Quaternary ammonium compounds promoted anoxic sludge granulation and altered propagation risk of intracellular and extracellular antibiotic resistance genes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
787201.0000Quaternary ammonium compounds promoted anoxic sludge granulation and altered propagation risk of intracellular and extracellular antibiotic resistance genes. Surfactants could influence sludge morphology and disinfectants were linked to antibiotic resistance genes (ARGs). Thus, the response of activated sludge and ARGs to long-term quaternary ammonium compounds (QACs) exposure required further investigation, which is a popular surfactant and disinfectant. Here, three sequencing batch reactors were fed with 5 mg/L most frequently detected QACs (dodecyl trimethyl ammonium chloride (ATMAC C12), dodecyl benzyl dimethyl ammonium chloride (BAC C12) and didodecyl dimethyl ammonium chloride (DADMAC C12)) for 180 d. The long-term inhibitory effect on denitrification ranked: DADMAC C12 > BAC C12 > ATMAC C12. Besides, obvious granular sludge promoted by the increase of α-Helix/(β-Sheet + Random coil) appeared in DADMAC C12 system. Moreover, intracellular ARGs increased when denitrification systems encountered QACs acutely but decreased in systems chronically exposed to QACs. Although replication and repair metabolism in ATMAC C12 system was higher, ATMAC C12 significantly promoted proliferation of extracellular ARGs. It was noteworthy that the propagation risk of extracellular ARGs in sludge increased significantly during sludge granulation process, and intracellular sul2 genes in sludge and water both increased with the granular diameter in DADMAC C12 system. The universal utilization of QACs may enhance antibiotic resistance of bacteria in wastewater treatment plants, deserving more attention.202336444811
791210.9993Distinct effects of hypochlorite types on the reduction of antibiotic resistance genes during waste activated sludge fermentation: Insights of bacterial community, cellular activity, and genetic expression. The effectiveness of hypochlorites (NaClO and Ca(ClO)(2)) on the reduction of antibiotic resistance genes (ARGs) during waste activated sludge (WAS) fermentation was determined by the quantitative PCR. NaClO and Ca(ClO)(2) exhibited distinct effects on ARGs fates. Ca(ClO)(2) was effective in removing all investigated ARGs, and the efficiency was highly dose-dependent. Unexpectedly, the NaClO treatment attenuated ARGs with lower efficiency and even caused the propagation of certain ARGs (i.e., aadA1 and tetQ) at higher doses. The extracellular polymeric substances dissolution and membrane integrity suggested that unstable NaClO had acute effects on bacteria initially, while it was ineffective to further attenuate ARGs released from hosts due to the rapid consumption of oxidative ClO(-). Without lasting and strong oxidative stress, the microbial activities of tolerant ARGs hosts will partially recover and then contribute to the ARGs dissemination across genera. In contrast, solid-state Ca(ClO)(2) was slowly released and exhibited prolonged effects on bacteria by disrupting cell membranes and removing the susceptible ARGs released from hosts. Furthermore, bacterial taxa-ARG network analysis indicated that Ca(ClO)(2) reduced the abundance of potential hosts, and the metabolic pathway and gene expression related to ARGs propagation were significantly downregulated by Ca(ClO)(2), which contributed to efficient ARGs attenuation.202133265039
793220.9992How multi-walled carbon nanotubes in wastewater influence the fate of coexisting antibiotic resistant genes in the subsequent disinfection process. Wastewater treatment plants (WWTPs) are important hubs for the spread of antibiotic resistance genes (ARGs). Engineered nanoparticles, which was inevitably released to WWTPs, could change environmentally sensitive of antibiotic resistant bacteria (ARB). This would influence the fate of ARGs in subsequent disinfection process and consequent health risk. In this study, the ARGs fate of the effluent in conventional sodium hypochlorite (NaClO) disinfection process was investigated as multi-walled carbon nanotubes (MWCNTs) existed in sequencing batch reactor (SBR). The results showed the existence of MWCNTs in SBR could enhance the removal efficiency of intracellular 16S rRNA gene and intI1, extracellular intI1, sul2 and tetX in the effluent by NaClO. This is mainly due to the variation of bacterial physiological status, bacterial population structure and the activation of NaClO under the role of MWCNTs. MWCNTs in SBR could increase in membrane permeability of bacterial cells, which would be conducive to the penetration of chlorination to cytoplasm. MWCNTs in SBR also could change the bacterial population structure and induce the chlorine-sensitive bacteria; thus the potential hosts of ARGs in the effluent would be more easily inactivated by NaClO. Moreover, the residual MWCNTs in the effluent could activate NaClO to generate various free radical, which would enhance the oxidizing capacity of chlorination.202235500623
