Inactivation of sulfonamide antibiotic resistant bacteria and control of intracellular antibiotic resistance transmission risk by sulfide-modified nanoscale zero-valent iron. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
786601.0000Inactivation of sulfonamide antibiotic resistant bacteria and control of intracellular antibiotic resistance transmission risk by sulfide-modified nanoscale zero-valent iron. The inactivation of a gram-negative sulfonamide antibiotic resistant bacteria (ARB) HLS.6 and removal of intracellular antibiotic resistance gene (ARG, sul1) and class I integrase gene (intI1) by nanoscale zero-valent iron (nZVI) and sulfide-modified nZVI (S-nZVI) with different S/Fe molar ratios were investigated in this study. The S-nZVI with high sulfur content (S/Fe = 0.05, 0.1, 0.2) was superior to nZVI and the treatment effect was best when S/Fe was 0.1. The ARB (2 × 10(7) CFU/mL) could be completely inactivated by 1.12 g/L of S-nZVI (S/Fe = 0.1) within 15 min, and the removal rates of intracellular sul1 and intI1 reached up to 4.39 log and 4.67 log at 60 min, respectively. Quenching experiments and flow cytometry proved that reactive oxygen species and adsorption were involved in the ARB inactivation and target genes removal. Bacterial death and live staining experiments and transmission electron microscopy showed that the ARB cell structure and intracellular DNA were severely damaged after S-nZVI treatment. This study provided a potential alternative method for controlling the antibiotic resistance in aquatic environment.202032585519
786710.9999The removal of antibiotic resistant bacteria and antibiotic resistance genes by sulfidated nanoscale zero-valent iron activating periodate: Efficacy and mechanism. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have drawn much more attention due to their high risk on human health and ecosystem. In this study, the performance of sulfidated nanoscale zero-valent iron (S-nZVI)/periodate (PI) system toward ARB inactivation and ARGs removal was systematically investigated. The S-nZVI/PI system could realize the complete inactivation of 1 × 10(8) CFU/mL kanamycin, ampicillin, and tetracycline-resistant E. coli HB101 within 40 min, meanwhile, possessed the ability to remove the intracellular ARGs (iARGs) (including aphA, tetA, and tnpA) carried by E. coli HB101. Specifically, the removal of aphA, tetA, and tnpA by S-nZVI/PI system after 40 min reaction was 0.31, 0.47, and 0.39 log(10)copies/mL, respectively. The reactive species attributed to the E. coli HB101 inactivation were HO(•) and O(2)(•-), which could cause the destruction of E. coli HB101 morphology and enzyme system (such as superoxide dismutase and catalase), the loss of intracellular substances, and the damage of iARGs. Moreover, the influence of the dosage of PI and S-nZVI, the initial concentration of E. coli HB101, as well as the co-existing substance (such as HCO(3)(-), NO(3)(-), and humic acid (HA)) on the inactivation of E. coli HB101 and its corresponding iARGs removal was also conducted. It was found that the high dosage of PI and S-nZVI and the low concentration of E. coli HB101 could enhance the disinfection performance of S-nZVI/PI system. The presence of HCO(3)(-), NO(3)(-), and HA in S-nZVI/PI system showed inhibiting role on the inactivation of E. coli HB101 and its corresponding iARGs removal. Overall, this study demonstrates the superiority of S-nZVI/PI system toward ARB inactivation and ARGs removal.202337544470
782620.9998Synergistic effect of sulfidated nano zerovalent iron and persulfate on inactivating antibiotic resistant bacteria and antibiotic resistance genes. Antimicrobial resistance continues to be a rising global threat to public health. It is well recognized that wastewater treatment plants are reservoirs of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, traditional disinfection techniques are not effective to simultaneously remove ARB and ARGs, and the dynamic analysis of ARB inactivation have also been deficient. In this study, sulfidated nano zerovalent iron (S-nZVI) coupled with persulfate (PS) was applied to simultaneously remove both ARB (E. coli K-12 with RP4 plasmid) and ARGs (extra- and intracellular ARGs). S-nZVI/PS completely inactivated ARB (~7.8-log reduction) within 10 min and degraded all extracellular ARGs (~8.0-log reduction) within 5 min. These efficiencies were significantly higher (decay rate constant, k = 0.138 min(-1)) than those achieved individually (S-nZVI: k = 0.076 min(-1); PS: k = 0.008 min(-1)), implying a synergistic effect between S-nZVI and PS against ARB and ARGs. The efficient removal rate of ARB was also supported by confocal microscopy and microfluidics at a single-cell level. The complete inactivation of ARB by S-nZVI/PS was also demonstrated in real drinking water and real wastewater effluent that contained natural organic matter and suspended solids. Regrowth assays showed that the treated ARB was not observed after 72 h or longer incubation, suggesting that ARB was permanently inactivated by radicals such as SO(4)(•-) and •OH. The destruction of bacterial cells compromised the removal efficiency of the intracellular ARGs, with only ~4.0-log reduction after 60 min treatment by S-nZVI/PS. Collectively, our results suggest the feasibility of S-nZVI coupled with PS for simultaneous ARB and ARGs removal in real water matrices.202133895590
