterotroph (sulfate reducing bacteria (SRB) and heterotrophic denitrification bacteria (HDB)) were responsible for advanced nitrogen removal, facilitated by multiple metabolic pathways including denitrification, sulfur oxidation, and sulfate reduction. However, SRB and HDB were potential ARGs hosts and assimilatory sulfate reduction pathway positively contributed to ARGs spread. Overall, the sulfate reduction process in sulfur autotrophic denitrification system boosted nitrogen removal process, but also increased the risk of ARGs transmission.202439122125
790910.9993Simultaneous efficient removal of tetracycline and mitigation of antibiotic resistance genes enrichment by a modified activated sludge process with static magnetic field. To address the increasing issue of antibiotic wastewater, this study applied a static magnetic field (SMF) to the activated sludge process to increase the efficiency of tetracycline (TC) removal from swine wastewater and to reveal its enhanced mechanisms. The results demonstrated that the SMF-modified activated sludge process could achieve almost complete TC removal at sludge loading rates of 0.3 mg TC/g MLSS/d. Analysis of zeta potential and extracellular polymeric substances composition of the activated sludge revealed that SMF increased electrostatic interactions between TC and activated sludge and made activated sludge has much more binding sites, finally resulting in the increased TC biosorption. Metagenomic analysis showed that SMF promoted the enrichment of ammonia-oxidizing bacteria, TC-degrading bacteria, and aromatic compounds-degrading bacteria; it also enhanced ammonia monooxygenase- and cytochrome P450-mediated TC metabolism while upregulating functional genes associated with oxidase, reductase, and dehydrogenase - all contributing to increased TC biodegradation. Additionally, SMF mitigated the enrichment and spread of antibiotic resistance genes (ARGs) by decreasing the abundance of potential hosts of ARGs and inhibiting the upregulation of genes encoding ABC transporters and putative transposase. Based on these findings, this study demonstrates that magnetic field is an enhancement strategy with great potential to relieve the harmful impacts of the growing antibiotic wastewater problem on human health and the ecosystem.202439038424
791120.9993Biochar induced inhibitory effects on intracellular and extracellular antibiotic resistance genes in anaerobic digestion of swine manure. Distribution of intracellular (iARGs) and extracellular ARGs (eARGs) in manure anaerobic digestion (AD) process coupled with two types of biochar (BC and BP) were investigated. And the effects of biochar on the conjugation transfer of ARGs were explored by deciphering the interaction of biochar with bacterial stress responses, physiological metabolism and antibiotic resistances. Results showed that AD process could effectively remove all the detected eARGs with efficiency of 47.4-98.2%. The modified biochar (BP) with larger specific surface area (SSA) was propitious to decrease the absolute copy number of extracellular resistance genes. AD process could effectively remove iARGs by inhibiting the growth of host bacteria. The results of structural equation models (SEM) indicated that biochar put indirect influences on the fate of ARGs (λ = -0.23, P > 0.05). Analysis on oxidative stress levels, antioxidant capacity, DNA damage-induced response (SOS) response and energy generation process demonstrated that biochar induced the oxidative stress response of microorganisms and enhanced the antioxidant capacity of bacteria. The elevated antioxidant capacity negatively affected SOS response, amplified cell membrane damage and further weakened the energy generation process, resulted in the inhibition of horizontal transfer of ARGs.202235609652
