Using the heat generated from electrically conductive concrete slabs to reduce antibiotic resistance in beef cattle manure. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
781201.0000Using the heat generated from electrically conductive concrete slabs to reduce antibiotic resistance in beef cattle manure. Proper treatment is necessary to reduce antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in livestock manure before land application. Conventional stockpiling suffers unreliable removal efficiency, while composting can be complicated and expensive. The objective of this study was to test the feasibility of a novel heat-based technology, i.e., stockpiling manure on conductive concrete slabs, to inactivate ARB and ARGs in beef cattle manure. In this study, two independent bench-scale trials were conducted. In both trials, samples were taken from manure piles on conductive concrete slabs and regular slabs (i.e., heated and unheated piles). In the heated pile of the first trial, 25.9% and 83.5% of the pile volume met the EPA Class A and Class B biosolids standards, respectively. For the heated pile of the second trial, the two values were 43.9% and 74.2%. In both trials, nearly all forms of the total and resistant Escherichia coli and enterococci were significantly lower in the heated piles than in the unheated piles. Besides, significant reduction of ARGs in heated piles was observed in the first trial. Through this proof-of-concept study, the new technology based on conductive concrete slabs offers an alternative manure storage method to conventional stockpiling and composting with respect to reduce ARB and ARGs in manure.202133736325
707210.9995Stockpiling versus Composting: Effectiveness in Reducing Antibiotic-Resistant Bacteria and Resistance Genes in Beef Cattle Manure. Manure storage methods can affect the concentration and prevalence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in cattle manure prior to land application. The objective of this study was to compare stockpiling and composting with respect to their effectiveness in reducing ARB and ARGs in beef cattle manure in a field-scale study. Field experiments were conducted in different seasons with different bulking agents for composting. For both the winter-spring cycle and the summer-fall cycle, ARB concentrations declined below the limit of quantification rapidly in both composting piles and stockpiles; however, ARB prevalence was significantly greater in the composting piles than in the stockpiles. This was likely due to the introduction of ARB from bulking agents. There was no significant change in ARG concentrations between initial and final concentrations for either manure storage treatment during the winter-spring cycle, but a significant reduction of the ARGs erm(B), tet(O), and tet(Q) over time was observed for both the composting pile and stockpile during the summer-fall cycle. Results from this study suggest that (i) bulking agent may be an important source of ARB and ARGs for composting; (ii) during cold months, the heterogeneity of the temperature profile in composting piles could result in poor ARG reduction; and (iii) during warm months, both stockpiling and composting can be effective in reducing ARG abundance. IMPORTANCE Proper treatment of manure is essential to reduce the spread of antibiotic resistance and protect human health. Stockpiling and composting are two manure storage methods which can reduce antibiotic-resistant bacteria and resistance genes, although few field-scale studies have examined the relative efficiency of each method. This study examined the ability of both methods in both winter-spring and summer-fall cycles, while also accounting for heterogeneity within field-scale manure piles. This study determined that bulking agents used in composting could contribute antibiotic-resistant bacteria and resistance genes. Additionally, seasonal variation could hinder the efficacy of composting in colder months due to heterogeneity in temperature within the pile; however, in warmer months, either method of manure storage could be effective in reducing the spread of antibiotic resistance.202134085860