782430.9998H(2)O(2) and/or TiO(2) photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes. Inactivating antibiotic resistant bacteria (ARB) and removing antibiotic resistance genes (ARGs) are very important to prevent their spread into the environment. Previous efforts have been taken to eliminate ARB and ARGs from aqueous solution and sludges, however, few satisfying results have been obtained. This study investigated whether photocatalysis by TiO(2) was able to reduce the two ARGs, mecA and ampC, within the host ARB, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, respectively. The addition of H(2)O(2) and matrix effect on the removal of ARB and ARGs were also studied. TiO(2) thin films showed great effect on both ARB inactivation and ARGs removal. Approximately 4.5-5.0 and 5.5-5.8 log ARB reductions were achieved by TiO(2) under 6 and 12mJ/cm(2) UV(254) fluence dose, respectively. For ARGs, 5.8 log mecA reduction and 4.7 log ampC reduction were achieved under 120mJ/cm(2) UV(254) fluence dose in the presence of TiO(2). Increasing dosage of H(2)O(2) enhanced the removal efficiencies of ARB and ARGs. The results also demonstrated that photocatalysis by TiO(2) was capable of removing both intracellular and extracellular forms of ARGs. This study provided a potential alternative method for the removal of ARB and ARGs from aqueous solution.201727776873
786340.9998Mechanisms on the removal of gram-negative/positive antibiotic resistant bacteria and inhibition of horizontal gene transfer by ferrate coupled with peroxydisulfate or peroxymonosulfate. The existence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has been a global public environment and health issue. Due to the different cell structures, gram-positive/negative ARB exhibit various inactivation mechanisms in water disinfection. In this study, a gram-negative ARB Escherichia coli DH5α (E. coli DH5α) was used as a horizontal gene transfer (HGT) donor, while a gram-positive ARB Bacillus as a recipient. To develop an efficient and engineering applicable method in water disinfection, ARB and ARGs removal efficiency of Fe(VI) coupled peroxydisulfate (PDS) or peroxymonosulfate (PMS) was compared, wherein hydroxylamine (HA) was added as a reducing agent. The results indicated that Fe(VI)/PMS/HA showed higher disinfection efficiency than Fe(VI)/PDS/HA. When the concentration of each Fe(VI), PMS, HA was 0.48 mM, 5.15 log E. coli DH5α and 3.57 log Bacillus lost cultivability, while the proportion of recovered cells was 0.0017 % and 0.0566 %, respectively, and HGT was blocked. Intracellular tetA was reduced by 2.49 log. Fe(IV) and/or Fe(V) were proved to be the decisive reactive species. Due to the superiority of low cost as well as high efficiency and practicality, Fe(VI)/PMS/HA has significant application potential in ARB, ARGs removal and HGT inhibition, offering a new insight for wastewater treatment.202438615644
780750.9998Copper oxide/peroxydisulfate system for urban wastewater disinfection: Performances, reactive species, and antibiotic resistance genes removal. In this study, copper oxide (CuO) catalyzed peroxydisulfate (PDS) system was investigated for the inactivation of a broad range of pathogenic microorganisms from urban wastewater. Complete inactivation of Escherichia coli, Enterococcus, F-specific RNA bacteriophages from secondary treated wastewater was achieved after a short time (15-30 min) treatment with CuO (10 g/L)/PDS (1 mM) system, but spores of sulfite-reducing bacteria took 120 min. No bacterial regrowth occurred during storage after treatment. Significant reduction of the pathogens was explained by the generation of the highly selective Cu(III) oxidant, as the predominant reactive species, which could quickly oxidize guanine through a one-electron oxidation pathway. Additionally, the potential of the CuO (10 g/L)/PDS (1 mM) system to inactivate antibiotic-resistant bacteria and antibiotic resistance genes (ARB&Gs) was explored. Sulfamethoxazole-resistant E. coli was used as the model ARB and a 3.2 log of reduction was observed after 10 min of treatment. A considerable reduction (0.7-2.3 log) of selected ARGs including blaTEM, qnrS, emrB, sul1, and genes related to the dissemination of antibiotic resistance, including the Class 1 integron-integrase (intI1), and the insertion sequence (IS613) was achieved after 60 min treatment. All these findings indicated the promising applicability of the CuO/PDS system as a disinfection technology for wastewater reuse in agriculture.202234648831