788830.9993Microecology of aerobic denitrification system construction driven by cyclic stress of sulfamethoxazole. The construction of aerobic denitrification (AD) systems in an antibiotic-stressed environment is a serious challenge. This study investigated strategy of cyclic stress with concentration gradient (5-30 mg/L) of sulfamethoxazole (SMX) in a sequencing batch reactor (SBR), to achieve operation of AD. Total nitrogen removal efficiency of system increased from about 10 % to 95 %. Original response of abundant-rare genera to antibiotics was changed by SMX stress, particularly conditionally rare or abundant taxa (CRAT). AD process depends on synergistic effect of heterotrophic nitrifying aerobic denitrification bacteria (Paracoccus, Thauera, Hypomicrobium, etc). AmoABC, napA, and nirK were functionally co-expressed with multiple antibiotic resistance genes (ARGs) (acrR, ereAB, and mdtO), facilitating AD process. ARGs and TCA cycling synergistically enhance the antioxidant and electron transport capacities of AD process. Antibiotic efflux pump mechanism played an important role in operation of AD. The study provides strong support for regulating activated sludge to achieve in situ AD function.202438710419
790840.9992DNA-based stable isotope probing deciphered the active denitrifying bacteria and triclosan-degrading bacteria participating in granule-based partial denitrification process under triclosan pressure. Granule-based partial denitrification (PD) is a technology that can supply stable nitrite for applying anaerobic ammonia oxidation in wastewater treatment, and triclosan (TCS) is a frequently detected antibacterial agent in wastewater treatment plants, therefore it is possible that TCS could enter into wastewater that is treated using PD technology. However, the active microorganisms responsible for PD and TCS removing in granule-based PD system have not been clearly identified and it is currently not clear how TCS affects the PD process. In this study, the impacts of TCS on PD performance, PD microbial community, antibiotic resistance genes (ARGs), active PD bacteria and TCS-degrading bacteria in a granule-based PD system were investigated. 3 mg/L TCS had adverse influence on PD process, but PD system could recover gradually after inhibiting of 10 days. After a period of domestication, PD granular sludge could achieve 10.66% of TCS degradation efficiency and 43.62% of TCS adsorption efficiency. Microbes might increase their resistance to TCS by increasing the secretion of extracellular polymeric substances, and the secretion of protein might play a more pivotal role than the secretion of polysaccharides in resisting TCS. The short-term shock of TCS might cause the propagation of acrA-03, while the long-term operation of TCS could propagate fabK and intI1. DNA stable isotope probing assay indicated that Thauera was active PD bacteria and TCS-degrading bacteria in the granule-based PD system, and it could contribute to nitrite accumulation and TCS degradation, simultaneously.202234979468
790350.9992Effects of zero-valent iron (ZVI) on nitrogen conversion, transformation of sulfamethoxazole (SMX) and abundance of antibiotic resistance genes (ARGs) in aerobic granular sludge process. Even after pre-treatment, livestock and poultry wastewater still contain high concentrations of ammonia and residual antibiotics. These could be removed economically using the aerobic granular sludge (AGS) process with zero-valent iron (ZVI). The interaction of antibiotics and nitrogen in this process needs to be clarified and controlled, however, to achieve good removal performance. Otherwise, antibiotics might generate transformation products (TPs) with higher toxicity and lead to the emergence of antibiotic-resistant bacteria carrying antibiotic resistance genes (ARGs), which could cause persistent toxicity and the risk of disease transmission to the ecological environment. This study investigated the impact of ZVI on AGS for nitrogen and sulfamethoxazole (SMX) removal. The results show that AGS could maintain good ammonia removal performance and that the existence of SMX had a negative impact on ammonia oxidation activities. ZVI contributed to an increase in the abundance of nitrite oxidation bacteria, denitrifying bacteria and the functional genes of nitrogen removal. This led to better total nitrogen removal and a decrease in N(2)O emission. Accompanied by biological nitrogen transformation, SMX could be transformed into 14 TPs through five pathways. ZVI has the potential to enhance transformation pathways with TPs of lower ecotoxicity, thereby reducing the acute and chronic toxicity of the effluent. Unfortunately, ZVI might enhance the abundance of sul1, sul2, and sul3 in AGS, which increases the risk of sulfonamide antibiotic resistance. In AGS, Opitutaceae, Xanthomonas, Spartobacteria and Mesorhizobium were potential hosts for ARGs. This study provides theoretical references for the interaction of typical antibiotics and nitrogen in the biological treatment process of wastewater and bioremediation of natural water bodies.202337832300