790930.9992Simultaneous efficient removal of tetracycline and mitigation of antibiotic resistance genes enrichment by a modified activated sludge process with static magnetic field. To address the increasing issue of antibiotic wastewater, this study applied a static magnetic field (SMF) to the activated sludge process to increase the efficiency of tetracycline (TC) removal from swine wastewater and to reveal its enhanced mechanisms. The results demonstrated that the SMF-modified activated sludge process could achieve almost complete TC removal at sludge loading rates of 0.3 mg TC/g MLSS/d. Analysis of zeta potential and extracellular polymeric substances composition of the activated sludge revealed that SMF increased electrostatic interactions between TC and activated sludge and made activated sludge has much more binding sites, finally resulting in the increased TC biosorption. Metagenomic analysis showed that SMF promoted the enrichment of ammonia-oxidizing bacteria, TC-degrading bacteria, and aromatic compounds-degrading bacteria; it also enhanced ammonia monooxygenase- and cytochrome P450-mediated TC metabolism while upregulating functional genes associated with oxidase, reductase, and dehydrogenase - all contributing to increased TC biodegradation. Additionally, SMF mitigated the enrichment and spread of antibiotic resistance genes (ARGs) by decreasing the abundance of potential hosts of ARGs and inhibiting the upregulation of genes encoding ABC transporters and putative transposase. Based on these findings, this study demonstrates that magnetic field is an enhancement strategy with great potential to relieve the harmful impacts of the growing antibiotic wastewater problem on human health and the ecosystem.202439038424
854140.9991Insights into the response of anammox process to oxytetracycline: Impacts of static magnetic field. The long-term effects of oxytetracycline (OTC) with a high concentration on the anaerobic ammonium oxidation (Anammox) process were evaluated, and the role of static magnetic field (SMF) was further explored. The stress of OTC at 50 mg/L had little effect on the nitrogen removal of anammox process at the first 16 days. With the continuous addition of OTC and the increase of nitrogen loading, the OTC inhibited the nitrogen removal and anammox activity severely. During the 32 days of recovery period without OTC addition, the nitrogen removal was further deteriorated, indicating the inhibition of OTC on anammox activity was irreversible and persistent. The application of SMF alleviated the inhibition of OTC on anammox to some extent, and the specific anammox activity was enhanced by 47.1% compared to the system without SMF during the OTC stress stage. Antibiotic efflux was the major resistance mechanism in the anammox process, and tetA, tetG and rpsJ were the main functional antibiotic resistance genes. The addition of OTC weakened the metabolic interactions between the anammox bacteria and the symbiotic bacteria involved in the metabolism of cofactors and secondary metabolites, leading to the poor anammox activity. The adaptability of microbes to the OTC stress was improved by the application of SMF, which can enhance the metabolic pathways related to bacterial growth and resistance to environmental stress.202337586490
791350.9991Response of the partial denitrification coupled with anaerobic ammonia oxidation system to disinfectant residues stress. The extensive use of disinfectants, especially NaClO, has resulted in chlorine disinfectant residues entering and impairing the biological treatment system. This study combined with long-term stress and transient shock of chlorine residues to comprehensively evaluate the variations of nitrogen removal performance, microbial community and antibiotic resistance genes composition in the PD/A system. The results showed that low concentration NaClO had no obvious harm to the system, but high concentration (>1 mg/L) NaClO would destroy the nitrogen removal performance of PD/A system. Interestingly, microorganisms in biofilm were more resistant to chlorine residues than that in sludge. Anaerobic ammonia oxidizing bacteria suffered more harm than denitrifying microorganisms, and chlorine residues mainly inhibited the process of converting N(2)H(4) to N(2) in anammox reaction. In addition, this study found that sludge showed a more significant increase in ARGs abundance and risk than biofilm. Moreover, risk assessments indicated that chlorine residues increased the risk of ARGs in PD/A systems.202540010223
