# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7840 | 0 | 1.0000 | Ferrate(VI) promotes inactivation of antibiotic-resistant bacteria and chlorine-resistant bacteria in water. The increasing problem of antibiotic resistance has garnered significant global attention. As a novel water treatment agent with strong oxidizing, disinfecting, and bactericidal properties, ferrate(VI) holds promise for inactivating antibiotic-resistant bacteria (ARB) and chlorine-resistant bacteria. The results showed that complete inactivation of ARB (10⁵ CFU/mL) was achieved when the ferrate(VI) concentration was 10 μM and the treatment duration was 5 min. For higher concentrations of ARB (10(8) CFU/mL), it was also possible to reduce the concentration by 1.73 log units. The concentration of Acinetobacter baylyi ADP1 was also reduced by 1.77 log units. Additionally, the absolute abundance of antibiotic resistance genes (ARGs), including aphA, bla(TEM), and tetA, was significantly reduced. Ferrate(VI) was rapidly consumed in the early stages of treatment, undergoing a stepwise reduction process that generated high-valent Fe intermediates and reactive oxygen species (ROS), both of which contributed to bacterial inactivation. Throughout the reaction, •O(2)(-) played a dominant role in bacterial inactivation, with H₂O₂ acting synergistically and •OH contributing at later stages, leading to ROS overload, severe cellular damage, and enhanced membrane disruption. This study confirmed that ferrate(VI) could effectively inactivate ARB and chlorine-tolerant bacteria, and reduce the abundances of ARGs. | 2025 | 40245720 |
| 7841 | 1 | 0.9998 | Simultaneous removal of antibiotics and antibiotic resistance genes in wastewater by a novel nonthermal plasma/peracetic acid combination system: Synergistic performance and mechanism. In this study, a novel and green method combining plasma with peracetic acid (plasma/PAA) was developed to simultaneously remove antibiotics and antibiotic resistance genes (ARGs) in wastewater, which achieves significant synergistic effects in the removal efficiencies and energy yield. At a plasma current of 2.6 A and PAA dosage of 10 mg/L, the removal efficiencies of most detected antibiotics in real wastewater exceeded 90 % in 2 min, with the ARG removal efficiencies ranging from 6.3 % to 75.2 %. The synergistic effects of plasma and PAA could be associated with the motivated production of reactive species (including •OH, •CH(3), (1)O(2), ONOO(-), •O(2)(-) and NO•), which decomposed antibiotics, killed host bacteria, and inhibited ARG conjugative transfer. In addition, plasma/PAA also changed the contributions and abundances of ARG host bacteria and downregulated the corresponding genes of two-component regulatory systems, thus reducing ARG propagation. Moreover, the weak correlations between the removal of antibiotics and ARGs highlights the commendable performance of plasma/PAA in the simultaneous removal of antibiotics and ARGs. Therefore, this study affords an innovative and effective avenue to remove antibiotics and ARGs, which relies on the synergistic mechanisms of plasma and PAA and the simultaneous removal mechanisms of antibiotics and ARGs in wastewater. | 2023 | 37027926 |
| 8501 | 2 | 0.9998 | Mechanistic insight of simultaneous removal of tetracycline and its related antibiotic resistance bacteria and genes by ferrate(VI). The emergence of antibiotics and their corresponding antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have posed great challenges to the public health. The paper demonstrates the removal of co-existing tetracycline (TC), its resistant Escherichia coli (E. coli), and ARGs (tetA and tetR) in a mixed system by applying ferrate(VI) (Fe(VI)O(4)(2-), Fe(VI)) at pH 7.0. TC was efficiently degraded by Fe(VI), and the rapid inactivation of the resistant E. coli was found with the complete loss of culturability. The results of flow cytometry suggested that the damage of membrane integrity and respiratory activity were highly correlated with the Fe(VI) dosages. Moreover, high-dose Fe(VI) eliminates 6 log(10) viable but non-culturable (VBNC) cells and even breaks the cells into fragments. ARGs in extracellular form (e-ARGs) exhibited a high sensitivity of 4.44 log(10) removal to Fe(VI). Comparatively, no removal of intracellular ARGs (i-ARGs) was observed due to the multi-protection of cellular structure and rapid decay of Fe(VI). The oxidized products of TC were assessed to be less toxic than the parent compound. Overall, this study demonstrated the superior efficiency and great promise of Fe(VI) on simultaneous removal of antibiotics and their related ARB and ARGs in water. | 2021 | 33984704 |
