# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7844 | 0 | 1.0000 | Insight into using a novel ultraviolet/peracetic acid combination disinfection process to simultaneously remove antibiotics and antibiotic resistance genes in wastewater: Mechanism and comparison with conventional processes. In this study, the simultaneous removal mechanism of antibiotics and antibiotic resistance genes (ARGs) was investigated using the novel ultraviolet/peracetic acid (UV/PAA) combination disinfection process and conventional disinfection processes were also applied for comparison. The results showed that UV/PAA disinfection with a high UV dosage (UV/PAA-H) was most effective for the removal of tetracyclines, quinolones, macrolides and β-lactams; their average removal efficiencies ranged from 25.7% to 100%, while NaClO disinfection was effective for the removal of sulfonamides (∼81.6%). The majority of ARGs were well removed after the UV/PAA-H disinfection, while specific genes including tetB, tetC, ermA and bla(TEM) significantly increased after NaClO disinfection. In addition, β-lactam resistance genes (-35.9%) and macrolides resistance genes (-12.0%) remarkably augmented after UV/NaClO disinfection. The highly reactive oxidation species generated from UV/PAA process including hydroxyl radicals (•OH) and carbon-centered organic radicals (R-C•), were responsible for the elimination of antibiotics and ARGs. Correlation analysis showed that tetracycline, sulfonamide and macrolide antibiotics removal showed a positive correlation with the corresponding ARGs, and a low dose of antibiotic residues played an important role in the distribution of ARGs. Metagenomic sequencing analysis showed that UV/PAA disinfection could not only greatly decrease the abundance of resistant bacteria but also downregulate the expression of key functional genes involved in ARGs propagation and inhibit the signal transduction of the host bacteria, underlying that its removal mechanism was quite different from that of NaClO-based disinfection processes. Our study provides valuable information for understanding the simultaneous removal mechanism of antibiotics and ARGs in wastewater during the disinfection processes, especially for the novel UV/PAA combination process. | 2022 | 34982977 |
| 7845 | 1 | 0.9999 | Mechanism and potential risk of antibiotic resistant bacteria carrying last resort antibiotic resistance genes under electrochemical treatment. The significant rise in the number of antibiotic resistance genes (ARGs) that resulted from our abuse of antibiotics could do severe harm to public health as well as to the environment. We investigated removal efficiency and removal mechanism of electrochemical (EC) treatment based on 6 different bacteria isolated from hospital wastewater carrying 3 last resort ARGs including NDM-1, mcr-1 and tetX respectively. We found that the removal efficiency of ARGs increased with the increase of both voltage and electrolysis time while the maximum removal efficiency can reach 90%. The optimal treatment voltage and treatment time were 3 V and 120 min, respectively. Temperature, pH and other factors had little influence on the EC treatment process. The mechanism of EC treatment was explored from the macroscopic and microscopic levels by scanning electron microscopy (SEM) and flow cytometry. Our results showed that EC treatment significantly changed the permeability of cell membrane and caused cells successively experience early cell apoptosis, late cell apoptosis and cell necrosis. Moreover, compared with traditional disinfection methods, EC treatment had less potential risks. The conjugative transfer frequencies of cells were significantly reduced after treatment. Less than 1% of bacteria entered the viable but nonculturable (VBNC) state and less than 5% of intracellular ARGs (iARGs) turned into extracellular ARGs (eARGs). Our findings provide new insights into as well as important reference for future electrochemical treatment in removing ARB from hospital wastewater. | 2022 | 35085630 |