791060.9991Tetracycline degradation by a mixed culture of halotolerant fungi-bacteria under static magnetic field: Mechanism and antibiotic resistance genes transfer. Efficient antibiotics removal lowers the transmission risk of antibiotic resistance genes (ARGs). However, low efficiency limits the application of biological methods for antibiotics removal. Herein, a mixed culture of halotolerant fungi-bacteria was used for treatment of saline wastewater containing tetracycline (TC). Furthermore, static magnetic field (SMF) was used to increase TC removal. The study examined the effectiveness of SMF in removing antibiotics from saline wastewater and the associated risk of ARGs transmission. The results demonstrated that the application of a 40 mT SMF significantly improved the TC removal efficiency by 37.09 %, compared to the control (SMF=0) The TC was mainly removed through biodegradation and adsorption. In biodegradation, SMF enhanced electron transport system activity, and activities of lignin-degrading enzymes which led to higher TC biodegradation. The activity of lactate dehydrogenase and malondialdehyde decreased, lowering the damage of microbial cell membranes by TC. During the adsorption process, higher generation of extracellular polymeric substances was observed under SMF, which caused an increase in TC removal via adsorption. Microbial community analysis revealed that SMF facilitated the enrichment of TC-degrading microorganisms. Under SMF, vertical gene transfer of ARGs increased, while horizontal gene transfer risk decreased due to a reduction in mobile genetic elements (intl1) abundance. This study demonstrates that SMF is a promising strategy for enhancing TC removal efficiency, providing a basis for improved antibiotic wastewater management.202540199074
790870.9991DNA-based stable isotope probing deciphered the active denitrifying bacteria and triclosan-degrading bacteria participating in granule-based partial denitrification process under triclosan pressure. Granule-based partial denitrification (PD) is a technology that can supply stable nitrite for applying anaerobic ammonia oxidation in wastewater treatment, and triclosan (TCS) is a frequently detected antibacterial agent in wastewater treatment plants, therefore it is possible that TCS could enter into wastewater that is treated using PD technology. However, the active microorganisms responsible for PD and TCS removing in granule-based PD system have not been clearly identified and it is currently not clear how TCS affects the PD process. In this study, the impacts of TCS on PD performance, PD microbial community, antibiotic resistance genes (ARGs), active PD bacteria and TCS-degrading bacteria in a granule-based PD system were investigated. 3 mg/L TCS had adverse influence on PD process, but PD system could recover gradually after inhibiting of 10 days. After a period of domestication, PD granular sludge could achieve 10.66% of TCS degradation efficiency and 43.62% of TCS adsorption efficiency. Microbes might increase their resistance to TCS by increasing the secretion of extracellular polymeric substances, and the secretion of protein might play a more pivotal role than the secretion of polysaccharides in resisting TCS. The short-term shock of TCS might cause the propagation of acrA-03, while the long-term operation of TCS could propagate fabK and intI1. DNA stable isotope probing assay indicated that Thauera was active PD bacteria and TCS-degrading bacteria in the granule-based PD system, and it could contribute to nitrite accumulation and TCS degradation, simultaneously.202234979468