| 7839 | 3 | 0.9998 | 3D ZnO/Activated Carbon Alginate Beads for the Removal of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes. The worldwide prevalence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have become one of the most urgent issues for public health. Thus, it is critical to explore more sustainable methods with less toxicity for the long-term removal of both ARB and ARGs. In this study, we fabricated a novel material by encapsulating zinc oxide (ZnO) nanoflowers and activated carbon (AC) in an alginate biopolymer. When the dosage of ZnO was 1.0 g (≈2 g/L), the composite beads exhibited higher removal efficiency and a slight release of Zn(2+) in water treatment. Fixed bed column experiments demonstrated that ZnO/AC alginate beads had excellent removal capacities. When the flow rate was 1 mL/min, and the initial concentration was 10(7) CFU/mL, the removal efficiency of ARB was 5.69-log, and the absolute abundance of ARGs was decreased by 2.44-2.74-log. Moreover, the mechanism demonstrated that ZnO significantly caused cell lysis, cytoplasmic leakage, and the increase of reactive oxygen species induced subsequent oxidative stress state. These findings suggested that ZnO/AC alginate beads can be a promising material for removing ARB and ARGs from wastewater with eco-friendly and sustainable properties. | 2023 | 37177361 |
| 7844 | 4 | 0.9998 | Insight into using a novel ultraviolet/peracetic acid combination disinfection process to simultaneously remove antibiotics and antibiotic resistance genes in wastewater: Mechanism and comparison with conventional processes. In this study, the simultaneous removal mechanism of antibiotics and antibiotic resistance genes (ARGs) was investigated using the novel ultraviolet/peracetic acid (UV/PAA) combination disinfection process and conventional disinfection processes were also applied for comparison. The results showed that UV/PAA disinfection with a high UV dosage (UV/PAA-H) was most effective for the removal of tetracyclines, quinolones, macrolides and β-lactams; their average removal efficiencies ranged from 25.7% to 100%, while NaClO disinfection was effective for the removal of sulfonamides (∼81.6%). The majority of ARGs were well removed after the UV/PAA-H disinfection, while specific genes including tetB, tetC, ermA and bla(TEM) significantly increased after NaClO disinfection. In addition, β-lactam resistance genes (-35.9%) and macrolides resistance genes (-12.0%) remarkably augmented after UV/NaClO disinfection. The highly reactive oxidation species generated from UV/PAA process including hydroxyl radicals (•OH) and carbon-centered organic radicals (R-C•), were responsible for the elimination of antibiotics and ARGs. Correlation analysis showed that tetracycline, sulfonamide and macrolide antibiotics removal showed a positive correlation with the corresponding ARGs, and a low dose of antibiotic residues played an important role in the distribution of ARGs. Metagenomic sequencing analysis showed that UV/PAA disinfection could not only greatly decrease the abundance of resistant bacteria but also downregulate the expression of key functional genes involved in ARGs propagation and inhibit the signal transduction of the host bacteria, underlying that its removal mechanism was quite different from that of NaClO-based disinfection processes. Our study provides valuable information for understanding the simultaneous removal mechanism of antibiotics and ARGs in wastewater during the disinfection processes, especially for the novel UV/PAA combination process. | 2022 | 34982977 |