| 7843 | 2 | 0.9999 | Inactivation of chlorine-resistant bacteria (CRB) via various disinfection methods: Resistance mechanism and relation with carbon source metabolism. With the widespread use of chlorine disinfection, chlorine-resistant bacteria (CRB) in water treatment systems have gained public attention. Bacterial chlorine resistance has been found positively correlated with extracellular polymeric substance (EPS) secretion. In this study, we selected the most suitable CRB controlling method against eight bacterial strains with different chlorine resistance among chloramine, ozone, and ultraviolet (UV) disinfection, analyzed the resistance mechanisms, clarified the contribution of EPS to disinfection resistance, and explored the role of carbon source metabolism capacity. Among all the disinfectants, UV disinfection showed the highest disinfection capacity by achieving the highest average and median log inactivation rates for the tested strains. For Bacillus cereus CR19, the strain with the highest chlorine resistance, 40 mJ/cm(2) UV showed a 1.90 log inactivation, which was much higher than that of 2 mg-Cl(2)/L chlorine (0.67 log), 2 mg-Cl(2)/L chloramine (1.68 log), and 2 mg/L ozone (0.19 log). Meanwhile, the UV resistance of the bacteria did not correlate with EPS secretion. These characteristics render UV irradiation the best CRB controlling disinfection method. Chloramine was found to have a generally high inactivation efficiency for bacteria with high chlorine-resistance, but a low inactivation efficiency for low chlorine-resistant ones. Although EPS consumed up to 56.7% of chloramine which an intact bacterial cell consumed, EPS secretion could not explain chloramine resistance. Thus, chloramine is an acceptable CRB control method. Similar to chlorine, ozone generally selected high EPS-secreting bacteria, with EPS consuming up to 100% ozone. Therefore, ozone is not an appropriate method for controlling CRB with high EPS secretion. EPS played an important role in all types of disinfection resistance, and can be considered the main mechanism for bacterial chlorine and ozone disinfection resistance. However, as EPS was not the main resistance mechanism in UV and chloramine disinfection, CRB with high EPS secretion were inactivated more effectively. Furthermore, carbon source metabolism was found related to the multiple resistance of bacteria. Those with low carbon source metabolism capacity tended to have higher multiple resistance, especially to chlorine, ozone, and UV light. Distinctively, among the tested gram-negative bacteria, in contrast to other disinfectants, chloramine resistance was negatively correlated with EPS secretion and positively correlated with carbon source metabolism capacity, suggesting a special disinfection mechanism. | 2023 | 37659185 |
| 7841 | 3 | 0.9999 | Simultaneous removal of antibiotics and antibiotic resistance genes in wastewater by a novel nonthermal plasma/peracetic acid combination system: Synergistic performance and mechanism. In this study, a novel and green method combining plasma with peracetic acid (plasma/PAA) was developed to simultaneously remove antibiotics and antibiotic resistance genes (ARGs) in wastewater, which achieves significant synergistic effects in the removal efficiencies and energy yield. At a plasma current of 2.6 A and PAA dosage of 10 mg/L, the removal efficiencies of most detected antibiotics in real wastewater exceeded 90 % in 2 min, with the ARG removal efficiencies ranging from 6.3 % to 75.2 %. The synergistic effects of plasma and PAA could be associated with the motivated production of reactive species (including •OH, •CH(3), (1)O(2), ONOO(-), •O(2)(-) and NO•), which decomposed antibiotics, killed host bacteria, and inhibited ARG conjugative transfer. In addition, plasma/PAA also changed the contributions and abundances of ARG host bacteria and downregulated the corresponding genes of two-component regulatory systems, thus reducing ARG propagation. Moreover, the weak correlations between the removal of antibiotics and ARGs highlights the commendable performance of plasma/PAA in the simultaneous removal of antibiotics and ARGs. Therefore, this study affords an innovative and effective avenue to remove antibiotics and ARGs, which relies on the synergistic mechanisms of plasma and PAA and the simultaneous removal mechanisms of antibiotics and ARGs in wastewater. | 2023 | 37027926 |
| 8501 | 4 | 0.9998 | Mechanistic insight of simultaneous removal of tetracycline and its related antibiotic resistance bacteria and genes by ferrate(VI). The emergence of antibiotics and their corresponding antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have posed great challenges to the public health. The paper demonstrates the removal of co-existing tetracycline (TC), its resistant Escherichia coli (E. coli), and ARGs (tetA and tetR) in a mixed system by applying ferrate(VI) (Fe(VI)O(4)(2-), Fe(VI)) at pH 7.0. TC was efficiently degraded by Fe(VI), and the rapid inactivation of the resistant E. coli was found with the complete loss of culturability. The results of flow cytometry suggested that the damage of membrane integrity and respiratory activity were highly correlated with the Fe(VI) dosages. Moreover, high-dose Fe(VI) eliminates 6 log(10) viable but non-culturable (VBNC) cells and even breaks the cells into fragments. ARGs in extracellular form (e-ARGs) exhibited a high sensitivity of 4.44 log(10) removal to Fe(VI). Comparatively, no removal of intracellular ARGs (i-ARGs) was observed due to the multi-protection of cellular structure and rapid decay of Fe(VI). The oxidized products of TC were assessed to be less toxic than the parent compound. Overall, this study demonstrated the superior efficiency and great promise of Fe(VI) on simultaneous removal of antibiotics and their related ARB and ARGs in water. | 2021 | 33984704 |