791180.9991Biochar induced inhibitory effects on intracellular and extracellular antibiotic resistance genes in anaerobic digestion of swine manure. Distribution of intracellular (iARGs) and extracellular ARGs (eARGs) in manure anaerobic digestion (AD) process coupled with two types of biochar (BC and BP) were investigated. And the effects of biochar on the conjugation transfer of ARGs were explored by deciphering the interaction of biochar with bacterial stress responses, physiological metabolism and antibiotic resistances. Results showed that AD process could effectively remove all the detected eARGs with efficiency of 47.4-98.2%. The modified biochar (BP) with larger specific surface area (SSA) was propitious to decrease the absolute copy number of extracellular resistance genes. AD process could effectively remove iARGs by inhibiting the growth of host bacteria. The results of structural equation models (SEM) indicated that biochar put indirect influences on the fate of ARGs (λ = -0.23, P > 0.05). Analysis on oxidative stress levels, antioxidant capacity, DNA damage-induced response (SOS) response and energy generation process demonstrated that biochar induced the oxidative stress response of microorganisms and enhanced the antioxidant capacity of bacteria. The elevated antioxidant capacity negatively affected SOS response, amplified cell membrane damage and further weakened the energy generation process, resulted in the inhibition of horizontal transfer of ARGs.202235609652
791490.9991Response of partial nitrification sludge to the single and combined stress of CuO nanoparticles and sulfamethoxazole antibiotic on microbial activity, community and resistance genes. Considering the inevitable release of antibiotics and nanoparticles (NPs) into the nitrogen containing wastewater, the combined impact of CuO NPs and sulfamethoxazole (SMX) antibiotic on partial nitrification (PN) process was investigated in four identical reactors. Results showed that the bioactivity of the aerobic ammonia-oxidizing bacteria (AOB) decreased by half after they were exposed to the combination of CuO NPs and SMX for short-term; however, there was no obvious variation in the bioactivity of AOB when they were exposed to either CuO NPs or SMX. During long-term exposure, the ammonia removal efficiency (ARE) of CuO NPs improved whereas that of SMX decreased, while the combination of CuO NPs and SMX significantly decreased ARE from 62.9% (in control) to 38.2% and had an unsatisfactory self-recovery performance. The combination of CuO NPs and SMX significantly changed the composition of microbial community, decreased the abundance of AOB, and significantly suppressed PN process. Reegarding the resistance genes, the CuO NPs-SMX combination did not improve the expression of copA, cusA, sul1 and sul2; however, it significantly induced the expression of sul3 and sulA.202032050397
7902100.9991Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge: Both nitrifying bacteria and heterotrophic bacteria matter. Antibiotics can be biodegraded in activated sludge via co-metabolism and metabolism. In this study, we investigated the biodegradation pathways of sulfamethoxazole (SMX) and antibiotic resistant genes' (ARGs) fate in different autotrophic and heterotrophic microorganisms, by employing aerobic sludge, mixed sludge, and nitrifying sludge. A threshold concentration of SMX activating the degradation pathways in the initial stage of antibiotics degradation was found and proved in different activated sludge systems. Heterotrophic bacteria played an important role in SMX biodegradation. However, ammonia-oxidizing bacteria (AOB) had a faster metabolic rate, which was about 15 times higher than heterotrophic bacteria, contributing much to SMX removal via co-metabolism. As SMX concentration increases, the amoA gene and AOB relative abundance decreased in aerobic sludge due to the enrichment of functional heterotrophic bacteria, while it increased in nitrifying sludge. Microbial community analysis showed that functional bacteria which possess the capacity of SMX removal and antibiotic resistance were selected by SMX pressure. Potential ARGs hosts could increase their resistance to the biotoxicity of SMX and maintain system performance. These findings are of practical significance to guide antibiotic biodegradation and ARGs control in wastewater treatment plants.202234799165