| 7826 | 5 | 0.9998 | Synergistic effect of sulfidated nano zerovalent iron and persulfate on inactivating antibiotic resistant bacteria and antibiotic resistance genes. Antimicrobial resistance continues to be a rising global threat to public health. It is well recognized that wastewater treatment plants are reservoirs of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, traditional disinfection techniques are not effective to simultaneously remove ARB and ARGs, and the dynamic analysis of ARB inactivation have also been deficient. In this study, sulfidated nano zerovalent iron (S-nZVI) coupled with persulfate (PS) was applied to simultaneously remove both ARB (E. coli K-12 with RP4 plasmid) and ARGs (extra- and intracellular ARGs). S-nZVI/PS completely inactivated ARB (~7.8-log reduction) within 10 min and degraded all extracellular ARGs (~8.0-log reduction) within 5 min. These efficiencies were significantly higher (decay rate constant, k = 0.138 min(-1)) than those achieved individually (S-nZVI: k = 0.076 min(-1); PS: k = 0.008 min(-1)), implying a synergistic effect between S-nZVI and PS against ARB and ARGs. The efficient removal rate of ARB was also supported by confocal microscopy and microfluidics at a single-cell level. The complete inactivation of ARB by S-nZVI/PS was also demonstrated in real drinking water and real wastewater effluent that contained natural organic matter and suspended solids. Regrowth assays showed that the treated ARB was not observed after 72 h or longer incubation, suggesting that ARB was permanently inactivated by radicals such as SO(4)(•-) and •OH. The destruction of bacterial cells compromised the removal efficiency of the intracellular ARGs, with only ~4.0-log reduction after 60 min treatment by S-nZVI/PS. Collectively, our results suggest the feasibility of S-nZVI coupled with PS for simultaneous ARB and ARGs removal in real water matrices. | 2021 | 33895590 |
| 7845 | 6 | 0.9998 | Mechanism and potential risk of antibiotic resistant bacteria carrying last resort antibiotic resistance genes under electrochemical treatment. The significant rise in the number of antibiotic resistance genes (ARGs) that resulted from our abuse of antibiotics could do severe harm to public health as well as to the environment. We investigated removal efficiency and removal mechanism of electrochemical (EC) treatment based on 6 different bacteria isolated from hospital wastewater carrying 3 last resort ARGs including NDM-1, mcr-1 and tetX respectively. We found that the removal efficiency of ARGs increased with the increase of both voltage and electrolysis time while the maximum removal efficiency can reach 90%. The optimal treatment voltage and treatment time were 3 V and 120 min, respectively. Temperature, pH and other factors had little influence on the EC treatment process. The mechanism of EC treatment was explored from the macroscopic and microscopic levels by scanning electron microscopy (SEM) and flow cytometry. Our results showed that EC treatment significantly changed the permeability of cell membrane and caused cells successively experience early cell apoptosis, late cell apoptosis and cell necrosis. Moreover, compared with traditional disinfection methods, EC treatment had less potential risks. The conjugative transfer frequencies of cells were significantly reduced after treatment. Less than 1% of bacteria entered the viable but nonculturable (VBNC) state and less than 5% of intracellular ARGs (iARGs) turned into extracellular ARGs (eARGs). Our findings provide new insights into as well as important reference for future electrochemical treatment in removing ARB from hospital wastewater. | 2022 | 35085630 |
| 7843 | 7 | 0.9998 | Inactivation of chlorine-resistant bacteria (CRB) via various disinfection methods: Resistance mechanism and relation with carbon source metabolism. With the widespread use of chlorine disinfection, chlorine-resistant bacteria (CRB) in water treatment systems have gained public attention. Bacterial chlorine resistance has been found positively correlated with extracellular polymeric substance (EPS) secretion. In this study, we selected the most suitable CRB controlling method against eight bacterial strains with different chlorine resistance among chloramine, ozone, and ultraviolet (UV) disinfection, analyzed the resistance mechanisms, clarified the contribution of EPS to disinfection resistance, and explored the role of carbon source metabolism capacity. Among all the disinfectants, UV disinfection showed the highest disinfection capacity by achieving the highest average and median log inactivation rates for the tested strains. For Bacillus cereus CR19, the strain with the highest chlorine resistance, 40 mJ/cm(2) UV showed a 1.90 log inactivation, which was much higher than that of 2 mg-Cl(2)/L chlorine (0.67 log), 2 mg-Cl(2)/L chloramine (1.68 log), and 2 mg/L ozone (0.19 log). Meanwhile, the UV resistance of the bacteria did not correlate with EPS secretion. These characteristics render UV irradiation the best CRB controlling disinfection method. Chloramine was found to have a generally high inactivation efficiency for bacteria with high chlorine-resistance, but a low inactivation efficiency for low chlorine-resistant ones. Although EPS consumed up to 56.7% of chloramine which an intact bacterial cell consumed, EPS secretion could not explain chloramine resistance. Thus, chloramine is an acceptable CRB control method. Similar to chlorine, ozone generally selected high EPS-secreting bacteria, with EPS consuming up to 100% ozone. Therefore, ozone is not an appropriate method for controlling CRB with high EPS secretion. EPS played an important role in all types of disinfection resistance, and can be considered the main mechanism for bacterial chlorine and ozone disinfection resistance. However, as EPS was not the main resistance mechanism in UV and chloramine disinfection, CRB with high EPS secretion were inactivated more effectively. Furthermore, carbon source metabolism was found related to the multiple resistance of bacteria. Those with low carbon source metabolism capacity tended to have higher multiple resistance, especially to chlorine, ozone, and UV light. Distinctively, among the tested gram-negative bacteria, in contrast to other disinfectants, chloramine resistance was negatively correlated with EPS secretion and positively correlated with carbon source metabolism capacity, suggesting a special disinfection mechanism. | 2023 | 37659185 |
| 8499 | 8 | 0.9998 | Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma. Antibiotic resistant bacteria (ARB) and resistance genes (ARGs) are emerging environmental pollutants with strong pathogenicity. In this study, surface plasma was developed to inactivate the donor ARB with Escherichia coli (AR E. coli) as a model, eliminate ARGs, and inhibit conjugative transfer of ARGs in water, highlighting the influences of concomitant inorganic ions. Surface plasma oxidation significantly inactivated AR E. coli, eliminated ARGs, and inhibited conjugative transfer of ARGs, and the presence of NO(3)(-), Cu(2+), and Fe(2+) all promoted these processes, and SO(4)(2-) did not have distinct effect. Approximately 4.5log AR E. coli was inactivated within 10 min treatment, and it increased to 7.4log AR E. coli after adding Fe(2+). Integrons intI1 decreased by 3.10log (without Fe(2+)) and 4.43log (adding Fe(2+)); the addition of Fe(2+) in the surface plasma induced 99.8% decline in the conjugative transfer frequency. The inhibition effects on the conjugative transfer of ARGs were mainly attributed to the reduced reactive oxygen species levels, decreased DNA damage-induced response, decreased intercellular contact, and down-regulated expression of plasmid transfer genes. This study disclosed underlying mechanisms for inhibiting ARGs transfer, and supplied a prospective technique for ARGs control. | 2021 | 34536683 |
| 8500 | 9 | 0.9997 | Plasma induced efficient removal of antibiotic-resistant Escherichia coli and antibiotic resistance genes, and inhibition of gene transfer by conjugation. Antibiotic-resistant bacteria (ARB) and their resistance genes (ARGs) are emerging environmental pollutants that pose great threats to human health. In this study, a novel strategy using plasma was developed to simultaneously remove antibiotic-resistant Escherichia coli (AR bio-56954 E. coli) and its ARGs, aiming to inhibit gene transfer by conjugation. Approximately 6.6 log AR bio-56954 E. coli was inactivated within 10 min plasma treatment, and the antibiotic resistance to tested antibiotics (tetracycline, gentamicin, and amoxicillin) significantly decreased. Reactive oxygen and nitrogen species (RONS) including •OH, (1)O(2), O(2)•(-), NO(2)(-), and NO(3)(-) contributed to ARB and ARGs elimination; their attacks led to destruction of cell membrane, accumulation of excessive intracellular reactive oxygen substances, deterioration of conformational structures of proteins, and destroy of nucleotide bases of DNA. As a result, the ARGs (tet(C), tet(W), blaTEM-1, aac(3)-II), and integron gene intI1), and conjugative transfer frequency of ARGs significantly decreased after plasma treatment. The results demonstrated that plasma has great prospective application in removing ARB and ARGs in water, inhibiting gene transfer by conjugation. | 2021 | 34214852 |