781720.9993Effect of alkaline treatment on pathogens, bacterial community and antibiotic resistance genes in different sewage sludges for potential agriculture use. Alkaline treatment is widely used to reduce pathogens in sewage sludge in developing countries and guarantee that it is safe for use in agriculture. The aim of this study was to investigate the effect of alkaline treatment applied to waste-activated (WAS) and Upflow Anaerobic Sludge Blanket (UASB)-sludge on the bacterial community, pathogens (viable helminths eggs and Salmonella spp), and antibiotic resistance genes (ARG). The bacterial community structure was examined through denaturing gel gradient electrophoresis (DGGE), targeting 16S rRNA genes. Polymerase chain reaction (PCR) was applied to evaluate the presence of several ARGs. The conducted alkaline experiment consisted of adding hydrated lime (Ca(OH)(2)) to sewage sludges. Samples were taken before and after 2, 24, 48, and 72 hours of treatment. Alkaline treatment changed considerably the bacterial community structure and after 24 hours, shifts in bacterial profiles were more pronounced in the UASB sludge sample than in WAS. Some bacteria remained under extreme pH conditions (pH > 12), such as Azospira oryzae and Dechloromonas denitrificans in the WAS samples, and Geothrix and Geobacter in the UASB sludge samples. The values of pathogens and indicators in the sludge after 24 hours of alkaline treatment meet sanitary law regulations and thus the sludges could have the potential to agricultural distribution. It is important to highlight that ARG, which are not currently present in sanitary regulations, were detected in the sludge samples after the alkaline treatment, which could be a concern for human health.202030051768
757130.9993Ancient Oriental Wisdom still Works: Removing ARGs in Drinking Water by Boiling as compared to Chlorination. Antibiotic resistance genes (ARGs) in municipal drinking water may not be effectively removed during centralized treatment. To reduce potential health risks, water disinfection at the point-of-use scale is warranted. This study investigated the performance of boiling, a prevalent household water disinfection means, in response to ARGs contamination. We found that boiling was more efficient in inactivating both Escherichia coli and environmental bacteria compared to chlorination and pasteurization. Boiling of environmental bacteria suspension removed a much broader spectrum of ARGs and mobile genetic elements (up to 141 genes) than chlorination (up to 13 genes), such better performance was largely attributed to a stronger inactivation of chlorine-tolerant bacteria including Acinetobacter and Bacillus. Accumulation of extracellular ARGs was found during low-temperature heating (≤ 80°C) and in the initial stage of chlorination (first 3 min when initial chlorine was 5 mg/L and first 12 min when initial chlorine was 1 mg/L). These extracellular ARGs as well as the intracellular ARGs got removed as the heating temperature increased or the chlorination time prolonged. Under the same treatment time (30 min), high-temperature heating (≥ 90.1°C) damaged the DNA structure more thoroughly than chlorination (5 mg/L). Taking into account the low transferability of ARGs after DNA melting, boiling may provide an effective point-of-use approach to attenuating bacterial ARGs in drinking water and is still worth promoting in the future.202234910990
781840.9993Ozonation and UV(254)(nm) radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. Conventional wastewater treatment has a limited capacity to reduce antibiotic resistant bacteria and genes (ARB&ARG). Tertiary treatment processes are promising solutions, although the transitory inactivation of bacteria may select ARB&ARG. This study aimed at assessing the potential of ozonation and UV(254nm) radiation to inactivate cultivable fungal and bacterial populations, and the selected genes 16S rRNA (common to all bacteria), intI1 (common in Gram-negative bacteria) and the ARG vanA, bla(TEM), sul1 and qnrS. The abundance of the different microbiological parameters per volume of wastewater was reduced by ∼2 log units for cultivable fungi and 16S rRNA and intI1 genes, by∼3-4 log units, for total heterotrophs, enterobacteria and enterococci, and to values close or below the limits of quantification for ARG, for both processes, after a contact time of 30min. Yet, most of the cultivable populations, the 16S rRNA and intI1 genes as well as the ARG, except qnrS after ozonation, reached pre-treatment levels after 3days storage, suggesting a transitory rather than permanent microbial inactivation. Noticeably, normalization per 16S rRNA gene evidenced an increase of the ARG and intI1 prevalence, mainly after UV(254)(nm) treatment. The results suggest that these tertiary treatments may be selecting for ARB&ARG populations.201727072309
