Electrochemical flow-through disinfection reduces antibiotic resistance genes and horizontal transfer risk across bacterial species. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
780401.0000Electrochemical flow-through disinfection reduces antibiotic resistance genes and horizontal transfer risk across bacterial species. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), as emerging pollutants, are released into environment, increasing the risk of horizontal gene transfer (HGT). However, a limited number of studies quantified the effects of ARB disinfection on the HGT risk. This study investigated the inactivation of E. coli 10667 (sul) and the release and removal of ARGs using an electrochemical flow-through reactor (EFTR). Furthermore, the transfer frequencies and potential mechanisms of HGT after disinfection were explored using non-resistant E. coli GMCC 13373 as the recipient and E. coli DH5α carrying plasmid RP4 as the donor. A threshold of current density (0.25 mA/cm(2)) was observed to destroy cells and release intracellular ARGs (iARGs) to increase extracellular ARGs (eARGs) concentration. The further increase in the current density to 1 mA/cm(2) resulted in the decline of eARGs concentration due to the higher degradation rate of eARGs than the release rate of iARGs. The performance of ARGs degradation and HGT frequency by EFTR were compared with those of conventional disinfection processes, including chlorination and ultraviolet radiation (UV). A higher ARGs degradation (83.46%) was observed by EFTR compared with that under chlorination (10.23%) and UV (27.07%). Accordingly, EFTR reduced the HGT frequency (0.69) of released ARGs into the recipient (Forward transfer), and the value was lower than that by chlorination (2.69) and UV (1.73). Meanwhile, the surviving injured E. coli 10667 (sul) with increased cell permeability was transferred by plasmid RP4 from the donor (Reverse transfer) with a higher frequency of 0.33 by EFTR compared with that under chlorination (0.26) and UV (0.16). In addition, the sul3 gene was the least resistant to EFTR than sul1 and sul2 gene. These findings provide important insights into the mechanism of HGT between the injured E. coli 10667 (sul) and environmental bacteria. EFTR is a promising disinfection technology for preventing the spread of antibiotic resistance.202235085844
757210.9996Stormwater runoff treatment through electrocoagulation: antibiotic resistant bacteria removal and its transmission risks. Recently, increasing attention has been paid to antibiotic resistant bacteria (ARB) in stormwater runoff. However, there were little data on ARB removal through electrocoagulation (EC) treatment. In this study, batch experiments were conducted to investigate key designs for ARB removal, role of SS, effects of water matrix, and potential risks after EC treatment under the pre-determined conditions. EC treatment with 5 mA/cm(2) of current density and 4 cm of inter-electrode distance was optimal with the highest ARB removal (3.04 log reduction for 30 min). The presence of SS significantly improved ARB removal during EC treatment, where ARB removal increased with the increase of SS levels when SS less than 300 mg/L. Large ARB removal was found under particles with size lower than 150 μm with low contribution (less than 10%) of the settlement without EC treatment, implying that the enhancement of ARB adsorption onto small particles could be one of the reasonable approaches for ARB removal through EC treatment. ARB removal increased firstly and then decreased with the increase of pH, while had proportional relationship with conductivity. After the optimal condition, there were weak conjugation transfer but high transformation frequency (5.5 × 10(-2) for bla(TEM)) for target antibiotic resistance genes (ARGs), indicating that there could be still a risk of antibiotic resistance transformation after EC treatment. These suggested that the combination of EC and other technologies (like electrochemical disinfection) should be potential ways to control antibiotic resistance transmission through stormwater runoff.202436848218