| 7847 | 5 | 0.9998 | Inactivation and change of tetracycline-resistant Escherichia coli in secondary effluent by visible light-driven photocatalytic process using Ag/AgBr/g-C(3)N(4). Control of antibiotic-resistant bacteria (ARB) and their related genes in secondary effluents has become a serious issue because of increased awareness of their health risks. A considerable number of techniques have been developed in recent years, particularly in relation to advanced oxidation. However, limited information is known about cellular behavior and resistance characteristic change during photocatalytic treatment. In this study, the inactivation of tetracycline (TC)-resistant Escherichia coli (TC-E. coli), removal of TC-resistant genes (TC-RGs), and antibiotic susceptibility were evaluated by employing photocatalytic treatment using Ag/AgBr/g-C(3)N(4) with visible light irradiation. The effects of light intensity, photocatalyst dosage, and reaction ambient temperature on photocatalysis were modelled and investigated. The rate of TC-E. coli removal was also optimized. Results demonstrated that the optimal conditions for TC-E. coli removal included light intensity of 96.0 mW/cm(2), photocatalyst dosage of 211.0 mg/L, and reaction ambient temperature of 23.7 °C. Under such conditions, the ARB removal rate was 6.1 log after 90 min and the related TC-RG removal rates were 49%, 86%, 69%, and 86% for tetA, tetM, tetQ, and intl1, respectively. The minimum inhibitory concentration test after photocatalysis shows that the antibiotic resistance of TC-E. coli was enhanced, which may be mainly due to the changes in the membrane potential and resulted in difficulty in destroying the bacteria through antibiotic contact. Hence, photocatalytic treatment could be an ideal method for ARB and antibiotic-resistant gene (ARG) control in wastewater, but the health risks of the remaining ARB and ARG should be investigated further. | 2020 | 31841919 |
| 8042 | 6 | 0.9998 | Algal-bacterial consortium mediated system offers effective removal of nitrogen nutrients and antibiotic resistance genes. The sulfonamide antibiotic resistance genes (ARGs) especially sul1 was identified as the dominant in eutrophic water. The performance of Chlorella vulgaris-B. licheniformis consortium toward sul1 removal, total nitrogen (TN) removal, and the mechanism of sul1 removal was investigated. The removal efficiency of exogenous ARGs plasmids carrying sul1 reached (97.2 ± 2.3)%. The TN removal rate reached (98.5 ± 1.2)%. The enhancements of carbon metabolism, nitrogen metabolism, aminoacyl-tRNA biosynthesis, and glycoproteins had significant influences on sul1 and TN removals, under the premise of normal growth of algae and bacteria. The quantitative polymerase chain reaction (qPCR) results suggested that the absolute abundances of sul1 were low in algal-bacterial systems (0 gene copies/mL) compared with individual systems ((1 × 10(6) ± 15) gene copies/mL). The duplication of sul1 was inhibited in algal cells and bacterial cells. The algal-bacterial consortium seems to be a promising technology for wastewater treatment with a potential to overcome the eutrophication and ARGs challenges. | 2022 | 36049708 |
| 7571 | 7 | 0.9998 | Ancient Oriental Wisdom still Works: Removing ARGs in Drinking Water by Boiling as compared to Chlorination. Antibiotic resistance genes (ARGs) in municipal drinking water may not be effectively removed during centralized treatment. To reduce potential health risks, water disinfection at the point-of-use scale is warranted. This study investigated the performance of boiling, a prevalent household water disinfection means, in response to ARGs contamination. We found that boiling was more efficient in inactivating both Escherichia coli and environmental bacteria compared to chlorination and pasteurization. Boiling of environmental bacteria suspension removed a much broader spectrum of ARGs and mobile genetic elements (up to 141 genes) than chlorination (up to 13 genes), such better performance was largely attributed to a stronger inactivation of chlorine-tolerant bacteria including Acinetobacter and Bacillus. Accumulation of extracellular ARGs was found during low-temperature heating (≤ 80°C) and in the initial stage of chlorination (first 3 min when initial chlorine was 5 mg/L and first 12 min when initial chlorine was 1 mg/L). These extracellular ARGs as well as the intracellular ARGs got removed as the heating temperature increased or the chlorination time prolonged. Under the same treatment time (30 min), high-temperature heating (≥ 90.1°C) damaged the DNA structure more thoroughly than chlorination (5 mg/L). Taking into account the low transferability of ARGs after DNA melting, boiling may provide an effective point-of-use approach to attenuating bacterial ARGs in drinking water and is still worth promoting in the future. | 2022 | 34910990 |