782560.9997Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes. This study compared three different disinfection processes (chlorination, E-beam, and ozone) and the efficacy of three oxidants (H2O2, S2O(-)8, and peroxymonosulfate (MPS)) in removing antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in a synthetic wastewater. More than 30 mg/L of chlorine was needed to remove over 90% of ARB and ARG. For the E-beam method, only 1 dose (kGy) was needed to remove ARB and ARG, and ozone could reduce ARB and ARG by more than 90% even at 3 mg/L ozone concentration. In the ozone process, CT values (concentration × time) were compared for ozone alone and combined with different catalysts based on the 2-log removal of ARB and ARG. Ozone treatment yielded a value of 31 and 33 (mg·min)/L for ARB and ARGs respectively. On the other hand, ozone with persulfate yielded 15.9 and 18.5 (mg·min)/L while ozone with monopersulfate yielded a value of 12 and 14.5 (mg·min)/L. This implies that the addition of these catalysts significantly reduces the contact time to achieve a 2-log removal, thus enhancing the process in terms of its kinetics.201425079831
784070.9997Ferrate(VI) promotes inactivation of antibiotic-resistant bacteria and chlorine-resistant bacteria in water. The increasing problem of antibiotic resistance has garnered significant global attention. As a novel water treatment agent with strong oxidizing, disinfecting, and bactericidal properties, ferrate(VI) holds promise for inactivating antibiotic-resistant bacteria (ARB) and chlorine-resistant bacteria. The results showed that complete inactivation of ARB (10⁵ CFU/mL) was achieved when the ferrate(VI) concentration was 10 μM and the treatment duration was 5 min. For higher concentrations of ARB (10(8) CFU/mL), it was also possible to reduce the concentration by 1.73 log units. The concentration of Acinetobacter baylyi ADP1 was also reduced by 1.77 log units. Additionally, the absolute abundance of antibiotic resistance genes (ARGs), including aphA, bla(TEM), and tetA, was significantly reduced. Ferrate(VI) was rapidly consumed in the early stages of treatment, undergoing a stepwise reduction process that generated high-valent Fe intermediates and reactive oxygen species (ROS), both of which contributed to bacterial inactivation. Throughout the reaction, •O(2)(-) played a dominant role in bacterial inactivation, with H₂O₂ acting synergistically and •OH contributing at later stages, leading to ROS overload, severe cellular damage, and enhanced membrane disruption. This study confirmed that ferrate(VI) could effectively inactivate ARB and chlorine-tolerant bacteria, and reduce the abundances of ARGs.202540245720
784680.9997Removal of antibiotic resistance genes and inactivation of antibiotic-resistant bacteria by oxidative treatments. The persistence of antibiotics in the environment because of human activities, such as seafood cultivation, has attracted great attention as they can give rise to antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). In this study, we explored the inactivation and removal efficiencies of Escherichia coli SR1 and sul1 (plasmid-encoded ARGs), respectively, in their extracellular and intracellular forms (eARGs and iARGs) by three commonly used fishery oxidants, namely chlorine, bromine, and potassium permanganate (KMnO(4)), at the practical effective concentration range (0.5, 5, and 15 mg/L). Kinetics data were obtained using laboratory phosphate-buffered saline (PBS). Following the same fishery oxidation methods, the determined kinetics models were tested by studying the SR1 and sul1 disinfection efficiencies in (sterilized) pond water matrix. At concentrations of 5 and 15 mg/L, all three oxidants achieved sufficient cumulative integrated exposure (CT values) to completely inactivate SR1 and efficiently remove sul1 (up to 4.0-log). The oxidation methods were then applied to an unsterilized pond water matrix in order to study and evaluate the indigenous ARB and ARGs disinfection efficiencies in aquaculture, which reached 1.4-log and 1.0-log during treatment with fishery oxidants used in pond preparation at high concentrations before stocking (5-15 mg/L), respectively. A high chlorine concentration (15 mg/L) could efficiently remove ARGs (or iARGs) from pond water, and the iARG removal efficiency was higher than that of eARGs in pond water. The method and results of this study could aid in guiding future research and practical disinfection to control the spread of ARGs and ARB in aquaculture.202134030387