856760.9992System-dependent divergence of microbial community and resistome in two anaerobic niches under sulfamethoxazole selection. The prevalence of sulfamethoxazole (SMX) in high-strength wastewater poses a significant threat to the stability and efficiency of anaerobic biological treatment systems, particularly when deployed as initial treatment units. However, the complex interactions arising from SMX biodegradation and their resultant effects on typical anaerobic digestion (AD) and sulfate-reducing (SR) systems are not thoroughly understood. This study revealed that SMX exposure stimulated methanogenesis in the AD system and sulfate reduction in the SR system, driven primarily by enriched key functional taxa (e.g., methanogens, sulfate-reducing bacteria). Organic matter removal efficiency increased significantly in the AD system under SMX stress, attributed to the enrichment of fermentative bacteria. Notably, the enriched class Actinomycetes was capable of SMX biodegradation, thereby likely mitigating SMX stress for other microorganisms. In contrast, the SR system exhibited significantly diminished organic matter removal despite developing a more functionally specialized community under SMX exposure. This community harbored fewer SMX degraders, perpetuating selective pressure on the microbiota. Increasing SMX concentrations failed to induce significant shifts in overall community structure in either system, while significantly promoted the proliferation of antibiotic resistance genes (ARGs), particularly pronounced in the SR system exhibiting high SMX accumulation. Moreover, mobile genetic elements mediated the horizontal transfer of the sulfonamide resistance gene sul1 and other co-occurring ARGs located on plasmids. This study provides novel insights into the convergent and divergent microbial responses in the AD and SR systems under SMX exposure, highlighting the dual effects (both stimulatory and inhibitory) of SMX on the functionality of these anaerobic systems.202541130171
791070.9992Tetracycline degradation by a mixed culture of halotolerant fungi-bacteria under static magnetic field: Mechanism and antibiotic resistance genes transfer. Efficient antibiotics removal lowers the transmission risk of antibiotic resistance genes (ARGs). However, low efficiency limits the application of biological methods for antibiotics removal. Herein, a mixed culture of halotolerant fungi-bacteria was used for treatment of saline wastewater containing tetracycline (TC). Furthermore, static magnetic field (SMF) was used to increase TC removal. The study examined the effectiveness of SMF in removing antibiotics from saline wastewater and the associated risk of ARGs transmission. The results demonstrated that the application of a 40 mT SMF significantly improved the TC removal efficiency by 37.09 %, compared to the control (SMF=0) The TC was mainly removed through biodegradation and adsorption. In biodegradation, SMF enhanced electron transport system activity, and activities of lignin-degrading enzymes which led to higher TC biodegradation. The activity of lactate dehydrogenase and malondialdehyde decreased, lowering the damage of microbial cell membranes by TC. During the adsorption process, higher generation of extracellular polymeric substances was observed under SMF, which caused an increase in TC removal via adsorption. Microbial community analysis revealed that SMF facilitated the enrichment of TC-degrading microorganisms. Under SMF, vertical gene transfer of ARGs increased, while horizontal gene transfer risk decreased due to a reduction in mobile genetic elements (intl1) abundance. This study demonstrates that SMF is a promising strategy for enhancing TC removal efficiency, providing a basis for improved antibiotic wastewater management.202540199074