| 7840 | 8 | 0.9998 | Ferrate(VI) promotes inactivation of antibiotic-resistant bacteria and chlorine-resistant bacteria in water. The increasing problem of antibiotic resistance has garnered significant global attention. As a novel water treatment agent with strong oxidizing, disinfecting, and bactericidal properties, ferrate(VI) holds promise for inactivating antibiotic-resistant bacteria (ARB) and chlorine-resistant bacteria. The results showed that complete inactivation of ARB (10⁵ CFU/mL) was achieved when the ferrate(VI) concentration was 10 μM and the treatment duration was 5 min. For higher concentrations of ARB (10(8) CFU/mL), it was also possible to reduce the concentration by 1.73 log units. The concentration of Acinetobacter baylyi ADP1 was also reduced by 1.77 log units. Additionally, the absolute abundance of antibiotic resistance genes (ARGs), including aphA, bla(TEM), and tetA, was significantly reduced. Ferrate(VI) was rapidly consumed in the early stages of treatment, undergoing a stepwise reduction process that generated high-valent Fe intermediates and reactive oxygen species (ROS), both of which contributed to bacterial inactivation. Throughout the reaction, •O(2)(-) played a dominant role in bacterial inactivation, with H₂O₂ acting synergistically and •OH contributing at later stages, leading to ROS overload, severe cellular damage, and enhanced membrane disruption. This study confirmed that ferrate(VI) could effectively inactivate ARB and chlorine-tolerant bacteria, and reduce the abundances of ARGs. | 2025 | 40245720 |
| 7590 | 9 | 0.9998 | Characteristics, Performance and Microbial Response of Aerobic Granular Sludge for Treating Tetracycline Hypersaline Pharmaceutical Wastewater. Salt-tolerant aerobic granular sludge(AGS) was successfully cultivated under the dual stress of tetracycline and 2.5% salinity, resulting in an average particle size of 435.0 ± 0.5 and exhibiting a chemical oxygen demand(COD) removal rate exceeding 80%, as well as excellent sedimentation performance. The analysis of metagenomics technology revealed a significant pattern of succession in the development of AGS. The proportion of Oleiagrimonas, a type of salt-tolerant bacteria, exhibited a gradual increase and reached 38.07% after 42 days, which indicated that an AGS system based on moderate halophilic bacteria was successfully constructed. The expression levels of targeted genes were found to be reduced across the entire AGS process and formation, as evidenced by qPCR analysis. The presence of int1 (7.67 log10 gene copies g(-1) in 0 d sludge sample) enabled microbes to horizontally transfer ARGs genes along the AGS formation under the double pressure of TC and 2.5% salinity. These findings will enhance our understanding of ARG profiles and the development in AGS under tetracycline pressure, providing a foundation for guiding the use of AGS to treat hypersaline pharmaceutical wastewater. | 2024 | 38930555 |
| 7572 | 10 | 0.9998 | Stormwater runoff treatment through electrocoagulation: antibiotic resistant bacteria removal and its transmission risks. Recently, increasing attention has been paid to antibiotic resistant bacteria (ARB) in stormwater runoff. However, there were little data on ARB removal through electrocoagulation (EC) treatment. In this study, batch experiments were conducted to investigate key designs for ARB removal, role of SS, effects of water matrix, and potential risks after EC treatment under the pre-determined conditions. EC treatment with 5 mA/cm(2) of current density and 4 cm of inter-electrode distance was optimal with the highest ARB removal (3.04 log reduction for 30 min). The presence of SS significantly improved ARB removal during EC treatment, where ARB removal increased with the increase of SS levels when SS less than 300 mg/L. Large ARB removal was found under particles with size lower than 150 μm with low contribution (less than 10%) of the settlement without EC treatment, implying that the enhancement of ARB adsorption onto small particles could be one of the reasonable approaches for ARB removal through EC treatment. ARB removal increased firstly and then decreased with the increase of pH, while had proportional relationship with conductivity. After the optimal condition, there were weak conjugation transfer but high transformation frequency (5.5 × 10(-2) for bla(TEM)) for target antibiotic resistance genes (ARGs), indicating that there could be still a risk of antibiotic resistance transformation after EC treatment. These suggested that the combination of EC and other technologies (like electrochemical disinfection) should be potential ways to control antibiotic resistance transmission through stormwater runoff. | 2024 | 36848218 |