786590.9997Inactivation of antibiotic resistant bacteria by Fe(3)O(4) @MoS(2) activated persulfate and control of antibiotic resistance dissemination risk. Antibiotic resistance poses a global environmental challenge that jeopardizes human health and ecosystem stability. Antibiotic resistant bacteria (ARB) significantly promote the spreading and diffusion of antibiotic resistance. This study investigated the efficiency and mechanism of inactivating tetracycline-resistant Escherichia coli (TR E. coli) using Fe(3)O(4) @MoS(2) activated persulfate (Fe(3)O(4) @MoS(2)/PS). Under optimized conditions (200 mg/L Fe(3)O(4) @MoS(2), 4 mM PS, 35 °C), TR E. coli (∼7.5 log CFU/mL) could be fully inactivated within 20 min. The primary reactive oxygen species (ROS) responsible for TR E. coli inactivation in the Fe(3)O(4) @MoS(2)/PS system were hydroxyl radicals (•OH) and superoxide radicals (•O(2)(-)). Remarkably, the efflux pump protein was targeted and damaged by the generated ROS during the inactivation process, resulting in cell membrane rupture and efflux of cell content. Additionally, the horizontal transmission ability of residual antibiotic resistance genes (ARGs) harboring in the TR E. coli was also reduced after the inactivation treatment. This study offers an efficient approach for TR E. coli inactivation and substantial mitigation of antibiotic resistance dissemination risk.202438286046
7862100.9997Synergistic effect of sulfidated nanoscale zerovalent iron in donor and recipient bacterial inactivation and gene conjugative transfer inhibition. Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) are widespread in urban wastewater treatment plants (UWTPs). In this research, a horizontal transfer model of recipient (Pseudomonas. HLS-6) and donor (Escherichia coli DH5α carries RP4 plasmid) was constructed to explore the effect of sulfidated nanoscale zerovalent iron (S-nZVI) on the efficiency of plasmid-mediated horizontal transfer. When the S/Fe was 0.1, the inactivation efficiency of 1120 mg/L S-nZVI on the donor and recipient bacteria were 2.36 ± 0.03 log and 3.50 ± 0.17 log after 30 min, respectively (initial ARB concentration ≈ 5 ×10(7) CFU/mL). Effects of treatment time, S/Fe molar ratio, S-nZVI dosage and initial bacterial concentration were systemically studied. S-nZVI treatment could increase the extracellular alkaline phosphatase and malondialdehyde content of the ARB, cause oxidative stress in the bacteria, destroy the cell structure and damage the intracellular DNA. This study provided evidence and insights into possible underlying mechanisms for reducing conjugative transfer, such as hindering cell membrane repair, inducing the overproduction of reactive oxygen species, inhibiting the SOS response, reducing the expression of ARGs and related transfer genes. S-nZVI could inhibit the gene conjugative transfer while inactivating the ARB. The findings provided an alternative method for controlling antibiotic resistance.202235334272
7788110.9997Inactivation of antibiotic resistant Escherichia coli and degradation of its resistance genes by glow discharge plasma in an aqueous solution. Emerging contaminants such as antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are becoming a global environmental problem. In this study, the glow discharge plasma (GDP) was applied for degrading antibiotic resistant Escherichia coli (E. coli) with resistance genes (tetA, tetR, aphA) and transposase gene (tnpA) in 0.9% sterile saline. The results showed that GDP was able to inactivate the antibiotic resistant E. coli and remove the ARGs and reduce the risk of gene transfer. The levels of E. coli determined by 16S rRNA decreased by approximately 4.7 logs with 15 min of discharge treatment. Propidium monoazide - quantitative polymerase chain reaction (PMA-qPCR) tests demonstrated that the cellular structure of 4.8 more logs E. coli was destroyed in 15 min. The reduction of tetA, tetR, aphA, tnpA genes was increased to 5.8, 5.4, 5.3 and 5.5 logs with 30 min discharge treatment, respectively. The removal of ARGs from high salinity wastewater was also investigated. The total abundance of ARGs was reduced by 3.9 logs in 30 min. Scavenging tests indicated that hydroxyl radicals (·OH) was the most probable agents for bacteria inactivation and ARGs degradation. In addition, the active chlorine (Cl· and Cl(2)) which formed during the discharge may also contribute to the inactivation and degradation.202032229364