757250.9993Stormwater runoff treatment through electrocoagulation: antibiotic resistant bacteria removal and its transmission risks. Recently, increasing attention has been paid to antibiotic resistant bacteria (ARB) in stormwater runoff. However, there were little data on ARB removal through electrocoagulation (EC) treatment. In this study, batch experiments were conducted to investigate key designs for ARB removal, role of SS, effects of water matrix, and potential risks after EC treatment under the pre-determined conditions. EC treatment with 5 mA/cm(2) of current density and 4 cm of inter-electrode distance was optimal with the highest ARB removal (3.04 log reduction for 30 min). The presence of SS significantly improved ARB removal during EC treatment, where ARB removal increased with the increase of SS levels when SS less than 300 mg/L. Large ARB removal was found under particles with size lower than 150 μm with low contribution (less than 10%) of the settlement without EC treatment, implying that the enhancement of ARB adsorption onto small particles could be one of the reasonable approaches for ARB removal through EC treatment. ARB removal increased firstly and then decreased with the increase of pH, while had proportional relationship with conductivity. After the optimal condition, there were weak conjugation transfer but high transformation frequency (5.5 × 10(-2) for bla(TEM)) for target antibiotic resistance genes (ARGs), indicating that there could be still a risk of antibiotic resistance transformation after EC treatment. These suggested that the combination of EC and other technologies (like electrochemical disinfection) should be potential ways to control antibiotic resistance transmission through stormwater runoff.202436848218
760560.9993Inactivation of antibiotic resistant bacteria and their resistance genes in sewage by applying pulsed electric fields. We evaluated the suitability of pulsed electric field (PEF) technology as a new disinfection option in the sewage treatment plants (STPs) that can inactivate antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). It was shown that PEF applied disinfection could inactivate not only vancomycin-resistant enterococci (VRE), but also vanA resistance gene. Cultivable VRE could be effectively inactivated by PEF applied disinfection, and were reduced to below the detection limit (log reduction value of VRE > 5 log). Although the vanA also showed a reduction of more than 4 log, it remained in the order of 10(5) copies/mL, suggesting that ARGs are more difficult to be inactivated than ARB in PEF applied disinfection. Among parameters in each applying condition verified in this study, the initial voltage was found to be the most important for inactivation of ARB and ARGs. Furthermore, frequency was a parameter that affects the increase or decrease of the duration time, and it was suggested that the treatment time could be shortened by increasing the frequency. Our results strongly suggested that PEF applied disinfection may be a new disinfection technology option for STPs that contributes to the control of ARB and ARGs contamination in the aquatic environments.202234879573
803570.9993Effects of hydrothermal treatment on the reduction of antibiotic-resistant Escherichia coli and antibiotic resistance genes and the fertilizer potential of liquid product from cattle manure. In this study, the reduction in the abundance of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) and the fertilizer potential of liquid products from hydrothermally treated cattle manure were investigated. Hydrothermal treatment (HTT) was conducted under different reaction temperatures (125, 150, 175 and 200 °C) and retention times (60, 90 and 120 min). The total organic carbon (TOC) and total nitrogen (TN) of the liquid product increased with increasing reaction temperature. The germination index (GI), a measure of the percentage of germination, exceeded 90 % at 125, 150, and 175 °C in diluted samples, while it decreased to 18 % at 200 °C. Although a longer retention time contributed to an increase in TOC of liquid products, it did not increase the GI values. The liquid product should be diluted or adjusted before use as fertilizer to prevent phytotoxicity. In our analysis of ARB and ARGs, E. coli and antibiotic-resistant E. coli were completely reduced after HTT, except for the operating conditions of 125 °C and 60 min. Although both a higher reaction temperature and longer retention time tended to be better for the reduction of ARGs and intI1, it was found that the longer retention time is much more effective than the higher reaction temperature. The reduction of target ARGs and intI1 was 2.9-log under175 °C and 120 min. Comprehensively considering the fertilizer potential of liquid product and the reduction of ARB and ARGs, 175 °C of reaction temperature and 120 min of retention time of operating conditions for HTT were recommended.202438744164