859380.9992Preference and regulation mechanism mediated via mobile genetic elements for antibiotic and metal resistomes during composting amended with nano ZVI loaded on biochar. This study assessed the effectiveness of nano zero-valent iron loaded on biochar (BC-nZVI) during swine manure composting. BC-nZVI significantly reduced the abundance of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs). BC-nZVI modified the preference of MGEs to carry ARGs and MRGs, and the corrosion products of BC-nZVI could destroy cell structure, hinder electron transfer between cells, and weaken the association between ARGs, MRGs, and host bacteria. Functional genes analysis revealed that BC-nZVI down-regulated the abundance of genes affecting the transmission and metabolism of ARGs and MRGs, including type IV secretion systems, transporter systems, two-component systems, and multidrug efflux pumps. Furthermore, the BC-nZVI decreased genes related to flagella and pili production and cell membrane permeability, thereby hindering the transfer of ARGs, MRGs, and MGEs in the environment. Redundancy analysis demonstrated that changes in the microbial community induced by BC-nZVI were pivotal factors impacting the abundance of ARGs, MRGs, and MGEs. Overall, this study confirmed the efficacy of BC-nZVI in reducing resistance genes during swine manure composting, offering a promising environmental strategy to mitigate the dissemination of these contaminants.202438992827
790290.9992Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge: Both nitrifying bacteria and heterotrophic bacteria matter. Antibiotics can be biodegraded in activated sludge via co-metabolism and metabolism. In this study, we investigated the biodegradation pathways of sulfamethoxazole (SMX) and antibiotic resistant genes' (ARGs) fate in different autotrophic and heterotrophic microorganisms, by employing aerobic sludge, mixed sludge, and nitrifying sludge. A threshold concentration of SMX activating the degradation pathways in the initial stage of antibiotics degradation was found and proved in different activated sludge systems. Heterotrophic bacteria played an important role in SMX biodegradation. However, ammonia-oxidizing bacteria (AOB) had a faster metabolic rate, which was about 15 times higher than heterotrophic bacteria, contributing much to SMX removal via co-metabolism. As SMX concentration increases, the amoA gene and AOB relative abundance decreased in aerobic sludge due to the enrichment of functional heterotrophic bacteria, while it increased in nitrifying sludge. Microbial community analysis showed that functional bacteria which possess the capacity of SMX removal and antibiotic resistance were selected by SMX pressure. Potential ARGs hosts could increase their resistance to the biotoxicity of SMX and maintain system performance. These findings are of practical significance to guide antibiotic biodegradation and ARGs control in wastewater treatment plants.202234799165
8541100.9992Insights into the response of anammox process to oxytetracycline: Impacts of static magnetic field. The long-term effects of oxytetracycline (OTC) with a high concentration on the anaerobic ammonium oxidation (Anammox) process were evaluated, and the role of static magnetic field (SMF) was further explored. The stress of OTC at 50 mg/L had little effect on the nitrogen removal of anammox process at the first 16 days. With the continuous addition of OTC and the increase of nitrogen loading, the OTC inhibited the nitrogen removal and anammox activity severely. During the 32 days of recovery period without OTC addition, the nitrogen removal was further deteriorated, indicating the inhibition of OTC on anammox activity was irreversible and persistent. The application of SMF alleviated the inhibition of OTC on anammox to some extent, and the specific anammox activity was enhanced by 47.1% compared to the system without SMF during the OTC stress stage. Antibiotic efflux was the major resistance mechanism in the anammox process, and tetA, tetG and rpsJ were the main functional antibiotic resistance genes. The addition of OTC weakened the metabolic interactions between the anammox bacteria and the symbiotic bacteria involved in the metabolism of cofactors and secondary metabolites, leading to the poor anammox activity. The adaptability of microbes to the OTC stress was improved by the application of SMF, which can enhance the metabolic pathways related to bacterial growth and resistance to environmental stress.202337586490