7827120.9997Inactivation of antibiotic-resistant bacteria and antibiotic resistance genes by electrochemical oxidation/electro-Fenton process. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment are of great concern due to their potential risk to human health. The effluents from wastewater treatment plants and livestock production are major sources of ARB and ARGs. Chlorination, UV irradiation, and ozone disinfection cannot remove ARGs completely. In this study, the potential of electrochemical oxidation and electro-Fenton processes as alternative treatment technologies for inactivation of ARB and ARGs in both intracellular and extracellular forms was evaluated. Results showed that the electrochemical oxidation process was effective for the inactivation of selected ARB but not for the removal of intracellular ARGs or extracellular ARGs. The electro-Fenton process was more effective for the removal of both intracellular and extracellular ARGs. The removal efficiency after 120 min of electro-Fenton treatment under 21.42 mA/cm(2) was 3.8 logs for intracellular tetA, 4.1 logs for intracellular ampC, 5.2 logs for extracellular tetA, and 4.8 logs for extracellular ampC, respectively in the presence of 1.0 mmol/L Fe(2+). It is suggested that electrochemical oxidation is an effective disinfection method for ARB and the electro-Fenton process is a promising technology for the removal of both intracellular and extracellular ARGs in wastewater.202032701499
7844130.9997Insight into using a novel ultraviolet/peracetic acid combination disinfection process to simultaneously remove antibiotics and antibiotic resistance genes in wastewater: Mechanism and comparison with conventional processes. In this study, the simultaneous removal mechanism of antibiotics and antibiotic resistance genes (ARGs) was investigated using the novel ultraviolet/peracetic acid (UV/PAA) combination disinfection process and conventional disinfection processes were also applied for comparison. The results showed that UV/PAA disinfection with a high UV dosage (UV/PAA-H) was most effective for the removal of tetracyclines, quinolones, macrolides and β-lactams; their average removal efficiencies ranged from 25.7% to 100%, while NaClO disinfection was effective for the removal of sulfonamides (∼81.6%). The majority of ARGs were well removed after the UV/PAA-H disinfection, while specific genes including tetB, tetC, ermA and bla(TEM) significantly increased after NaClO disinfection. In addition, β-lactam resistance genes (-35.9%) and macrolides resistance genes (-12.0%) remarkably augmented after UV/NaClO disinfection. The highly reactive oxidation species generated from UV/PAA process including hydroxyl radicals (•OH) and carbon-centered organic radicals (R-C•), were responsible for the elimination of antibiotics and ARGs. Correlation analysis showed that tetracycline, sulfonamide and macrolide antibiotics removal showed a positive correlation with the corresponding ARGs, and a low dose of antibiotic residues played an important role in the distribution of ARGs. Metagenomic sequencing analysis showed that UV/PAA disinfection could not only greatly decrease the abundance of resistant bacteria but also downregulate the expression of key functional genes involved in ARGs propagation and inhibit the signal transduction of the host bacteria, underlying that its removal mechanism was quite different from that of NaClO-based disinfection processes. Our study provides valuable information for understanding the simultaneous removal mechanism of antibiotics and ARGs in wastewater during the disinfection processes, especially for the novel UV/PAA combination process.202234982977
7847140.9997Inactivation and change of tetracycline-resistant Escherichia coli in secondary effluent by visible light-driven photocatalytic process using Ag/AgBr/g-C(3)N(4). Control of antibiotic-resistant bacteria (ARB) and their related genes in secondary effluents has become a serious issue because of increased awareness of their health risks. A considerable number of techniques have been developed in recent years, particularly in relation to advanced oxidation. However, limited information is known about cellular behavior and resistance characteristic change during photocatalytic treatment. In this study, the inactivation of tetracycline (TC)-resistant Escherichia coli (TC-E. coli), removal of TC-resistant genes (TC-RGs), and antibiotic susceptibility were evaluated by employing photocatalytic treatment using Ag/AgBr/g-C(3)N(4) with visible light irradiation. The effects of light intensity, photocatalyst dosage, and reaction