| 7580 | 11 | 0.9998 | Inactivation of antibiotic resistance genes in antibiotic fermentation residues by ionizing radiation: Exploring the development of recycling economy in antibiotic pharmaceutical factory. Antibiotic fermentation residues are a kind of hazardous waste due to the existence of the residual antibiotics and the potential risk to generate antibiotics resistance genes (ARGs). The appropriate treatment and disposal of antibiotic fermentation residues is imperative. In this study ionizing radiation was applied to treat the antibiotic fermentation residues and the removal efficiencies of antibiotic (erythromycin), ARGs (ermB and ermF) and antibiotic resistant bacteria were investigated. The experimental results showed that erythromycin A content in antibiotic fermentation residues decreased by 86% when the dose was 10 kGy. Moreover, the abundance of ermB and ermF reduced by 89% and 98% at 10 kGy irradiation. Over 99% of total bacteria was removed and antibiotic resistant bacteria (ARB) were less than detection limit after 10 kGy irradiation. Ionizing radiation process is a promising technology for simultaneously removing antibiotic and inactivating ARGs and ARB in antibiotic fermentation residues. Moreover, the irradiation at 10 kGy had no significant influence on the macromolecules organic matters (protein, polysaccharides) of the antibiotic fermentation residues, suggesting that the treated fermentative residues can be used as fertilizer, which could provide the technical support for the development of recycling economy in antibiotic pharmaceutical factory. | 2019 | 30691886 |
| 7807 | 12 | 0.9998 | Copper oxide/peroxydisulfate system for urban wastewater disinfection: Performances, reactive species, and antibiotic resistance genes removal. In this study, copper oxide (CuO) catalyzed peroxydisulfate (PDS) system was investigated for the inactivation of a broad range of pathogenic microorganisms from urban wastewater. Complete inactivation of Escherichia coli, Enterococcus, F-specific RNA bacteriophages from secondary treated wastewater was achieved after a short time (15-30 min) treatment with CuO (10 g/L)/PDS (1 mM) system, but spores of sulfite-reducing bacteria took 120 min. No bacterial regrowth occurred during storage after treatment. Significant reduction of the pathogens was explained by the generation of the highly selective Cu(III) oxidant, as the predominant reactive species, which could quickly oxidize guanine through a one-electron oxidation pathway. Additionally, the potential of the CuO (10 g/L)/PDS (1 mM) system to inactivate antibiotic-resistant bacteria and antibiotic resistance genes (ARB&Gs) was explored. Sulfamethoxazole-resistant E. coli was used as the model ARB and a 3.2 log of reduction was observed after 10 min of treatment. A considerable reduction (0.7-2.3 log) of selected ARGs including blaTEM, qnrS, emrB, sul1, and genes related to the dissemination of antibiotic resistance, including the Class 1 integron-integrase (intI1), and the insertion sequence (IS613) was achieved after 60 min treatment. All these findings indicated the promising applicability of the CuO/PDS system as a disinfection technology for wastewater reuse in agriculture. | 2022 | 34648831 |
| 7193 | 13 | 0.9998 | Plasmid-mediated transfer of antibiotic resistance genes and biofilm formation in a simulated drinking water distribution system under chlorine pressure. The effects of disinfectants and plasmid-based antibiotic resistance genes (ARGs) on the growth of microorganisms and the plasmid-mediated transfer of ARGs in the water and biofilm of the drinking water distribution system under simulated conditions were explored. The heterotrophic plate count of the water in reactors with 0.1 mg/L NaClO and NH(2)Cl was higher than in the control groups. There was no similar phenomenon in biofilm. In the water of reactors containing NaClO, the aphA and bla genes were lower than in the antibiotic resistant bacteria group, while both genes were higher in the water of reactors with NH(2)Cl than in the control group. Chloramine may promote the transfer of ARGs in the water phase. Both genes in the biofilm of the reactors containing chlorine were lower than the control group. Correlation analysis between ARGs and water quality parameters revealed that the copy numbers of the aphA gene were significantly positively correlated with the copy numbers of the bla gene in water and significantly negatively correlated in biofilm (p < 0.05). The results of the sequencing assay showed that bacteria in the biofilm, in the presence of disinfectant, were primarily Gram-negative. 