784620.9995Removal of antibiotic resistance genes and inactivation of antibiotic-resistant bacteria by oxidative treatments. The persistence of antibiotics in the environment because of human activities, such as seafood cultivation, has attracted great attention as they can give rise to antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). In this study, we explored the inactivation and removal efficiencies of Escherichia coli SR1 and sul1 (plasmid-encoded ARGs), respectively, in their extracellular and intracellular forms (eARGs and iARGs) by three commonly used fishery oxidants, namely chlorine, bromine, and potassium permanganate (KMnO(4)), at the practical effective concentration range (0.5, 5, and 15 mg/L). Kinetics data were obtained using laboratory phosphate-buffered saline (PBS). Following the same fishery oxidation methods, the determined kinetics models were tested by studying the SR1 and sul1 disinfection efficiencies in (sterilized) pond water matrix. At concentrations of 5 and 15 mg/L, all three oxidants achieved sufficient cumulative integrated exposure (CT values) to completely inactivate SR1 and efficiently remove sul1 (up to 4.0-log). The oxidation methods were then applied to an unsterilized pond water matrix in order to study and evaluate the indigenous ARB and ARGs disinfection efficiencies in aquaculture, which reached 1.4-log and 1.0-log during treatment with fishery oxidants used in pond preparation at high concentrations before stocking (5-15 mg/L), respectively. A high chlorine concentration (15 mg/L) could efficiently remove ARGs (or iARGs) from pond water, and the iARG removal efficiency was higher than that of eARGs in pond water. The method and results of this study could aid in guiding future research and practical disinfection to control the spread of ARGs and ARB in aquaculture.202134030387
782430.9995H(2)O(2) and/or TiO(2) photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes. Inactivating antibiotic resistant bacteria (ARB) and removing antibiotic resistance genes (ARGs) are very important to prevent their spread into the environment. Previous efforts have been taken to eliminate ARB and ARGs from aqueous solution and sludges, however, few satisfying results have been obtained. This study investigated whether photocatalysis by TiO(2) was able to reduce the two ARGs, mecA and ampC, within the host ARB, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, respectively. The addition of H(2)O(2) and matrix effect on the removal of ARB and ARGs were also studied. TiO(2) thin films showed great effect on both ARB inactivation and ARGs removal. Approximately 4.5-5.0 and 5.5-5.8 log ARB reductions were achieved by TiO(2) under 6 and 12mJ/cm(2) UV(254) fluence dose, respectively. For ARGs, 5.8 log mecA reduction and 4.7 log ampC reduction were achieved under 120mJ/cm(2) UV(254) fluence dose in the presence of TiO(2). Increasing dosage of H(2)O(2) enhanced the removal efficiencies of ARB and ARGs. The results also demonstrated that photocatalysis by TiO(2) was capable of removing both intracellular and extracellular forms of ARGs. This study provided a potential alternative method for the removal of ARB and ARGs from aqueous solution.201727776873
784740.9995Inactivation and change of tetracycline-resistant Escherichia coli in secondary effluent by visible light-driven photocatalytic process using Ag/AgBr/g-C(3)N(4). Control of antibiotic-resistant bacteria (ARB) and their related genes in secondary effluents has become a serious issue because of increased awareness of their health risks. A considerable number of techniques have been developed in recent years, particularly in relation to advanced oxidation. However, limited information is known about cellular behavior and resistance characteristic change during photocatalytic treatment. In this study, the inactivation of tetracycline (TC)-resistant Escherichia coli (TC-E. coli), removal of TC-resistant genes (TC-RGs), and antibiotic susceptibility were evaluated by employing photocatalytic treatment using Ag/AgBr/g-C(3)N(4) with visible light irradiation. The effects of light intensity, photocatalyst dosage, and reaction ambient temperature on photocatalysis were modelled and investigated. The rate of TC-E. coli removal was also optimized. Results demonstrated that the optimal conditions for TC-E. coli removal included light intensity of 96.0 mW/cm(2), photocatalyst