8591110.9991Nanoscale zero-valent iron alleviate antibiotic resistance risk during managed aquifer recharge (MAR) by regulating denitrifying bacterial network. The frequent occurrence of antibiotics in reclaimed water is concerning, in the case of managed aquifer recharge (MAR), it inevitably hinders further water purification and accelerates the evolutionary resistance in indigenous bacteria. In this study, we constructed two column reactors and nanoscale zero-valent iron (nZVI) amendment was applied for its effects on water quality variation, microbial community succession, and antibiotic resistance genes (ARGs) dissemination, deciphered the underlying mechanism of resistance risk reduction. Results showed that nZVI was oxidized to iron oxides in the sediment column, and total effluent iron concentration was within permissible limits. nZVI enhanced NO(3)(-)-N removal by 15.5% through enriching denitrifying bacteria and genes, whereas made no effects on oxacillin (OXA) removal. In addition, nZVI exhibited a pivotal impact on ARGs and plasmids decreasing. Network analysis elucidated that the diversity and richness of ARG host declined with nZVI amendment. Denitrifying bacteria play a key role in suppressing horizontal gene transfer (HGT). The underlying mechanisms of inhibited HGT included the downregulated SOS response, the inhibited Type-Ⅳ secretion system and the weakened driving force. This study afforded vital insights into ARG spread control, providing a reference for future applications of nZVI in MAR.202438134694
7939120.9991Metagenomic insights into the distribution, mobility, and hosts of extracellular antibiotic resistance genes in activated sludge under starvation stress. Extracellular antibiotic resistance genes (eARGs) are important emerging environmental pollutants in wastewater treatment plants (WWTPs). Nutritional substrate deficiency (i.e., starvation) frequently occurs in WWTPs owing to annual maintenance, water quality fluctuation, and sludge storage; and it can greatly alter the antibiotic resistance and extracellular DNA content of bacteria. However, the fate and corresponding transmission risk of eARGs in activated sludge under starvation stress remain largely unknown. Herein, we used metagenomic sequencing to explore the effects of starvation scenarios (carbon, nitrogen, and/or phosphorus deficiency) and environmental conditions (alternating anaerobic-aerobic, anaerobic, anoxic, and aerobic) on the distribution, mobility, and hosts of eARGs in activated sludge. The results showed that 30 days of starvation reduced the absolute abundances of eARGs by 40.9%-88.2%, but high-risk dual and multidrug resistance genes persisted. Starvation, particularly the simultaneous lack of carbon, nitrogen, and phosphorus under aerobic conditions, effectively alleviated eARGs by reducing the abundance of extracellular mobile genetic elements (eMGEs). Starvation also altered the profile of bacterial hosts of eARGs and the bacterial community composition, the latter of which had an indirect positive effect on eARGs via changing eMGEs. Our findings shed light on the response patterns and mechanisms of eARGs in activated sludge under starvation conditions and highlight starvation as a potential strategy to mitigate the risk of previously neglected eARGs in WWTPs.202337060877
8125130.9991The removal performances and evaluation of heavy metals, antibiotics, and resistomes driven by peroxydisulfate amendment during composting. This study aimed to explore the effect of peroxydisulfate on the removal of heavy metals, antibiotics, heavy metal resistance genes (HMRGs), and antibiotic resistance genes (ARGs) during composting. The results showed that peroxydisulfate achieved the passivation of Fe, Mn, Zn, and Cu by promoting their speciation variations, thus reducing their bioavailability. And the residual antibiotics were better degraded by peroxydisulfate. In addition, metagenomics analysis indicated that the relative abundance of most HMRGs, ARGs, and MGEs was more effectively down-regulated by peroxydisulfate. Network analysis confirmed Thermobifida and Streptomyces were dominant potential host bacteria of HMRGs and ARGs, whose relative abundance was also effectively down-regulated by peroxydisulfate. Finally, mantel test showed the significant effect of the evolution of microbial communities and strong oxidation of peroxydisulfate on the removal of pollutants. These results suggested that heavy metals, antibiotics, HMRGs, and ARGs shared a joint fate of being removed driven by peroxydisulfate during composting.202337307729