779180.9993Investigation of reduction in risk from antibiotic resistance genes in laboratory wastewater by using O(3) , ultrasound, and autoclaving. Biological laboratory wastewater containing both antibiotic-resistant bacteria (ARB) and antibiotics is a potential source of antibiotic resistance genes (ARGs). Thus, we determined the efficacy of autoclaving, a common disinfection method, in eliminating 5 ARGs (sul1, sul2, tetW, tetM, amp) and the integrase-encoding gene intI1 from laboratory wastewater. Autoclaving (15 min, 121°C) inactivated all bacteria including ARB, whereas ARGs persisted in the wastewater with limited reduction even after 60 min of treatment. Ozonation (O(3) ), ultrasound (US), O(3) /US, and autoclaving followed by O(3) were investigated for their ability to reduce ARGs in laboratory wastewater. With O(3) and O(3) /US, the reduction rate ranged from 5.44 to 7.13 log for all ARGs investigated. Wastewater treatment with US alone did not reduce ARGs under the present experimental conditions (150 W, 53 kHz). Among the four treatments, autoclaving followed by O(3) treatment showed the highest reduction rates in the shortest time; however, further optimization and investigation are needed for the advanced treatment of bio-laboratory wastewater. Overall, this study provides novel insights into ARG sources and demonstrates that advanced oxidation methods can be useful to optimize laboratory wastewater treatment for ARG inactivation. PRACTITIONER POINTS: Bio-laboratory wastewater is potential reservoir of ARGs. Conventional autoclaving was not able to reduce ARGs to a low level. Autoclaving-O(3) completely eliminate all the bacteria. Autoclaving-O(3) reduced ARGs efficiently (6.12-7.86 logs removal in 60 min).202132891064
784790.9993Inactivation and change of tetracycline-resistant Escherichia coli in secondary effluent by visible light-driven photocatalytic process using Ag/AgBr/g-C(3)N(4). Control of antibiotic-resistant bacteria (ARB) and their related genes in secondary effluents has become a serious issue because of increased awareness of their health risks. A considerable number of techniques have been developed in recent years, particularly in relation to advanced oxidation. However, limited information is known about cellular behavior and resistance characteristic change during photocatalytic treatment. In this study, the inactivation of tetracycline (TC)-resistant Escherichia coli (TC-E. coli), removal of TC-resistant genes (TC-RGs), and antibiotic susceptibility were evaluated by employing photocatalytic treatment using Ag/AgBr/g-C(3)N(4) with visible light irradiation. The effects of light intensity, photocatalyst dosage, and reaction ambient temperature on photocatalysis were modelled and investigated. The rate of TC-E. coli removal was also optimized. Results demonstrated that the optimal conditions for TC-E. coli removal included light intensity of 96.0 mW/cm(2), photocatalyst dosage of 211.0 mg/L, and reaction ambient temperature of 23.7 °C. Under such conditions, the ARB removal rate was 6.1 log after 90 min and the related TC-RG removal rates were 49%, 86%, 69%, and 86% for tetA, tetM, tetQ, and intl1, respectively. The minimum inhibitory concentration test after photocatalysis shows that the antibiotic resistance of TC-E. coli was enhanced, which may be mainly due to the changes in the membrane potential and resulted in difficulty in destroying the bacteria through antibiotic contact. Hence, photocatalytic treatment could be an ideal method for ARB and antibiotic-resistant gene (ARG) control in wastewater, but the health risks of the remaining ARB and ARG should be investigated further.202031841919
8003100.9993Dynamics of antibiotic resistance agents during sludge alkalinization treatment. This study aimed to assess the removal of antimicrobial resistance agents (antibiotics, antibiotic-resistant bacteria - ARB, and antimicrobial resistance genes - ARGs) from aerobic and anaerobic sludges treated with quicklime (chemical alkalinization). Different mixing ratios (25%, 35%, and 45%) and contact times (2 h and 72 h) were evaluated. The findings revealed that anaerobic sludge responded more effectively to alkaline treatment, achieving better removal rates of antibiotics, ARB, and ARGs compared to aerobic sludge. The 45% lime treatment yielded the highest antibiotic removal rates, with average reductions of 19% in aerobic sludge and 28% in anaerobic sludge. The 35% lime treatment was the most effective in reducing ARGs across both types of sludge (average removal of 2 logs). The 25% lime treatment proved most efficient for removing ARB, with average reductions of 4 logs (aerobic) and 5 logs (anaerobic). The contact time between the sludge and quicklime also influenced the removal of resistance agents. An increase in the proportion of antibiotics and the absolute concentration of ARB and ARGs was observed after 72 h compared to the samples analyzed after 2 h of contact. This increase was more pronounced in aerobic sludge samples treated with 35% and 45% lime. Despite the overall reduction, none of the monitored resistant genes or bacteria were completely eradicated in both sludge samples, raising concerns about their potential dissemination into the environment.202439414064