dosage of 211.0 mg/L, and reaction ambient temperature of 23.7 °C. Under such conditions, the ARB removal rate was 6.1 log after 90 min and the related TC-RG removal rates were 49%, 86%, 69%, and 86% for tetA, tetM, tetQ, and intl1, respectively. The minimum inhibitory concentration test after photocatalysis shows that the antibiotic resistance of TC-E. coli was enhanced, which may be mainly due to the changes in the membrane potential and resulted in difficulty in destroying the bacteria through antibiotic contact. Hence, photocatalytic treatment could be an ideal method for ARB and antibiotic-resistant gene (ARG) control in wastewater, but the health risks of the remaining ARB and ARG should be investigated further.202031841919
757450.9995Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. The emergence and spread of antibiotic resistance has posed a major threat to both human health and environmental ecosystem. Although the disinfection has been proved to be efficient to control the occurrence of pathogens, little effort is dedicated to revealing potential impacts of disinfection on transmission of antibiotic resistance genes (ARGs), particularly for free-living ARGs in final disinfected effluent of urban wastewater treatment plants (UWWTP). Here, we investigated the effects of chlorine disinfection on the occurrence and concentration of both extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in a full-scale UWWTP over a year. We reported that the concentrations of both eARGs and iARGs would be increased by the disinfection with chlorine dioxide (ClO(2)). Specifically, chlorination preferentially increased the abundances of eARGs against macrolide (ermB), tetracycline (tetA, tetB and tetC), sulfonamide (sul1, sul2 and sul3), β-lactam (ampC), aminoglycosides (aph(2')-Id), rifampicin (katG) and vancomycin (vanA) up to 3.8 folds. Similarly, the abundances of iARGs were also increased up to 7.8 folds after chlorination. In terms of correlation analyses, the abundance of Escherichia coli before chlorination showed a strong positive correlation with the total eARG concentration, while lower temperature and higher ammonium concentration were assumed to be associated with the concentration of iARGs. This study suggests the chlorine disinfection could increase the abundances of both iARGs and eARGs, thereby posing risk of the dissemination of antibiotic resistance in environments.201829501757
800660.9995Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. The emerging antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are increasingly appreciated to be as important as microbial contaminants. This paper focused on UV-activated persulfate (UV/PS), an advanced oxidation process, in removing ARB and ARGs from secondary wastewater effluent. Results showed that the inactivation efficiency of macrolides-resistant bacteria (MRB), sulfonamides-resistant bacteria (SRB), tetracyclines-resistant bacteria (TRB) and quinolones-resistant bacteria (QRB) by UV/PS reached 96.6 %, 94.7 %, 98.0 % and 99.9 % in 10 min, respectively. UV/PS also showed significant removal efficiency on ARGs. The reduction of total ARGs reached 3.84 orders of magnitude in UV/PS which is more than that in UV by 0.56 log. Particularly, the removal of mobile genetic elements (MGE) which might favor the horizontal gene transfer of ARGs among different microbial achieved 76.09 % by UV/PS. High-throughput sequencing revealed that UV/PS changed the microbial community. The proportions of Proteobacteria and Actinobacteria that pose human health risks were 4.25 % and 1.6 % less than UV, respectively. Co-occurrence analyzes indicated that ARGs were differentially contributed by bacterial taxa. In UV/PS system, hydroxyl radical and sulfate radical contributed to the removal of bacteria and ARGs. Our study provided a new method of UV/PS to remove ARGs and ARB for wastewater treatment.202031954307