7903110.9991Effects of zero-valent iron (ZVI) on nitrogen conversion, transformation of sulfamethoxazole (SMX) and abundance of antibiotic resistance genes (ARGs) in aerobic granular sludge process. Even after pre-treatment, livestock and poultry wastewater still contain high concentrations of ammonia and residual antibiotics. These could be removed economically using the aerobic granular sludge (AGS) process with zero-valent iron (ZVI). The interaction of antibiotics and nitrogen in this process needs to be clarified and controlled, however, to achieve good removal performance. Otherwise, antibiotics might generate transformation products (TPs) with higher toxicity and lead to the emergence of antibiotic-resistant bacteria carrying antibiotic resistance genes (ARGs), which could cause persistent toxicity and the risk of disease transmission to the ecological environment. This study investigated the impact of ZVI on AGS for nitrogen and sulfamethoxazole (SMX) removal. The results show that AGS could maintain good ammonia removal performance and that the existence of SMX had a negative impact on ammonia oxidation activities. ZVI contributed to an increase in the abundance of nitrite oxidation bacteria, denitrifying bacteria and the functional genes of nitrogen removal. This led to better total nitrogen removal and a decrease in N(2)O emission. Accompanied by biological nitrogen transformation, SMX could be transformed into 14 TPs through five pathways. ZVI has the potential to enhance transformation pathways with TPs of lower ecotoxicity, thereby reducing the acute and chronic toxicity of the effluent. Unfortunately, ZVI might enhance the abundance of sul1, sul2, and sul3 in AGS, which increases the risk of sulfonamide antibiotic resistance. In AGS, Opitutaceae, Xanthomonas, Spartobacteria and Mesorhizobium were potential hosts for ARGs. This study provides theoretical references for the interaction of typical antibiotics and nitrogen in the biological treatment process of wastewater and bioremediation of natural water bodies.202337832300
7937120.9991Effects of oxytetracycline on variation in intracellular and extracellular antibiotic resistance genes during swine manure composting. This research aimed to investigate the alterations in extracellular (eARGs) and intracellular (iARGs) antibiotic resistance genes in response to oxytetracycline (OTC), and unravel the dissemination mechanism of ARGs during composting. The findings revealed both low (L-OTC) and high contents (H-OTC) of OTC significantly enhanced absolute abundance (AA) of iARGs (p < 0.05), compared to CK (no OTC). Composting proved to be a proficient strategy for removing eARGs, while AA of eARGs was significantly enhanced in H-OTC (p < 0.05). OTC resulted in an increase in AA of mobile genetic elements (MGEs), ATP levels, antioxidant and DNA repair enzymes in bacteria in compost product. Structural equation model further demonstrated that OTC promoted bacterial DNA repair and antioxidant enzyme activities, altered bacterial community and enhanced MGEs abundance, thereby facilitating iARGs dissemination. This study highlights OTC can increase eARGs and iARGs abundance, underscoring the need for appropriate countermeasures to mitigate potential hazards.202438036151
7891130.9990Co-selective effect of dissolved organic matter and chlorine on the bacterial community and their antibiotic resistance in biofilm of drinking water distribution pipes. The proliferation of pathogenic bacteria and antibiotic resistance genes (ARGs) in the biofilm of drinking water distribution pipes poses a serious threat to human health. This work adopted 15 polyethylene (PE) pipes to study the co-selective effect of dissolved organic matter (DOM) and chlorine on the bacterial community and their antibiotic resistance in biofilm. The results indicated that ozone and granular activated carbon (O(3)-GAC) filtration effectively removed lignins and proteins from DOM, and chlorine disinfection eliminated carbohydrate and unsaturated hydrocarbons, which both contributed to the inhibition of bacterial growth and biofilm formation. After O(3)-GAC and disinfection treatment, Porphyrobacter, unclassified_d_bacteria, and Sphingopyxis dominated in the biofilm bacterial community. Correspondingly, the bacterial metabolism pathways, including the phosphotransferase system, phenylalanine, tyrosine and tryptophan biosynthesis, ABC transporters, and starch and sucrose metabolism, were downregulated significantly (p < 0.05), compared to the sand filtration treatment. Under such a situation, extracellular polymeric substances (EPS) secretion was inhibited in biofilm after O(3)-GAC and disinfection treatment, postponing the interaction between EPS protein and pipe surface, preventing bacteria, especially pathogens, from adhering to the pipe surface to form biofilm, and restraining the spread of ARGs. This study revealed the effects of various water filtration and disinfection processes on bacterial growth, metabolism, and biofilm formation on a molecular level, and validated that the O(3)-GAC filtration followed by chlorine disinfection is an effective and promising pathway to control the microbial risk of drinking water.202539490093