| 7807 | 10 | 0.9997 | Copper oxide/peroxydisulfate system for urban wastewater disinfection: Performances, reactive species, and antibiotic resistance genes removal. In this study, copper oxide (CuO) catalyzed peroxydisulfate (PDS) system was investigated for the inactivation of a broad range of pathogenic microorganisms from urban wastewater. Complete inactivation of Escherichia coli, Enterococcus, F-specific RNA bacteriophages from secondary treated wastewater was achieved after a short time (15-30 min) treatment with CuO (10 g/L)/PDS (1 mM) system, but spores of sulfite-reducing bacteria took 120 min. No bacterial regrowth occurred during storage after treatment. Significant reduction of the pathogens was explained by the generation of the highly selective Cu(III) oxidant, as the predominant reactive species, which could quickly oxidize guanine through a one-electron oxidation pathway. Additionally, the potential of the CuO (10 g/L)/PDS (1 mM) system to inactivate antibiotic-resistant bacteria and antibiotic resistance genes (ARB&Gs) was explored. Sulfamethoxazole-resistant E. coli was used as the model ARB and a 3.2 log of reduction was observed after 10 min of treatment. A considerable reduction (0.7-2.3 log) of selected ARGs including blaTEM, qnrS, emrB, sul1, and genes related to the dissemination of antibiotic resistance, including the Class 1 integron-integrase (intI1), and the insertion sequence (IS613) was achieved after 60 min treatment. All these findings indicated the promising applicability of the CuO/PDS system as a disinfection technology for wastewater reuse in agriculture. | 2022 | 34648831 |
| 7821 | 11 | 0.9997 | Efficient inactivation of antibiotic resistant bacteria and antibiotic resistance genes by photo-Fenton process under visible LED light and neutral pH. Antibiotic resistance has been recognized as a major threat to public health worldwide. Inactivation of antibiotic resistant bacteria (ARB) and degradation of antibiotic resistance genes (ARGs) are critical to prevent the spread of antibiotic resistance in the environment. Conventional disinfection processes are effective to inactivate water-borne pathogens, yet they are unable to completely eliminate the antibiotic resistance risk. This study explored the potential of the photo-Fenton process to inactivate ARB, and to degrade both extracellular and intracellular ARGs (e-ARGs and i-ARGs, respectively). Using Escherichia coli DH5α with two plasmid-encoded ARGs (tetA and bla(TEM)(-1)) as a model ARB, a 6.17 log ARB removal was achieved within 30 min of applying photo-Fenton under visible LED and neutral pH conditions. In addition, no ARB regrowth occurred after 48-h, demonstrating that this process is very effective to induce permanent disinfection on ARB. The photo-Fenton process was validated under various water matrices, including ultrapure water (UPW), simulated wastewater (SWW) and phosphate buffer (PBS). The higher inactivation efficiency was observed in SWW as compared to other matrices. The photo-Fenton process also caused a 6.75 to 8.56-log reduction in eARGs based on quantitative real-time PCR of both short- and long amplicons. Atomic force microscopy (AFM) further confirmed that the extracellular DNA was sheared into short DNA fragments, thus eliminating the risk of the transmission of antibiotic resistance. As compared with e-ARGs, a higher dosage of Fenton reagent was required to damage i-ARGs. In addition, the tetA gene was more easily degraded than the bla(TEM)(-1) gene. Collectively, our results demonstrate the photo-Fenton process is a promising technology for disinfecting water to prevent the spread of antibiotic resistance. | 2020 | 32417561 |