7813110.9993A framework predicting removal efficacy of antibiotic resistance genes during disinfection processes with machine learning. Disinfection has been applied widely for the removal of antibiotic resistance genes (ARGs) to curb the spread of antibiotic resistance. Quantitative polymerase chain reaction (qPCR) is the most used method to quantify the damage of DNA thus calculating the ARG degradation during disinfection but suffers the deviation due to the limitation of amplicon length. In contrast, transformation assay more accurately measures ARG deactivation based on expression of disinfected ARG in the receiving bacteria but is typically laborious and material-intensive. This work applied machine learning (ML) to develop a framework by using qPCR results as a proxy to estimate the transformation assay measurements during disinfection with chlorine (FAC), ultraviolet (UV(254)), ozone (O(3)), and hydrogen peroxide/ultraviolet (UV/H(2)O(2)) for multiple kinds of ARGs. ARG degradation rates and deactivation rates were well predicted with the optimal correlation coefficient (R(2)) of all test sets > 0.926 and > 0.871, respectively. Besides, by concatenating the ARG degradation and deactivation predictive models, ARG removal efficiency under given disinfection conditions was directly predicted as the loss of transformation activity with R(2) > 0.828. Furthermore, an online platform was built to provide users with access to the developed ML models for rapid and accurate evaluation of ARG removal efficiency.202540179779
7194120.9992Response of antibiotic resistance genes in constructed wetlands during treatment of livestock wastewater with different exogenous inducers: Antibiotic and antibiotic-resistant bacteria. This work aimed to study the behavior of antibiotic resistance genes (ARGs) in constructed wetlands with different exogenous inducers additions (oxytetracycline and its resistant bacteria) by high-throughput quantitative polymerase chain reaction. Results indicated that constructed wetlands have the potential to reduce ARGs relative abundances in wastewater, and the total ARGs removal efficiency could exceed 60%. ARGs profile in the effluent differed from that in the influent, and that did not directly reflect the export of dominant ARGs in wetland biofilms. Meanwhile, the highest levels of detected numbers and relative abundances of ARGs were 43 and 3.35 × 10(-1) for control system and 44 and 6.40 × 10(-1) for treatment system, respectively, which meant that ARGs generation in wetlands were inevitable, and antibiotic and antibiotic-resistant bacteria from wastewater could indeed promote ARGs abundance in the system. Compared to the single roles of inducers, their synergistic role had a more significant influence on ARGs relative abundance.202032652450
7580130.9992Inactivation of antibiotic resistance genes in antibiotic fermentation residues by ionizing radiation: Exploring the development of recycling economy in antibiotic pharmaceutical factory. Antibiotic fermentation residues are a kind of hazardous waste due to the existence of the residual antibiotics and the potential risk to generate antibiotics resistance genes (ARGs). The appropriate treatment and disposal of antibiotic fermentation residues is imperative. In this study ionizing radiation was applied to treat the antibiotic fermentation residues and the removal efficiencies of antibiotic (erythromycin), ARGs (ermB and ermF) and antibiotic resistant bacteria were investigated. The experimental results showed that erythromycin A content in antibiotic fermentation residues decreased by 86% when the dose was 10 kGy. Moreover, the abundance of ermB and ermF reduced by 89% and 98% at 10 kGy irradiation. Over 99% of total bacteria was removed and antibiotic resistant bacteria (ARB) were less than detection limit after 10 kGy irradiation. Ionizing radiation process is a promising technology for simultaneously removing antibiotic and inactivating ARGs and ARB in antibiotic fermentation residues. Moreover, the irradiation at 10 kGy had no significant influence on the macromolecules organic matters (protein, polysaccharides) of the antibiotic fermentation residues, suggesting that the treated fermentative residues can be used as fertilizer, which could provide the technical support for the development of recycling economy in antibiotic pharmaceutical factory.201930691886