784470.9995Insight into using a novel ultraviolet/peracetic acid combination disinfection process to simultaneously remove antibiotics and antibiotic resistance genes in wastewater: Mechanism and comparison with conventional processes. In this study, the simultaneous removal mechanism of antibiotics and antibiotic resistance genes (ARGs) was investigated using the novel ultraviolet/peracetic acid (UV/PAA) combination disinfection process and conventional disinfection processes were also applied for comparison. The results showed that UV/PAA disinfection with a high UV dosage (UV/PAA-H) was most effective for the removal of tetracyclines, quinolones, macrolides and β-lactams; their average removal efficiencies ranged from 25.7% to 100%, while NaClO disinfection was effective for the removal of sulfonamides (∼81.6%). The majority of ARGs were well removed after the UV/PAA-H disinfection, while specific genes including tetB, tetC, ermA and bla(TEM) significantly increased after NaClO disinfection. In addition, β-lactam resistance genes (-35.9%) and macrolides resistance genes (-12.0%) remarkably augmented after UV/NaClO disinfection. The highly reactive oxidation species generated from UV/PAA process including hydroxyl radicals (•OH) and carbon-centered organic radicals (R-C•), were responsible for the elimination of antibiotics and ARGs. Correlation analysis showed that tetracycline, sulfonamide and macrolide antibiotics removal showed a positive correlation with the corresponding ARGs, and a low dose of antibiotic residues played an important role in the distribution of ARGs. Metagenomic sequencing analysis showed that UV/PAA disinfection could not only greatly decrease the abundance of resistant bacteria but also downregulate the expression of key functional genes involved in ARGs propagation and inhibit the signal transduction of the host bacteria, underlying that its removal mechanism was quite different from that of NaClO-based disinfection processes. Our study provides valuable information for understanding the simultaneous removal mechanism of antibiotics and ARGs in wastewater during the disinfection processes, especially for the novel UV/PAA combination process.202234982977
757180.9995Ancient Oriental Wisdom still Works: Removing ARGs in Drinking Water by Boiling as compared to Chlorination. Antibiotic resistance genes (ARGs) in municipal drinking water may not be effectively removed during centralized treatment. To reduce potential health risks, water disinfection at the point-of-use scale is warranted. This study investigated the performance of boiling, a prevalent household water disinfection means, in response to ARGs contamination. We found that boiling was more efficient in inactivating both Escherichia coli and environmental bacteria compared to chlorination and pasteurization. Boiling of environmental bacteria suspension removed a much broader spectrum of ARGs and mobile genetic elements (up to 141 genes) than chlorination (up to 13 genes), such better performance was largely attributed to a stronger inactivation of chlorine-tolerant bacteria including Acinetobacter and Bacillus. Accumulation of extracellular ARGs was found during low-temperature heating (≤ 80°C) and in the initial stage of chlorination (first 3 min when initial chlorine was 5 mg/L and first 12 min when initial chlorine was 1 mg/L). These extracellular ARGs as well as the intracellular ARGs got removed as the heating temperature increased or the chlorination time prolonged. Under the same treatment time (30 min), high-temperature heating (≥ 90.1°C) damaged the DNA structure more thoroughly than chlorination (5 mg/L). Taking into account the low transferability of ARGs after DNA melting, boiling may provide an effective point-of-use approach to attenuating bacterial ARGs in drinking water and is still worth promoting in the future.202234910990
782690.9995Synergistic effect of sulfidated nano zerovalent iron and persulfate on inactivating antibiotic resistant bacteria and antibiotic resistance genes. Antimicrobial resistance continues to be a rising global threat to public health. It is well recognized that wastewater treatment plants are reservoirs of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, traditional disinfection techniques are not effective to simultaneously remove ARB and ARGs, and the dynamic analysis of ARB inactivation have also been deficient. In this study, sulfidated nano zerovalent iron (S-nZVI) coupled with persulfate (PS) was applied to simultaneously remove both ARB (E. coli K-12 with RP4 plasmid) and ARGs (extra- and intracellular ARGs). S-nZVI/PS