ambient temperature on photocatalysis were modelled and investigated. The rate of TC-E. coli removal was also optimized. Results demonstrated that the optimal conditions for TC-E. coli removal included light intensity of 96.0 mW/cm(2), photocatalyst dosage of 211.0 mg/L, and reaction ambient temperature of 23.7 °C. Under such conditions, the ARB removal rate was 6.1 log after 90 min and the related TC-RG removal rates were 49%, 86%, 69%, and 86% for tetA, tetM, tetQ, and intl1, respectively. The minimum inhibitory concentration test after photocatalysis shows that the antibiotic resistance of TC-E. coli was enhanced, which may be mainly due to the changes in the membrane potential and resulted in difficulty in destroying the bacteria through antibiotic contact. Hence, photocatalytic treatment could be an ideal method for ARB and antibiotic-resistant gene (ARG) control in wastewater, but the health risks of the remaining ARB and ARG should be investigated further.202031841919
7861150.9997The removal of antibiotic resistant bacteria and genes and inhibition of the horizontal gene transfer by contrastive research on sulfidated nanoscale zerovalent iron activating peroxymonosulfate or peroxydisulfate. Antibiotic resistant bacteria (ARB) and the antibiotic resistance genes (ARGs) dissemination via plasmid-mediated conjugation have attracted considerable attentions. In this research, sulfidated nanoscale zerovalent iron (S-nZVI)/peroxymonosulfate (PMS) and S-nZVI/peroxydisulfate (PDS) process were investigated to inactivate ARB (Escherichia coli DH5α with RP4 plasmid, Pseudomonas. HLS-6 contains sul1 and intI1 on genome DNA sequence). S-nZVI/PMS system showed higher efficiency than S-nZVI/PDS on ARB inactivation. Thus, the optimal condition 28 mg/L S-nZVI coupled with 153.7 mg/L (0.5 mM) PMS was applied to remove both intracellular ARGs (iARGs) and ARB. The oxidative damage of ARB cell was systemically studied by cell viability, intracellular Mg(2+) levels, the changes of extracellular and internal structure, integrity of cell walls and membranes and enzymatic activities. S-nZVI/PMS effectively inactivated ARB (~7.32 log) within 15 min. These effects were greatly higher than those achieved individually. Moreover, removal efficiencies of iARGs sul1, intI1 and tetA were 1.52, 1.79 and 1.56 log, respectively. These results revealed that S-nZVI and PMS have a synergistic effect against ARB and iARGs. The regrowth assays illustrated that the ARB were effectively inactivated. By verifying the inhibitory impacts of S-nZVI/PMS treatment on conjugation transfer, this work highlights a promising alternative technique for inhibiting the horizontal gene transfer.202234482079
7808160.9996Visible light-driven C/O-g-C(3)N(4) activating peroxydisulfate to effectively inactivate antibiotic resistant bacteria and inhibit the transformation of antibiotic resistance genes: Insights on the mechanism. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) dissemination within water pose a serious threat to public health. Herein, C and O dual-doped g-C(3)N(4) (C/O-g-C(3)N(4)) photocatalyst, fabricated via calcination treatment, was utilized to activate peroxydisulfate (PDS) to investigate the disinfection effect on tetracycline-resistant Escherichia coli and the transformation frequency of ARGs. As a result, approximately 7.08 log E. coli were inactivated, and 72.36 % and 53.96 % of antibiotics resistance gene (tetB) and 16 S rRNA were degraded respectively within 80 min. Futhermore, the transformation frequency was reduced to 0.8. Characterization and theoretical results indicated that C and O doping in g-C(3)N(4) might lead to the electronic structure modulation and band gap energy reduction, resulting in the production of more free radicals. The mechanism analysis revealed that C/O-g-C(3)N(4) exhibited a lower adsorption energy and reaction energy barrier for PDS compared to g-C(3)N(4). This was beneficial for the homolysis of O-O bonds, forming SO(4)(•-) radicals. The attack of the generated active species led to oxidative stress in cells, resulting in damage to the electron transport chain and inhibition of ATP production. Our findings disclose a valuable insight for inactivating ARB, and provide a prospective strategy for ARGs dissemination in water contamination.202437976858