7888140.9990Microecology of aerobic denitrification system construction driven by cyclic stress of sulfamethoxazole. The construction of aerobic denitrification (AD) systems in an antibiotic-stressed environment is a serious challenge. This study investigated strategy of cyclic stress with concentration gradient (5-30 mg/L) of sulfamethoxazole (SMX) in a sequencing batch reactor (SBR), to achieve operation of AD. Total nitrogen removal efficiency of system increased from about 10 % to 95 %. Original response of abundant-rare genera to antibiotics was changed by SMX stress, particularly conditionally rare or abundant taxa (CRAT). AD process depends on synergistic effect of heterotrophic nitrifying aerobic denitrification bacteria (Paracoccus, Thauera, Hypomicrobium, etc). AmoABC, napA, and nirK were functionally co-expressed with multiple antibiotic resistance genes (ARGs) (acrR, ereAB, and mdtO), facilitating AD process. ARGs and TCA cycling synergistically enhance the antioxidant and electron transport capacities of AD process. Antibiotic efflux pump mechanism played an important role in operation of AD. The study provides strong support for regulating activated sludge to achieve in situ AD function.202438710419
8512150.9990Dissolved oxygen facilitates efficiency of chlorine disinfection for antibiotic resistance. Controlling the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is a global concern. While commonly used chlorine disinfectants can damage or even kill ARB, dissolved oxygen (DO) may affect the formation of reactive chlorine species. This leads to the hypothesis that DO may play roles in mediating the effectiveness of chlorine disinfection for antibiotic resistance. To this end, this study investigated the impacts of DO on the efficiency of chlorine disinfection for antibiotic resistance. The results revealed that DO could increase the inactivation efficiency of ARB under chloramine and free chlorine exposure at practically relevant concentrations. Reactive species induced by DO, including H(2)O(2), O(2)(-), and OH, inactivated ARB strains by triggering oxidative stress response and cell membrane damage. In addition, the removal efficiency of extracellular ARGs (i.e. tetA and bla(TEM)) was enhanced with increasing dosage of free chlorine or chloramine under aerobic conditions. DO facilitated the fragmentation of plasmids, contributing to the degradation of extracellular ARGs under exposure to chlorine disinfectants. The findings suggested that DO facilitates disinfection efficiency for antibiotic resistance in water treatment systems.202438750753
7894160.9990The fate and behavior mechanism of antibiotic resistance genes and microbial communities in flocs, aerobic granular and biofilm sludge under chloroxylenol pressure. Chloroxylenol (PCMX), an antibacterial agent, has been widely detected in water environment and has toxic effects on biology and ecology. During 270 d, the influence of PCMX on the performance of three nitrification systems was investigated, including floc-based sequencing batch reactor (FSBR), aerobic granule-based SBR (AGSBR) and biofilm SBR (BSBR). The nitrification capability of three systems was inhibited by PCMX, but recovered after domestication, and PCMX made three systems realize partial nitrification for 10, 100 and 35 days, respectively. The extracellular polymeric substances of three systems increased first and then decreased with the increment of PCMX. The granular structure of AGSBR may be conducive to the enrichment of antibiotic resistance genes (ARGs), and almost all ARGs of BSBR were reduced during the addition of 5.0 mg/L PCMX. The microbial community results showed that Rhodococcus as potential degrading bacteria was continuously enriched in three systems. Piscinibacter was regarded as the potential antibiotic resistant bacteria, which was positively associated with multiple ARGs in three systems. Additionally, quaternary ammonium compounds resistance genes had a variety of positive correlations with bacteria in three systems. This study provided a new perspective for the usage and treatment of PCMX.202235785744