completely inactivated ARB (~7.8-log reduction) within 10 min and degraded all extracellular ARGs (~8.0-log reduction) within 5 min. These efficiencies were significantly higher (decay rate constant, k = 0.138 min(-1)) than those achieved individually (S-nZVI: k = 0.076 min(-1); PS: k = 0.008 min(-1)), implying a synergistic effect between S-nZVI and PS against ARB and ARGs. The efficient removal rate of ARB was also supported by confocal microscopy and microfluidics at a single-cell level. The complete inactivation of ARB by S-nZVI/PS was also demonstrated in real drinking water and real wastewater effluent that contained natural organic matter and suspended solids. Regrowth assays showed that the treated ARB was not observed after 72 h or longer incubation, suggesting that ARB was permanently inactivated by radicals such as SO(4)(•-) and •OH. The destruction of bacterial cells compromised the removal efficiency of the intracellular ARGs, with only ~4.0-log reduction after 60 min treatment by S-nZVI/PS. Collectively, our results suggest the feasibility of S-nZVI coupled with PS for simultaneous ARB and ARGs removal in real water matrices.202133895590
7827100.9995Inactivation of antibiotic-resistant bacteria and antibiotic resistance genes by electrochemical oxidation/electro-Fenton process. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment are of great concern due to their potential risk to human health. The effluents from wastewater treatment plants and livestock production are major sources of ARB and ARGs. Chlorination, UV irradiation, and ozone disinfection cannot remove ARGs completely. In this study, the potential of electrochemical oxidation and electro-Fenton processes as alternative treatment technologies for inactivation of ARB and ARGs in both intracellular and extracellular forms was evaluated. Results showed that the electrochemical oxidation process was effective for the inactivation of selected ARB but not for the removal of intracellular ARGs or extracellular ARGs. The electro-Fenton process was more effective for the removal of both intracellular and extracellular ARGs. The removal efficiency after 120 min of electro-Fenton treatment under 21.42 mA/cm(2) was 3.8 logs for intracellular tetA, 4.1 logs for intracellular ampC, 5.2 logs for extracellular tetA, and 4.8 logs for extracellular ampC, respectively in the presence of 1.0 mmol/L Fe(2+). It is suggested that electrochemical oxidation is an effective disinfection method for ARB and the electro-Fenton process is a promising technology for the removal of both intracellular and extracellular ARGs in wastewater.202032701499
7825110.9995Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes. This study compared three different disinfection processes (chlorination, E-beam, and ozone) and the efficacy of three oxidants (H2O2, S2O(-)8, and peroxymonosulfate (MPS)) in removing antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in a synthetic wastewater. More than 30 mg/L of chlorine was needed to remove over 90% of ARB and ARG. For the E-beam method, only 1 dose (kGy) was needed to remove ARB and ARG, and ozone could reduce ARB and ARG by more than 90% even at 3 mg/L ozone concentration. In the ozone process, CT values (concentration × time) were compared for ozone alone and combined with different catalysts based on the 2-log removal of ARB and ARG. Ozone treatment yielded a value of 31 and 33 (mg·min)/L for ARB and ARGs respectively. On the other hand, ozone with persulfate yielded 15.9 and 18.5 (mg·min)/L while ozone with monopersulfate yielded a value of 12 and 14.5 (mg·min)/L. This implies that the addition of these catalysts significantly reduces the contact time to achieve a 2-log removal, thus enhancing the process in terms of its kinetics.201425079831