7937140.9991Effects of oxytetracycline on variation in intracellular and extracellular antibiotic resistance genes during swine manure composting. This research aimed to investigate the alterations in extracellular (eARGs) and intracellular (iARGs) antibiotic resistance genes in response to oxytetracycline (OTC), and unravel the dissemination mechanism of ARGs during composting. The findings revealed both low (L-OTC) and high contents (H-OTC) of OTC significantly enhanced absolute abundance (AA) of iARGs (p < 0.05), compared to CK (no OTC). Composting proved to be a proficient strategy for removing eARGs, while AA of eARGs was significantly enhanced in H-OTC (p < 0.05). OTC resulted in an increase in AA of mobile genetic elements (MGEs), ATP levels, antioxidant and DNA repair enzymes in bacteria in compost product. Structural equation model further demonstrated that OTC promoted bacterial DNA repair and antioxidant enzyme activities, altered bacterial community and enhanced MGEs abundance, thereby facilitating iARGs dissemination. This study highlights OTC can increase eARGs and iARGs abundance, underscoring the need for appropriate countermeasures to mitigate potential hazards.202438036151
7907150.9991Determination of the fate of antibiotic resistance genes and the response mechanism of plants during enhanced antibiotic degradation in a bioelectrochemical-constructed wetland system. Chloramphenicol (CAP) has a high concentration and detection frequency in aquatic environments due to its insufficient degradation in traditional biological wastewater treatment processes. In this study, bioelectrochemical assistant-constructed wetland systems (BES-CWs) were developed as advanced processes for efficient CAP removal, in which the degradation and transfer of CAP and the fate of antibiotic resistance genes (ARGs) were evaluated. The CAP removal efficiency could reach as high as 90.2%, while the removed CAP can be partially adsorbed and bioaccumulated in plants, significantly affecting plant growth. The vertical gene transfer and horizontal gene transfer increased the abundance of ARGs under high voltage and CAP concentrations. Microbial community analysis showed that CAP pressure and electrical stimulation selected the functional bacteria to increase CAP removal and antibiotic resistance. CAP degradation species carrying ARGs could increase their opposition to the biotoxicity of CAP and maintain system performance. In addition, ARGs are transferred into the plant and upward, which can potentially enter the food chain. This study provides an essential reference for enhancing antibiotic degradation and offers fundamental support for the underlying mechanism and ARG proliferation during antibiotic biodegradation.202336931217
8594160.9991Attenuation effects of iron on dissemination of antibiotic resistance genes in anaerobic bioreactor: Evolution of quorum sensing, quorum quenching and dynamics of community composition. Zero valent iron (ZVI) coupled with bioreactors is arising as a promising technology for antibiotic resistance genes (ARGs) mitigation, whereas the succession and behaviors of microbes caused by ZVI in relieving ARGs propagation remain unclear. Herein, the effects of ZVI on microbial quorum sensing (QS), quorum quenching (QQ) system and community dynamics were examined in anaerobic bioreactor fed with oxytetracycline (tet), to illustrate the roles of evolutive microbial communication and community composition in ARGs attenuation. With the addition of 5 g/L ZVI, the total absolute abundance of tet ARGs was retarded by approximate 95% and 72% in sludge and effluent after 25 days operation. The abundance of mobile genetic elements and the heredity of antibiotic resistant bacteria revealed the declined horizontal and vertical transfer of ARGs, which directly led to the reduced ARGs propagation. Potential mechanisms are that the positive effects of ZVI on QQ activity via the functional bacteria enrichment inhibited QS system and thus ARGs transfer. Partial least--squares path modeling further demonstrated that ARGs abundance was strongly limited by the dynamics of bacterial composition and thereby less frequent microbial communication. These results provide new insights into the mechanisms of antibiotic resistome remission in anaerobic bioreactor modified by ZVI.202134492925