7763140.9992Antibiotic resistance genes fate and removal by a technological treatment solution for water reuse in agriculture. In order to mitigate the potential effects on the human health which are associated to the use of treated wastewater in agriculture, antibiotic resistance genes (ARGs) are required to be carefully monitored in wastewater reuse processes and their spread should be prevented by the development of efficient treatment technologies. Objective of this study was the assessment of ARGs reduction efficiencies of a novel technological treatment solution for agricultural reuse of municipal wastewaters. The proposed solution comprises an advanced biological treatment (Sequencing Batch Biofilter Granular Reactor, SBBGR), analysed both al laboratory and pilot scale, followed by sand filtration and two different disinfection final stages: ultraviolet light (UV) radiation and peracetic acid (PAA) treatments. By Polymerase Chain Reaction (PCR), the presence of 9 ARGs (ampC, mecA, ermB, sul1, sul2, tetA, tetO, tetW, vanA) were analysed and by quantitative PCR (qPCR) their removal was determined. The obtained results were compared to the reduction of total bacteria (16S rDNA gene) and of a faecal contamination indicator (Escherichia coli uidA gene). Only four of the analysed genes (ermB, sul1, sul2, tetA) were detected in raw wastewater and their abundance was estimated to be 3.4±0.7 x10(4) - 9.6±0.5 x10(9) and 1.0±0.3 x10(3) to 3.0±0.1 x10(7) gene copies/mL in raw and treated wastewaters, respectively. The results show that SBBGR technology is promising for the reduction of ARGs, achieving stable removal performance ranging from 1.0±0.4 to 2.8±0.7 log units, which is comparable to or higher than that reported for conventional activated sludge treatments. No reduction of the ARGs amount normalized to the total bacteria content (16S rDNA), was instead obtained, indicating that these genes are removed together with total bacteria and not specifically eliminated. Enhanced ARGs removal was obtained by sand filtration, while no reduction was achieved by both UV and PAA disinfection treatments tested in our study.201627450254
7250150.9992Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids. The objective of this research was to investigate the ability of anaerobic and aerobic digesters to reduce the quantity of antibiotic resistant bacteria in wastewater solids. Lab-scale digesters were operated at different temperatures (22 °C, 37 °C, 46 °C, and 55 °C) under both anaerobic and aerobic conditions and fed wastewater solids collected from a full-scale treatment facility. Quantitative PCR was used to track five genes encoding tetracycline resistance (tet(A), tet(L), tet(O), tet(W), and tet(X)) and the gene encoding the integrase (intI1) of class 1 integrons. Statistically significant reductions in the quantities of these genes occurred in the anaerobic reactors at 37 °C, 46 °C, and 55 °C, with the removal rates and removal efficiencies increasing as a function of temperature. The aerobic digesters, in contrast, were generally incapable of significantly decreasing gene quantities, although these digesters were operated at much shorter mean hydraulic residence times. This research suggests that high temperature anaerobic digestion of wastewater solids would be a suitable technology for eliminating various antibiotic resistance genes, an emerging pollutant of concern.201021058743
7252160.9992Aerobic Composting and Anaerobic Digestion Decrease the Copy Numbers of Antibiotic-Resistant Genes and the Levels of Lactose-Degrading Enterobacteriaceae in Dairy Farms in Hokkaido, Japan. Efficient methods for decreasing the spread of antimicrobial resistance genes (ARGs) and transfer of antimicrobial-resistant bacteria (ARB) from livestock manure to humans are urgently needed. Aerobic composting (AC) or anaerobic digestion (AD) are widely used for manure treatment in Japanese dairy farms. To clarify the effects of AC and AD on antimicrobial resistance, the abundances of antimicrobial (tetracycline and cefazolin)-resistant lactose-degrading Enterobacteriaceae as indicator bacteria, copy numbers of ARGs (tetracycline resistance genes and β-lactamase coding genes), and concentrations of residual antimicrobials in dairy cow manure were determined before and after treatment. The concentration of tetracycline/cefazolin-resistant lactose-degrading Enterobacteriaceae was decreased over 1,000-fold by both AC and AD. ARGs such as tetA, tetB, and bla (TEM) were frequently detected and their copy numbers were significantly reduced by ∼1,000-fold by AD but not by AC. However, several ARG copies remained even after AD treatment. Although concentrations of the majority of residual antimicrobials were decreased by both AC and AD, oxytetracycline level was not decreased after treatment in most cases. In addition, 16S rRNA gene amplicon-based metagenomic analysis revealed that both treatments changed the bacterial community structure. These results suggest that both AC and AD could suppress the transmission of ARB, and AD could reduce ARG copy numbers in dairy cow manure.202134659165