7573120.9995Chlorine and UV combination sequence: Effects on antibiotic resistance control and health risks of ARGs. The effective control of antibiotic resistance in aquatic environments is urgent. The combined chlorine and UV processes (Cl(2)-UV, UV/Cl(2), and UV-Cl(2)) are considered potential control processes for controlling antibiotic resistance. This study compared the effectiveness of these three processes in real water bodies and the potential health risks associated with antibiotic resistance genes (ARGs) after treatments. The removal of various antibiotic-resistant bacteria (ARB) and ARGs by the combined processes was analysed. The UV/Cl(2) process was less effective than the others in inactivating β-lactam-resistant bacteria (BRB) and sulfamethoxazole-resistant bacteria (SRB), which are more challenging to remove, though its performance might improve with increased UV fluence. Nevertheless, the UV/Cl(2) process showed an advantage in removing ARGs. The absolute abundance of aminoglycoside resistance genes (AmRGs), sulfonamide resistance genes (SRGs), macrolide resistance genes (MRGs), and multidrug efflux-associated ARGs detected after the UV/Cl(2) process was relatively low, and this process outperformed the others in removing a greater number of ARGs. Additionally, certain ARGs and bacterial genera were found to be enriched after the combined processes, with lower and more similar abundance levels of ARGs and genera observed after UV/Cl(2) and UV-Cl(2) processes compared to the Cl(2)-UV process. Health risk assessments indicated that the Cl(2)-UV process posed the highest risk, followed by UV/Cl(2) and UV-Cl(2) processes. Overall, the UV/Cl(2) process may offer the most practical advantages for controlling antibiotic resistance.202539708685
7867130.9995The removal of antibiotic resistant bacteria and antibiotic resistance genes by sulfidated nanoscale zero-valent iron activating periodate: Efficacy and mechanism. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have drawn much more attention due to their high risk on human health and ecosystem. In this study, the performance of sulfidated nanoscale zero-valent iron (S-nZVI)/periodate (PI) system toward ARB inactivation and ARGs removal was systematically investigated. The S-nZVI/PI system could realize the complete inactivation of 1 × 10(8) CFU/mL kanamycin, ampicillin, and tetracycline-resistant E. coli HB101 within 40 min, meanwhile, possessed the ability to remove the intracellular ARGs (iARGs) (including aphA, tetA, and tnpA) carried by E. coli HB101. Specifically, the removal of aphA, tetA, and tnpA by S-nZVI/PI system after 40 min reaction was 0.31, 0.47, and 0.39 log(10)copies/mL, respectively. The reactive species attributed to the E. coli HB101 inactivation were HO(•) and O(2)(•-), which could cause the destruction of E. coli HB101 morphology and enzyme system (such as superoxide dismutase and catalase), the loss of intracellular substances, and the damage of iARGs. Moreover, the influence of the dosage of PI and S-nZVI, the initial concentration of E. coli HB101, as well as the co-existing substance (such as HCO(3)(-), NO(3)(-), and humic acid (HA)) on the inactivation of E. coli HB101 and its corresponding iARGs removal was also conducted. It was found that the high dosage of PI and S-nZVI and the low concentration of E. coli HB101 could enhance the disinfection performance of S-nZVI/PI system. The presence of HCO(3)(-), NO(3)(-), and HA in S-nZVI/PI system showed inhibiting role on the inactivation of E. coli HB101 and its corresponding iARGs removal. Overall, this study demonstrates the superiority of S-nZVI/PI system toward ARB inactivation and ARGs removal.202337544470
7821140.9995Efficient inactivation of antibiotic resistant bacteria and antibiotic resistance genes by photo-Fenton process under visible LED light and neutral pH. Antibiotic resistance has been recognized as a major threat to public health worldwide. Inactivation of antibiotic resistant bacteria (ARB) and degradation of antibiotic resistance genes (ARGs) are critical to prevent the spread of antibiotic resistance in the environment. Conventional disinfection processes are effective to inactivate water-borne pathogens, yet they are unable to completely eliminate the antibiotic resistance risk. This study explored the potential of the photo-Fenton process to inactivate ARB, and to degrade both extracellular and intracellular ARGs (e-ARGs and i-ARGs, respectively). Using Escherichia coli DH5α with two plasmid-encoded ARGs (tetA and bla(TEM)(-1)) as a model ARB, a 6.17 log ARB removal was achieved within 30 min of applying photo-Fenton under visible LED and neutral pH conditions. In addition, no ARB regrowth occurred after 48-h, demonstrating