7918170.9990Robustness of the partial nitrification-anammox system exposing to triclosan wastewater: Stress relieved by extracellular polymeric substances and resistance genes. The partial nitrification-anammox (PN/A) process is a promising method for the treatment of municipal wastewater. It is necessary to clarify the responses of PN/A system to antimicrobial agent triclosan (TCS) widely existed in the influent of wastewater treatment plants. In this study, it was found that PN/A system was robust to cope with 0.5 mg/L TCS. Specifically, the control reactor reached 80% total nitrogen removal efficiency (TNRE) on day 107, while the reactor feeding with 0.5 mg/L TCS reached the same TNRE on day 84. The results of the activity test, high-throughput sequencing and DNA-based stable isotope probing showed that 0.5 mg/L TCS did not impede the performance of ammonia oxidizing archaea, ammonia oxidizing bacteria (Nitrosomonas) and anammox bacteria (Candidatus Brocadia and Ca. Kuenenia), but significant inhibited the nitrite oxidizing bacteria (Nitrospira and Ca. Nitrotoga) and denitrifying bacteria. The influent TCS led to the increase of EPS content and enrichment of four resistance genes (RGs) (intI1, sul1, mexB, and tnpA), which might be two principal mechanisms by which PN/A can resist TCS. In addition, functional bacteria carrying multiple RGs also contributed to the maintenance of PN/A system function. These findings improved the understandings of antimicrobial effects on the PN/A system.202234954146
8044180.9990Effect of tetracycline on nitrogen removal in Moving Bed Biofilm Reactor (MBBR) System. The effect of tetracycline (TC) on nitrogen removal in wastewater treatment plants has become a new problem. This study investigated the effects of TC on nitrogen removal using a Moving Bed Biofilm Reactor system. The results showed that there was no significant effect on nitrogen removal performance when the concentration of TC was 5 mg/L, and that the total nitrogen (TN) removal efficiency could reach 75-77%. However, when the concentration of TC increased to 10 mg/L, the denitrification performance was affected and the TN removal efficiency decreased to 58%. The abundance of denitrifying bacteria such as those in the genus Thauera decreased, and TC-resistant bacteria gradually became dominant. At a TC concentration of 10 mg/L, there were also increases and decreases, respectively, in the abundance of resistance and denitrification functional genes. The inhibitory effect of TC on denitrification was achieved mainly by the inhibition of nitrite-reducing bacteria.202235007308
7901190.9990Responses of antibiotic resistance genes and microbial community in the microalgae-bacteria system under sulfadiazine: Mechanisms and implications. Microalgae-bacteria system is an emerging alternative for sustainable wastewater treatment. Exploring the structure and diversity of microbial community in microalgae-bacteria system under sulfadiazine stress can contribute to the understanding of the sulfadiazine behavior in environments. Furthermore, as important carriers of antibiotic resistance genes (ARGs), microalgae can influence the profiles of ARGs either directly or indirectly through the secretion of metabolites. However, the effects of sulfadiazine on ARGs dissemination of microalgae-bacteria systems remain underreported. Herein, the impacts of sulfadiazine (1 mg/L) on the structural diversity and metabolic activity of microorganisms were examined in microalgae-bacteria systems. Results showed that microalgae-bacteria system could remove NH(4)(+)-N better (about 72.3 %) than activated sludge system, and hydrolysis was the first step in sulfadiazine degradation. A high level of intI1 (5.7 × 10(4) copies/mL) was detected in the initial media of the microalgae-bacteria system. Microalgae could hamper the rate of horizontal gene transfer activation. Compared with activated sludge system, the abundance of sul genes (sul1, sul2, sul3, and sulA) was significantly lowered after treating with microalgae-bacteria system. Additionally, the number of proteins and the sum of polysaccharides in the extracellular polymeric substances of the activated sludge system were lower than those of the microalgae-bacteria system. Microalgae can alter microbial communities. The genus Rozellomycota predominated all samples. Fungi with relatively high abundance increased in the microalgae-bacteria system, including Dipodascaceae, Rhodotorula, and Geotrichum. These results offer valuable insights into the application processes involving microalgae-bacteria system.202540602895