8043170.9996Effect of tetracycline on bio-electrochemically assisted anaerobic methanogenic systems: Process performance, microbial community structure, and functional genes. Bio-electrochemically assisted anaerobic methanogenic systems (An-BES) are highly effective in wastewater treatment for methane production and degradation of toxic compounds. However, information on the treatment of antibiotic-bearing wastewater in An-BES is still very limited. This study therefore investigated the effect of tetracycline (TC) on the performance, microbial community, as well as functional and antibiotic resistance genes of An-BES. TC at 1 and 5 mg/L inhibited methane production by less than 4.8% compared to the TC-free control. At 10 mg/L TC, application of 0.5 and 1.0 V decreased methane production by 14 and 9.6%, respectively. Under the effect of 1-10 mg/L TC, application of 1.0 V resulted in a decrease of current from 42.3 to 2.8 mA. TC was mainly removed by adsorption; its removal extent increased by 19.5 and 32.9% with application of 0.5 and 1.0 V, respectively. At 1.0 V, current output was not recovered with the addition of granular activated carbon, which completely removed TC by adsorption. Metagenomic analysis showed that propionate oxidizing bacteria and methanogens were more abundant in electrode biofilms than in suspended culture. Antibiotic resistance genes (ARGs) were less abundant in biofilms than in suspended culture, regardless of whether voltage was applied or not. Application of 1.0 V resulted in the enrichment of Geobacter in the anode and Methanobacterium in the cathode. TC inhibited exoelectrogens, propionate oxidizing bacteria, and the methylmalonyl CoA pathway, leading to a decrease of current output, COD consumption, and methane production. These findings deepen our understanding of the inhibitory effect of TC in An-BES towards efficient bioenergy recovery from antibiotic-bearing wastewater, as well as the response of functional microorganisms to TC in such systems.202235533856
8042180.9996Algal-bacterial consortium mediated system offers effective removal of nitrogen nutrients and antibiotic resistance genes. The sulfonamide antibiotic resistance genes (ARGs) especially sul1 was identified as the dominant in eutrophic water. The performance of Chlorella vulgaris-B. licheniformis consortium toward sul1 removal, total nitrogen (TN) removal, and the mechanism of sul1 removal was investigated. The removal efficiency of exogenous ARGs plasmids carrying sul1 reached (97.2 ± 2.3)%. The TN removal rate reached (98.5 ± 1.2)%. The enhancements of carbon metabolism, nitrogen metabolism, aminoacyl-tRNA biosynthesis, and glycoproteins had significant influences on sul1 and TN removals, under the premise of normal growth of algae and bacteria. The quantitative polymerase chain reaction (qPCR) results suggested that the absolute abundances of sul1 were low in algal-bacterial systems (0 gene copies/mL) compared with individual systems ((1 × 10(6) ± 15) gene copies/mL). The duplication of sul1 was inhibited in algal cells and bacterial cells. The algal-bacterial consortium seems to be a promising technology for wastewater treatment with a potential to overcome the eutrophication and ARGs challenges.202236049708
7795190.9996Factors influencing the removal of antibiotic-resistant bacteria and antibiotic resistance genes by the electrokinetic treatment. The performance of the electrokinetic remediation process on the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) was evaluated with different influencing factors. With chlortetracycline (CTC), oxytetracycline (OTC), and tetracycline (TC) as template chemicals, the removal of both ARB and ARGs was enhanced with the increase of voltage gradient (0.4-1.2 V cm(-1)) and prolonged reaction time (3-14 d). The greatest removal (26.01-31.48% for ARB, 37.93-83.10% for ARGs) was obtained applying a voltage of 1.2 V cm(-1), leading to the highest electrical consumption. The effect of polarity reversal intervals on the inactivation ratio of ARB followed the order of 0 h (66.06-80.00%) > 12 h (17.07-24.75%) > 24 h (10.44-13.93%). Lower pH, higher current density, and more evenly-distributed voltage drop was observed with a polarity reversal interval of 12 h compared with that of 24 h, leading to more efficient electrochemical reactions in soil. Compared with sul genes, tet genes were more vulnerable to be attacked in an electric field. It was mainly attributed to the lower abundance of tet genes (except tetM) and the varied effects of electrokinetic remediation process on different ARGs. Moreover, a relatively less removal ratio of tetC and tetG was obtained mainly due to the mechanism of the efflux pump upregulation. Both tet and sul genes were positively correlated with TC-resistant bacteria. The efflux pump genes like tetG and the cellular protection genes like tetM showed different correlations with ARB. This study enhances the current understanding on the removal strategies of ARB and ARGs, and it provides important parameters for their destruction by the electrokinetic treatment.201829807293