7892170.9991Nitrite Production by Nitrifying Bacteria in Urban Groundwater Used in a Chlorinated Public Bath System in Japan. In contrast to pathogens, the effects of environmental microbes on the water quality in baths have not yet been examined in detail. We herein focused on a public bath in which groundwater was pumped up as bath water and disinfected by chlorination. Ammonia in groundwater is oxidized to nitrite, thereby reducing residual chlorine. A batch-culture test and bacterial community ana-lysis revealed that ammonia-oxidizing bacteria accumulated nitrite and had higher resistance to chlorination than nitrite-oxidizing bacteria. These results demonstrate that the difference in resistance to chlorination between ammonia-oxidizing and nitrite-oxidizing bacteria may lead to the accumulation of nitrite in baths using groundwater.202236198516
8540180.9991Metagenomic insights into the mechanism for the rapid enrichment and high stability of Candidatus Brocadia facilitated by Fe(Ⅲ). The rapid enrichment of anammox bacteria and its fragile resistance to adverse environment are the critical problems facing of anammox processes. As an abundant component in anammox bacteria, iron has been proved to promote the activity and growth of anammox bacteria in the mature anammox systems, but the functional and metabolic profiles in Fe(III) enhanced emerging anammox systems have not been evaluated. Results indicated that the relative abundance of functional genes involved in oxidative phosphorylation, nitrogen metabolism, cofactors synthesis, and extracellular polymers synthesis pathways was significantly promoted in the system added with 5 mg/L Fe(III) (R5). These enhanced pathways were crucial to energy generation, nitrogen removal, cell activity and proliferation, and microbial self-defense, thereby accelerating the enrichment of anammox bacteria Ca. Brocadia and facilitating their resistance to adverse environments. Microbial community analysis showed that the proportion of Ca. Brocadia in R5 also increased to 64.42 %. Hence, R5 could adapt rapidly to the increased nitrogen loading rate and increase the nitrogen removal rate by 108 % compared to the system without Fe(III) addition. However, the addition of 10 and 20 mg/L Fe(III) showed inhibitory effects on the growth and activity of anammox bacteria, which exhibited the lower relative abundance of Ca. Brocadia and unstable or even collapsed nitrogen removal performance. This study not only clarified the concentration range of Fe(III) that promoted and inhibited the enrichment of anammox bacteria, but also deepened our understanding of the functional and metabolic mechanisms underlying enhanced enrichment of anammox bacteria by Fe(III), providing a potential strategy to hasten the start-up of anammox from conventional activated sludge.202438309072
8124190.9991Effect of graphene and graphene oxide on antibiotic resistance genes during copper-contained swine manure anaerobic digestion. Copper is an important selectors for antibiotic resistance genes (ARGs) transfer because of metal-antibiotic cross-resistance and/or coresistance. Due to carbon-based materials' good adsorption capacity for heavy metals, graphene and graphene oxide have great potential to reduce ARGs abundance in the environment with copper pollution. To figure out the mechanics, this study investigated the effects of graphene and graphene oxide on the succession of ARGs, mobile genetic elements (MGEs), heavy metal resistance genes (HMRGs), and bacterial communities during copper-contained swine manure anaerobic digestion. Results showed that graphene and graphene oxide could reduce ARGs abundance in varying degrees with the anaerobic reactors that contained a higher concentration of copper. Nevertheless, graphene decreased the abundance of ARGs more effectively than graphene oxide. Phylum-level bacteria such as Firmicutes, Bacteroidetes, Spirochaetes, and Verrucomicrobiaat were significantly positively correlated with most ARGs. Network and redundancy analyses demonstrated that alterations in the bacterial community are one of the main factors leading to the changes in ARGs. Firmicutes, Bacteroidetes, and Spirochaetes were enriched lower in graphene reactor than graphene oxide in anaerobic digestion products, which may be the main reason that graphene is superior to graphene oxide in reduced ARGs abundance. Additionally, ARGs were close to HMRGs than MGEs in the treatments with graphene, the opposite in graphene oxide reactors. Therefore, we speculate that the reduction of HMRGs in graphene may contribute to the result that graphene is superior to graphene oxide in reduced ARGs abundance in anaerobic digestion.202336394812