that this process is very effective to induce permanent disinfection on ARB. The photo-Fenton process was validated under various water matrices, including ultrapure water (UPW), simulated wastewater (SWW) and phosphate buffer (PBS). The higher inactivation efficiency was observed in SWW as compared to other matrices. The photo-Fenton process also caused a 6.75 to 8.56-log reduction in eARGs based on quantitative real-time PCR of both short- and long amplicons. Atomic force microscopy (AFM) further confirmed that the extracellular DNA was sheared into short DNA fragments, thus eliminating the risk of the transmission of antibiotic resistance. As compared with e-ARGs, a higher dosage of Fenton reagent was required to damage i-ARGs. In addition, the tetA gene was more easily degraded than the bla(TEM)(-1) gene. Collectively, our results demonstrate the photo-Fenton process is a promising technology for disinfecting water to prevent the spread of antibiotic resistance.202032417561
8007150.9994Distinguishing removal and regrowth potential of antibiotic resistance genes and antibiotic resistant bacteria on microplastics and in leachate after chlorination or Fenton oxidation. The prevalence of antibiotic resistance, as well as microplastics (MPs) as vectors for antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has attracting growing attention. However, the fate of ARB/ARGs on MPs treated by chlorination and Fenton oxidation were poorly understood. Herein, the removal and regrowth of ARGs/ARB on MPs and in MPs-surrounding landfill leachate (an important reservoir of MPs and ARGs) after chlorination and Fenton oxidation were comparatively analyzed. Target ARGs on MPs were reduced obviously less than that in leachate, with the largest percentages reduction of 34.0-46.3% vs. 54.3-77.6% after chlorination and 92.1-97.3% vs. > 99.9% after Fenton oxidation, and similar removal patterns were observed for ARB. Moreover, a considerable regrowth of ARGs/ARB in leachate were found after 48 h of storage at the end of chlorination (5, 10, 20 and 50 mg/L), and a greater regrowth of ARGs and ARB occurred on MPs with up to 17 and 139 fold, respectively. In contrast, Fenton oxidation achieved a reduced regrowth of target ARGs/ARB. These findings indicated that the removal of ARGs/ARB on MPs were more difficult than that in leachate, and ARGs/ARB in leachate and especially on MPs exhibited a considerable potential for rapid regrowth after chlorination.202235158247
8500160.9994Plasma induced efficient removal of antibiotic-resistant Escherichia coli and antibiotic resistance genes, and inhibition of gene transfer by conjugation. Antibiotic-resistant bacteria (ARB) and their resistance genes (ARGs) are emerging environmental pollutants that pose great threats to human health. In this study, a novel strategy using plasma was developed to simultaneously remove antibiotic-resistant Escherichia coli (AR bio-56954 E. coli) and its ARGs, aiming to inhibit gene transfer by conjugation. Approximately 6.6 log AR bio-56954 E. coli was inactivated within 10 min plasma treatment, and the antibiotic resistance to tested antibiotics (tetracycline, gentamicin, and amoxicillin) significantly decreased. Reactive oxygen and nitrogen species (RONS) including •OH, (1)O(2), O(2)•(-), NO(2)(-), and NO(3)(-) contributed to ARB and ARGs elimination; their attacks led to destruction of cell membrane, accumulation of excessive intracellular reactive oxygen substances, deterioration of conformational structures of proteins, and destroy of nucleotide bases of DNA. As a result, the ARGs (tet(C), tet(W), blaTEM-1, aac(3)-II), and integron gene intI1), and conjugative transfer frequency of ARGs significantly decreased after plasma treatment. The results demonstrated that plasma has great prospective application in removing ARB and ARGs in water, inhibiting gene transfer by conjugation.202134214852