1.0 mg/L chlorine decreased the diversity of the community in the biofilm. The relative abundance of some bacteria that may undergo transfer increased in the biofilm of the reactor containing 0.1 mg/L chlorine. | 2025 | 39617560 |
| 8005 | 14 | 0.9998 | Deciphering the fate of antibiotic resistance genes in norfloxacin wastewater treated by a bio-electro-Fenton system. The misuse of antibiotics has increased the prevalence of antibiotic resistance genes (ARGs), considered a class of critical environmental contaminants due to their ubiquitous and persistent nature. Previous studies reported the potentiality of bio-electro-Fenton processes for antibiotic removal and ARGs control. However, the production and fate of ARGs in bio-electro-Fenton processes triggered by microbial fuel cells are rare. In this study, the norfloxacin (NFLX) average residual concentrations within two days were 2.02, 6.07 and 14.84 mg/L, and the average removal efficiency of NFLX was 79.8 %, 69.6 % and 62.9 % at the initial antibiotic concentrations of 10, 20 and 40 mg/L, respectively. The most prevalent resistance gene type in all processes was the fluoroquinolone antibiotic gene. Furthermore, Proteobacteria was the dominant ARG-carrying bacteria. Overall, this study can provide theoretical support for the efficient treatment of high antibiotics-contained wastewater by bio-electro-Fenton systems to better control ARGs from the perspective of ecological security. | 2022 | 36252757 |
| 7573 | 15 | 0.9998 | Chlorine and UV combination sequence: Effects on antibiotic resistance control and health risks of ARGs. The effective control of antibiotic resistance in aquatic environments is urgent. The combined chlorine and UV processes (Cl(2)-UV, UV/Cl(2), and UV-Cl(2)) are considered potential control processes for controlling antibiotic resistance. This study compared the effectiveness of these three processes in real water bodies and the potential health risks associated with antibiotic resistance genes (ARGs) after treatments. The removal of various antibiotic-resistant bacteria (ARB) and ARGs by the combined processes was analysed. The UV/Cl(2) process was less effective than the others in inactivating β-lactam-resistant bacteria (BRB) and sulfamethoxazole-resistant bacteria (SRB), which are more challenging to remove, though its performance might improve with increased UV fluence. Nevertheless, the UV/Cl(2) process showed an advantage in removing ARGs. The absolute abundance of aminoglycoside resistance genes (AmRGs), sulfonamide resistance genes (SRGs), macrolide resistance genes (MRGs), and multidrug efflux-associated ARGs detected after the UV/Cl(2) process was relatively low, and this process outperformed the others in removing a greater number of ARGs. Additionally, certain ARGs and bacterial genera were found to be enriched after the combined processes, with lower and more similar abundance levels of ARGs and genera observed after UV/Cl(2) and UV-Cl(2) processes compared to the Cl(2)-UV process. Health risk assessments indicated that the Cl(2)-UV process posed the highest risk, followed by UV/Cl(2) and UV-Cl(2) processes. Overall, the UV/Cl(2) process may offer the most practical advantages for controlling antibiotic resistance. | 2025 | 39708685 |
| 7195 | 16 | 0.9998 | Insight into effect of high-level cephalexin on fate and driver mechanism of antibiotics resistance genes in antibiotic wastewater treatment system. In the study, antibiotic resistance genes (ARGs) were examined in wastewater and sludge samples to explore the effect of cephalexin (CFX) on the spreading and removal of ARGs in the Expanded Granular Sludge Bed (EGSB) reactor treating antibiotics wastewater. The result showed that the addition of CFX in the wastewater affected the removal amount of β-lactam ARGs and other types ARGs. Besides, the addition of CFX in the wastewater had no obviously effect on total concentration of targeted ARGs in the sludge, but it was related to the accumulation of some typical ARGs. Based on gene cassette array libraries analysis, the diversity of gene cassettes carried by intI1 gene was increased by the addition of CFX in the wastewater. Furthermore, the co-occurrence patterns between ARGs and bacterial genus were also investigated. The results showed the CFX in the wastewater not only affected the number of potential host bacteria of ARGs, but also changed the types of potential host bacteria of ARGs. The correlation analysis of ARG in influent, effluent and sludge showed that, for blaCTX-M, sul2, qnrS and AmpC genes, their removal amount in EGSB reactor treating antibiotic wastewater system might be enhanced by reducing their concentration in the sludge. | 2020 | 32505047 |