| 7847 | 12 | 0.9997 | Inactivation and change of tetracycline-resistant Escherichia coli in secondary effluent by visible light-driven photocatalytic process using Ag/AgBr/g-C(3)N(4). Control of antibiotic-resistant bacteria (ARB) and their related genes in secondary effluents has become a serious issue because of increased awareness of their health risks. A considerable number of techniques have been developed in recent years, particularly in relation to advanced oxidation. However, limited information is known about cellular behavior and resistance characteristic change during photocatalytic treatment. In this study, the inactivation of tetracycline (TC)-resistant Escherichia coli (TC-E. coli), removal of TC-resistant genes (TC-RGs), and antibiotic susceptibility were evaluated by employing photocatalytic treatment using Ag/AgBr/g-C(3)N(4) with visible light irradiation. The effects of light intensity, photocatalyst dosage, and reaction ambient temperature on photocatalysis were modelled and investigated. The rate of TC-E. coli removal was also optimized. Results demonstrated that the optimal conditions for TC-E. coli removal included light intensity of 96.0 mW/cm(2), photocatalyst dosage of 211.0 mg/L, and reaction ambient temperature of 23.7 °C. Under such conditions, the ARB removal rate was 6.1 log after 90 min and the related TC-RG removal rates were 49%, 86%, 69%, and 86% for tetA, tetM, tetQ, and intl1, respectively. The minimum inhibitory concentration test after photocatalysis shows that the antibiotic resistance of TC-E. coli was enhanced, which may be mainly due to the changes in the membrane potential and resulted in difficulty in destroying the bacteria through antibiotic contact. Hence, photocatalytic treatment could be an ideal method for ARB and antibiotic-resistant gene (ARG) control in wastewater, but the health risks of the remaining ARB and ARG should be investigated further. | 2020 | 31841919 |
| 7862 | 13 | 0.9997 | Synergistic effect of sulfidated nanoscale zerovalent iron in donor and recipient bacterial inactivation and gene conjugative transfer inhibition. Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) are widespread in urban wastewater treatment plants (UWTPs). In this research, a horizontal transfer model of recipient (Pseudomonas. HLS-6) and donor (Escherichia coli DH5α carries RP4 plasmid) was constructed to explore the effect of sulfidated nanoscale zerovalent iron (S-nZVI) on the efficiency of plasmid-mediated horizontal transfer. When the S/Fe was 0.1, the inactivation efficiency of 1120 mg/L S-nZVI on the donor and recipient bacteria were 2.36 ± 0.03 log and 3.50 ± 0.17 log after 30 min, respectively (initial ARB concentration ≈ 5 ×10(7) CFU/mL). Effects of treatment time, S/Fe molar ratio, S-nZVI dosage and initial bacterial concentration were systemically studied. S-nZVI treatment could increase the extracellular alkaline phosphatase and malondialdehyde content of the ARB, cause oxidative stress in the bacteria, destroy the cell structure and damage the intracellular DNA. This study provided evidence and insights into possible underlying mechanisms for reducing conjugative transfer, such as hindering cell membrane repair, inducing the overproduction of reactive oxygen species, inhibiting the SOS response, reducing the expression of ARGs and related transfer genes. S-nZVI could inhibit the gene conjugative transfer while inactivating the ARB. The findings provided an alternative method for controlling antibiotic resistance. | 2022 | 35334272 |
| 7867 | 14 | 0.9997 | The removal of antibiotic resistant bacteria and antibiotic resistance genes by sulfidated nanoscale zero-valent iron activating periodate: Efficacy and mechanism. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have drawn much more attention due to their high risk on human health and ecosystem. In this study, the performance of sulfidated nanoscale zero-valent iron (S-nZVI)/periodate (PI) system toward ARB inactivation and ARGs removal was systematically investigated. The S-nZVI/PI system could realize the complete inactivation of 1 × 10(8) CFU/mL kanamycin, ampicillin, and tetracycline-resistant E. coli HB101 within 40 min, meanwhile, possessed the ability to remove the intracellular ARGs (iARGs) (including aphA, tetA, and tnpA) carried by E. coli HB101. Specifically, the removal of aphA, tetA, and tnpA by S-nZVI/PI system after 40 min reaction was 0.31, 0.47, and 0.39 log(10)copies/mL, respectively. The reactive species attributed to the E. coli HB101 inactivation were HO(•) and O(2)(•-), which could cause the destruction of E. coli HB101 morphology and enzyme system (such as superoxide dismutase and catalase), the loss of intracellular substances, and the damage of iARGs. Moreover, the influence of the dosage of PI and S-nZVI, the initial concentration of E. coli HB101, as well as the co-existing substance (such as HCO(3)(-), NO(3)(-), and humic acid (HA)) on the inactivation of E. coli HB101 and its corresponding iARGs removal was also conducted. It was found that the high dosage of PI and S-nZVI and the low concentration of E. coli HB101 could enhance the disinfection performance of S-nZVI/PI system. The presence of HCO(3)(-), NO(3)(-), and HA in S-nZVI/PI system showed inhibiting role on the inactivation of E. coli HB101 and its corresponding iARGs removal. Overall, this study demonstrates the superiority of S-nZVI/PI system toward ARB inactivation and ARGs removal. | 2023 | 37544470 |