7866170.9994Inactivation of sulfonamide antibiotic resistant bacteria and control of intracellular antibiotic resistance transmission risk by sulfide-modified nanoscale zero-valent iron. The inactivation of a gram-negative sulfonamide antibiotic resistant bacteria (ARB) HLS.6 and removal of intracellular antibiotic resistance gene (ARG, sul1) and class I integrase gene (intI1) by nanoscale zero-valent iron (nZVI) and sulfide-modified nZVI (S-nZVI) with different S/Fe molar ratios were investigated in this study. The S-nZVI with high sulfur content (S/Fe = 0.05, 0.1, 0.2) was superior to nZVI and the treatment effect was best when S/Fe was 0.1. The ARB (2 × 10(7) CFU/mL) could be completely inactivated by 1.12 g/L of S-nZVI (S/Fe = 0.1) within 15 min, and the removal rates of intracellular sul1 and intI1 reached up to 4.39 log and 4.67 log at 60 min, respectively. Quenching experiments and flow cytometry proved that reactive oxygen species and adsorption were involved in the ARB inactivation and target genes removal. Bacterial death and live staining experiments and transmission electron microscopy showed that the ARB cell structure and intracellular DNA were severely damaged after S-nZVI treatment. This study provided a potential alternative method for controlling the antibiotic resistance in aquatic environment.202032585519
7570180.9994Effect and mechanism of residual-chlorine on the horizontal transfer of antibiotic resistance genes of chlorine resistant bacteria in reclaimed water. Chlorine disinfection inactivates most microbes in reclaimed water, but chlorine resistant bacteria (CRB) persist, threatening water safety and spreading antibiotic resistance genes (ARGs). ARG proliferation in reclaimed water systems risks public health, as dissemination via irrigation or urban reuse may enable environmental transmission to humans, exacerbating global antibiotic resistance. One hundred and fifty-two strains of CRB were isolated from reclaimed water in this study, and the detection rate of ARGs in those CRB was 100%, the detection rate for blTEM was 100%, followed by sul3 and tetG. Macrogenomic analysis revealed that Proteobacteria, Actinobacteria, and Bacteroidetes are the dominant CRB in reclaimed water. Long-term induction with the minimum inhibitory concentration (MIC) of NaClO enhanced the resistance of CRB to both Amp and NaClO. The EPS of CRB increased 1.30- to 2.04-fold, and the elevated surface hydrophobicity may serve as a co-resistance mechanism. EPS hindered disinfectant/antibiotic penetration, while hydrophobicity reduced hydrophilic molecule adhesion and promoted bacterial aggregation, both of which contribute to the enhanced resistance of CRB. Residual chlorine dose-dependently enhances ARG conjugation via ROS-SOS, ATP, and EPS pathways, unveiling novel CRB mechanisms and urging revised disinfection to mitigate ARG spread.202540580511
7845190.9994Mechanism and potential risk of antibiotic resistant bacteria carrying last resort antibiotic resistance genes under electrochemical treatment. The significant rise in the number of antibiotic resistance genes (ARGs) that resulted from our abuse of antibiotics could do severe harm to public health as well as to the environment. We investigated removal efficiency and removal mechanism of electrochemical (EC) treatment based on 6 different bacteria isolated from hospital wastewater carrying 3 last resort ARGs including NDM-1, mcr-1 and tetX respectively. We found that the removal efficiency of ARGs increased with the increase of both voltage and electrolysis time while the maximum removal efficiency can reach 90%. The optimal treatment voltage and treatment time were 3 V and 120 min, respectively. Temperature, pH and other factors had little influence on the EC treatment process. The mechanism of EC treatment was explored from the macroscopic and microscopic levels by scanning electron microscopy (SEM) and flow cytometry. Our results showed that EC treatment significantly changed the permeability of cell membrane and caused cells successively experience early cell apoptosis, late cell apoptosis and cell necrosis. Moreover, compared with traditional disinfection methods, EC treatment had less potential risks. The conjugative transfer frequencies of cells were significantly reduced after treatment. Less than 1% of bacteria entered the viable but nonculturable (VBNC) state and less than 5% of intracellular ARGs (iARGs) turned into extracellular ARGs (eARGs). Our findings provide new insights into as well as important reference for future electrochemical treatment in removing ARB from hospital wastewater.202235085630