7815170.9992Microbial Water Quality through a Full-Scale Advanced Wastewater Treatment Demonstration Facility. The fates of viruses, bacteria, and antibiotic resistance genes during advanced wastewater treatment are important to assess for implementation of potable reuse systems. Here, a full-scale advanced wastewater treatment demonstration facility (ozone, biological activated carbon filtration, micro/ultrafiltration, reverse osmosis, and advanced oxidation) was sampled over three months. Atypically, no disinfectant residual was applied before the microfiltration step. Microbial cell concentrations and viability were assessed via flow cytometry and adenosine triphosphate (ATP). Concentrations of bacteria (16S rRNA gene), viruses (human adenovirus and JC polyomavirus), and antibiotic resistance genes (sul1 and bla (TEM) ) were assessed via quantitative PCR following the concentration of large sample volumes by dead-end ultrafiltration. In all membrane filtration permeates, microbial concentrations were higher than previously reported for chloraminated membranes, and log(10) reduction values were lower than expected. Concentrations of 16S rRNA and sul1 genes were reduced by treatment but remained quantifiable in reverse osmosis permeate. It is unclear whether sul1 in the RO permeate was from the passage of resistance genes or new growth of microorganisms, but the concentrations were on the low end of those reported for conventional drinking water distribution systems. Adenovirus, JC polyomavirus, and bla (TEM) genes were reduced below the limit of detection (∼10(-2) gene copies per mL) by microfiltration. The results provide insights into how treatment train design and operation choices affect microbial water quality as well as the use of flow cytometry and ATP for online monitoring and process control.202236530600
7249180.9992Modeling the fate of antibiotic resistance genes and class 1 integrons during thermophilic anaerobic digestion of municipal wastewater solids. This study investigated the use of thermophilic anaerobic digestion for removing antibiotic resistance genes (ARGs) from residual municipal wastewater solids. Four laboratory-scale anaerobic digesters were operated in 8-day batch cycles at temperatures of 40, 56, 60, and 63 °C. Two tetracycline resistance genes (tet(W) and tet(X)), a fluoroquinolone resistance gene (qnrA), the integrase gene of class 1 integrons (intI1), 16S rRNA genes of all Bacteria, and 16S rRNA genes of methanogens were quantified using real-time quantitative PCR. ARG and intI1 quantities decreased at all temperatures and were described well by a modified form of the Collins-Selleck disinfection kinetic model. The magnitudes of Collins-Selleck kinetic parameters were significantly greater at thermophilic temperatures compared to 40 °C, but few statistically significant differences were observed among these parameters for the thermophilic anaerobic digesters. This model allows for the direct comparison of different operating conditions (e.g., temperature) on anaerobic digestion performance in mitigating the quantity of ARGs in wastewater solids and could be used to design full-scale anaerobic digesters to specifically treat for ARGs as a "pollutant" of concern.201626481624
8009190.9992High removal efficiency of antibiotic resistance genes in swine wastewater via nanofiltration and reverse osmosis processes. Swine wastewater treatment plant has become one of the main sources of antibiotic resistance genes (ARGs). Membrane treatment processes are promising solutions for removal of the emerging contaminants. However, limited studies have investigated the effects of nanofiltration and reverse osmosis treatment in removing ARGs in swine wastewater. In this study, the presence and the fate of common ARGs including sul1, sul2, tetA, tetM and tetW, as well as intI1 and 16S rRNA gene, were investigated in a medium-sized (6500) pig farm wastewater treatment plant (WWTP) equipped with conventional biological treatment and advanced membrane processing system. All of the genes were detected with highly abundance in the raw sewage. The biological treatments of the swine wastewater treatment plant did not reduce the quantity of the ARGs. As expected, nanofiltration and reverse osmosis treatment reduced the absolute gene copy number of ARGs efficiently (4.98-9.52 logs removal compared to raw sewage). Compared to the reverse osmosis effluent, however, the absolute abundance of ARGs in the artificial wetland increased by 1.00-2.06 logs. Meanwhile, the relative abundance of sulfonamide resistant genes were basically unchanged, while tetracycline resistance genes (tetA, tetM and tetW) decreased by 0.88, 3.47, 2.51 log, respectively. The results demonstrated that advanced membrane treatments are capable of removing various kinds of ARGs efficiently, as well as some common nitrogen and phosphorus contaminants. This study suggested a mature alternative method for the removal of ARGs from livestock wastewater.201930368154