| 7838 | 15 | 0.9997 | Impacts on antibiotic-resistant bacteria and their horizontal gene transfer by graphene-based TiO(2)&Ag composite photocatalysts under solar irradiation. In recent years, photocatalysis has been considered as a promising method, which provides measures to environmental pollution. Antibiotic resistant bacteria (ARB) and their antibiotic resistance genes (ARGs), as the emerging environmental pollutants, are released into the environment, resulting in antibiotic resistance spread. TiO(2)-based nanocomposites, as the most common photocatalytic material, may influence ARB and ARGs under photocatalytic conditions. However, the research on this aspect is rare. A novel nanocomposite synthesized from Ag, TiO(2) and graphene oxide (GO), was selected as a representative of nanomaterials for investigation. The experimental results indicated that TiO(2)/Ag/GO nanocomposites significantly affected ARB vitality. 100 mg/L TiO(2)/Ag/GO will reduce bacterial survival to 12.2% in 10 min under simulated sunlight irradiation. Chloramphenicol as the most representative antibiotic in the water, reduces the effect of ARB inactivation under photocatalytic conditions. The addition of TiO(2)/Ag/GO could affect tetracycline antibiotic resistance. The level of bacterial tolerance to tetracycline had a significant reduction. The horizontal gene transfer was promoted from 1 to 2 folds with the addition of TiO(2)/Ag/GO. Even high TiO(2)/Ag/GO concentration (100 mg/L) sample had a limited promotion, suggesting that TiO(2)/Ag/GO will not increase the risk of antibiotic resistance spread compared to other nano materials. | 2019 | 31330386 |
| 7866 | 16 | 0.9997 | Inactivation of sulfonamide antibiotic resistant bacteria and control of intracellular antibiotic resistance transmission risk by sulfide-modified nanoscale zero-valent iron. The inactivation of a gram-negative sulfonamide antibiotic resistant bacteria (ARB) HLS.6 and removal of intracellular antibiotic resistance gene (ARG, sul1) and class I integrase gene (intI1) by nanoscale zero-valent iron (nZVI) and sulfide-modified nZVI (S-nZVI) with different S/Fe molar ratios were investigated in this study. The S-nZVI with high sulfur content (S/Fe = 0.05, 0.1, 0.2) was superior to nZVI and the treatment effect was best when S/Fe was 0.1. The ARB (2 × 10(7) CFU/mL) could be completely inactivated by 1.12 g/L of S-nZVI (S/Fe = 0.1) within 15 min, and the removal rates of intracellular sul1 and intI1 reached up to 4.39 log and 4.67 log at 60 min, respectively. Quenching experiments and flow cytometry proved that reactive oxygen species and adsorption were involved in the ARB inactivation and target genes removal. Bacterial death and live staining experiments and transmission electron microscopy showed that the ARB cell structure and intracellular DNA were severely damaged after S-nZVI treatment. This study provided a potential alternative method for controlling the antibiotic resistance in aquatic environment. | 2020 | 32585519 |
| 7835 | 17 | 0.9997 | Crouching bacteria, hidden tetA genes in natural waters: Intracellular damage via double persulfate activation (UVA/Fe(2+)/PDS) effectively alleviates the spread of antibiotic resistance. In this study, we elucidated the chemical and biological inactivation mechanisms of peroxydisulfate (PDS) activated by UVA and Fe(2+) (UVA/Fe(2+)/PDS) in wild-type antibiotic-resistant bacteria (ARB) isolated from a river in Inner Mongolia. Among the screened wild-type ARB, the relative abundance of unidentified Enterobacteriaceae, Stenotrophomonas, and Ralstonia was high. A ratio of 1:1 for Fe(2+) and PDS under 18 W·m(-2) UVA radiation (sunny days) completely inactivated the environmental ARB isolates. In the macro view of the inactivation process, Fe(2+) first activates PDS rapidly, and later the UVA energy