| 7581 | 17 | 0.9998 | Enhanced performance of anaerobic digestion of cephalosporin C fermentation residues by gamma irradiation-induced pretreatment. Antibiotic fermentation residues is a hazardous waste due to the existence of residual antibiotics and antibiotic resistance genes (ARGs), probably leading to the induction and spread of antibiotic resistant bacteria (ARB) in the environment, which could pose potential harm to the ecosystem and human health. It is urgent to develop an effective technology to remove the residual antibiotics and ARGs. In this study, the anaerobic digestion combined with gamma irradiation was applied for the disposal and utilization of cephalosporin C fermentation residues. The experimental results showed that the antibacterial activities of cephalosporin C against Staphylococcus aureus were significantly decreased after anaerobic digestion. The removal of tolC, a multidrug resistant gene, was improved up to 100% by the combination of gamma irradiation and anaerobic digestion compared to solely anaerobic digestion process, which may be due to the changes of microbial community structures induced by gamma irradiation. | 2020 | 31590081 |
| 7630 | 18 | 0.9998 | Coexistence of silver ion and tetracycline at environmentally relevant concentrations greatly enhanced antibiotic resistance gene development in activated sludge bioreactor. Antibiotic resistance has become a global public health problem. Recently, various environmental pollutants have been reported to induce the proliferation of antibiotic resistance. However, the impact of multiple pollutants (e.g., heavy metals and antibiotics), which more frequently occur in practical environments, is poorly understood. Herein, one widely distributed heavy metal (Ag(+)) and one frequently detected antibiotic (tetracycline) were chosen to investigate their coexisting effect on the proliferation of antibiotic resistance in the activated sludge system. Results show that the co-occurrence of Ag(+) and tetracycline at environmentally relevant concentrations exhibited no distinct inhibition in reactor performances. However, they inhibited the respiratory activity by 42%, destroyed the membrane structure by 218%, and increased membrane permeability by 29% compared with the blank control bioreactor. Moreover, the relative abundances of target antibiotic resistance genes (ARGs) (e.g., tetA, bla(TEM-1), and sulII) in effluent after exposure of coexisting Ag(+) and tetracycline were increased by 92-1983% compared with those in control reactor, which were 1.1-4.3 folds higher than the sum of the sole ones. These were possibly attributed to the enrichments of antibiotic-resistant bacteria. The results would illumine the coexisting effect of heavy metals and antibiotics on the dissemination of ARGs in activated sludge system. | 2022 | 34482077 |
| 7582 | 19 | 0.9998 | Anaerobic fermentation for hydrogen production and tetracycline degradation: Biodegradation mechanism and microbial community succession. The misuse and continues discharge of antibiotics can cause serious pollution, which is urgent to take steps to remit the environment pollution. In this study, anaerobic bacteria isolated from the aeration tank of a local sewage treatment plant were employed to investigate hydrogen production and tetracycline (TC) degradation during anaerobic fermentation. Results indicate that low concentrations of TC enhanced hydrogen production, increasing from 366 mL to a maximum of 480 mL. This increase is attributed to stimulated hydrolysis and acidogenesis, coupled with significant inhibition of homoacetogenesis. Furthermore, the removal of TC, facilitated by adsorption and biodegradation, exceeded 90 %. During the fermentation process, twenty-one by-products were identified, leading to the proposal of four potential degradation pathways. Analysis of the microbial community revealed shifts in diversity and a decrease in the abundance of hydrogen-producing bacteria, whereas bacteria harboring tetracycline resistance genes became more prevalent. This study provides a possibility to treat tetracycline-contaminated wastewater and to produce clean energy simultaneously by anaerobic fermentation. | 2024 | 39168318 |