accumulated starts to activate PDS; HO• then becomes the main active species at a rate-limiting step. From a micro perspective, damage to the cell wall, intracellular proteins, inactivation of antioxidant enzymes, and genetic material degradation are the inactivation series of events by UVA/Fe(2+)/PDS, contributing to the 97.8 % inactivation of ARB at the initial stage. No regrowth of sublethal ARBs was observed. The transfer of tetracycline resistance genes from ARB to lab E. coli was evaluated by horizontal gene transfer (HGT), in which no HGT occurred when ARB was eliminated by UVA/Fe(2+)/PDS. Moreover, the sulfate and iron residuals in the effluents of treated water were lower than the drinking water standards. In summary, PDS, UVA, and Fe(2+) activation effectively inactivated wild ARB with a low concentration of reagents, while inhibiting their regrowth and spread of resistance due to the contribution of intracellular inactivation pathways. | 2024 | 39316921 |
| 7601 | 18 | 0.9997 | Evaluating the Impact of Cl(2)(•-) Generation on Antibiotic-Resistance Contamination Removal via UV/Peroxydisulfate. The removal of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) using sulfate anion radical (SO(4)(•-))-based advanced oxidation processes has gained considerable attention recently. However, immense uncertainties persist in technology transfer. Particularly, the impact of dichlorine radical (Cl(2)(•-)) generation during SO(4)(•-)-mediated disinfection on ARB/ARGs removal remains unclear, despite the Cl(2)(•-) concentration reaching levels notably higher than those of SO(4)(•-) in certain SO(4)(•-)-based procedures applied to secondary effluents, hospital wastewaters, and marine waters. The experimental results of this study reveal a detrimental effect on the disinfection efficiency of tetracycline-resistant Escherichia coli (Tc-ARB) during SO(4)(•-)-mediated treatment owing to Cl(2)(•-) generation. Through a comparative investigation of the distinct inactivation mechanisms of Tc-ARB in the Cl(2)(•-)- and SO(4)(•-)-mediated disinfection processes, encompassing various perspectives, we confirm that Cl(2)(•-) is less effective in inducing cellular structural damage, perturbing cellular metabolic activity, disrupting antioxidant enzyme system, damaging genetic material, and inducing the viable but nonculturable state. Consequently, this diminishes the disinfection efficiency of SO(4)(•-)-mediated treatment owing to Cl(2)(•-) generation. Importantly, the results indicate that Cl(2)(•-) generation increases the potential risk associated with the dark reactivation of Tc-ARB and the vertical gene transfer process of tetracycline-resistant genes following SO(4)(•-)-mediated disinfection. This study underscores the undesired role of Cl(2)(•-) for ARB/ARGs removal during the SO(4)(•-)-mediated disinfection process. | 2024 | 38477971 |
| 7837 | 19 | 0.9997 | Reducing the risk of exposure of airborne antibiotic resistant bacteria and antibiotic resistance genes by dynamic continuous flow photocatalytic reactor. In this study, based on the dynamic photocatalytic reactor constructed by the new photocatalyst TiO(2)/MXene, the purification process of different biological particles in aerosol was systematically studied. Multidrug resistant bacteria were easier to inactivate than common bacteria of the same kind, whether under UV conditions or photocatalysis. Photocatalyst was loaded on porous polyurethane sponge filler so that the combined effect of adsorption and advanced oxidation significantly improved the antibiotic resistant bacteria (ARB) disinfection effect. The inactivation efficiency of two ARBs under UV254 increased by 1.2 lg and 2.1 lg. In addition, it was found that the microorganisms treated by UV had slight self-repair phenomenon in a short time, while the microbial activity decreased continuously after photocatalysis. With the addition of photocatalyst, the particle size distribution of airborne Escherichia coli decreased and the micro morphology of cells was more seriously damaged. Antibiotic resistance genes (ARGs) carried by ARB can be dissociated into the environment after cell destruction, but it can be removed at a high level (sul2 can achieve 2.11 lg) in the continuous reactor at the same time. While avoiding secondary pollution, it also provides a powerful solution for airborne ARGs control. | 2022 | 35074752 |