# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7800 | 0 | 1.0000 | Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: inactivation, antibiotic resistance profiles and antibiotic resistance genes. AIMS: To evaluate the effect of ultraviolet (UV) disinfection on antibiotic-resistant Escherichia coli. METHODS AND RESULTS: Antibiotic-resistant E. coli strains were isolated from a wastewater treatment plant and subjected to UV disinfection. The effect of UV disinfection on the antibiotic resistance profiles and the antibiotic resistance genes (ARGs) of antibiotic-resistant E. coli was evaluated by a combination of antibiotic susceptibility analysis and molecular methods. Results indicated that multiple-antibiotic-resistant (MAR) E. coli were more resistant at low UV doses and required a higher UV dose (20 mJ cm(-2) ) to enter the tailing phase compared with those of antibiotic-sensitive E. coli (8 mJ cm(-2) ). UV disinfection caused a selective change in the inhibition zone diameters of surviving antibiotic-resistant E. coli and a slight damage to ARGs. The inhibition zone diameters of the strains resistant to antibiotics were more difficult to alter than those susceptible to antibiotics because of the existence and persistence of corresponding ARGs. CONCLUSIONS: The resistance of MAR bacteria to UV disinfection at low UV doses and the changes in inhibition zone diameters could potentially contribute to the selection of antibiotic-resistant bacteria in wastewater treatment after UV disinfection. The risk of spread of antibiotic resistance still exists owing to the persistence of ARGs. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study highlights the acquisition of other methods to control the spread of ARGs. | 2017 | 28459506 |
| 7801 | 1 | 0.9999 | Disinfection of swine wastewater using chlorine, ultraviolet light and ozone. Veterinary antibiotics are widely used at concentrated animal feeding operations (CAFOs) to prevent disease and promote growth of livestock. However, the majority of antibiotics are excreted from animals in urine, feces, and manure. Consequently, the lagoons used to store these wastes can act as reservoirs of antibiotics and antibiotic-resistant bacteria. There is currently no regulation or control of these systems to prevent the spread of these bacteria and their genes for antibiotic resistance into other environments. This study was conducted to determine the disinfection potential of chlorine, ultraviolet light and ozone against swine lagoon bacteria. Results indicate that a chlorine dose of 30 mg/L could achieve a 2.2-3.4 log bacteria reduction in lagoon samples. However, increasing the dose of chlorine did not significantly enhance the disinfection activity due to the presence of chlorine-resistant bacteria. The chlorine resistant bacteria were identified to be closely related to Bacillus subtilis and Bacillus licheniformis. A significant percentage of lagoon bacteria were not susceptible to the four selected antibiotics: chlortetracycline, lincomycin, sulfamethazine and tetracycline (TET). However, the presence of both chlorine and TET could inactivate all bacteria in one lagoon sample. The disinfection potential of UV irradiation and ozone was also examined. Ultraviolet light was an effective bacterial disinfectant, but was unlikely to be economically viable due to its high energy requirements. At an ozone dose of 100 mg/L, the bacteria inactivation efficiency could reach 3.3-3.9 log. | 2006 | 16678233 |
| 3844 | 2 | 0.9999 | Effects of Nutrient Level and Growth Rate on the Conjugation Process That Transfers Mobile Antibiotic Resistance Genes in Continuous Cultures. Bacteria in the effluent of wastewater treatment plants (WWTPs) can transfer antibiotic resistance genes (ARGs) to the bacteria in receiving water through conjugation; however, there is a lack of quantitative assessment of this phenomenon in continuous cultures. Our objective was to determine the effects of background nutrient levels in river water column and growth rates of bacteria on the conjugation frequency of ARGs from effluent bacteria to river bacteria, as well as on the resulting resistance level (i.e., MICs) of the river bacteria. Chemostats were employed to simulate the discharge points of WWTPs into rivers, where effluent bacteria (donor cells) meet river bacteria (recipient cells). Both donor and recipient cells were Escherichia coli cells, and the donor cells were constructed by filter mating with bacteria in the effluent of a local WWTP. Results showed that higher bacterial growth rate (0.45 h(-1) versus 0.15 h(-1)) led to higher conjugation frequencies (10(-4) versus 10(-6) transconjugant per recipient). The nutrient level also significantly affected the conjugation frequency, albeit to a lesser extent than the growth rate. The MIC against tetracycline increased from 2 mg/L in the recipient to 64 to 128 mg/L in transconjugants. In comparison, the MIC only increased to as high as 8 mg/L in mutants. Whole-genome sequencing showed that the tet-containing plasmid in both the donor and the transconjugant cells also occur in other fecal bacterial genera. The quantitative information obtained from this study can inform hazard identification related to the proliferation of wastewater-associated ARGs in surface water. IMPORTANCE WWTPs have been regarded as an important hot spot of ARGs. The discharge point of WWTP effluent, where ARGs may be horizontally transferred from bacteria of treated wastewater to bacteria of receiving water, is an important interface between the human-dominated ecosystem and the natural environment. The use of batch cultures in previous studies cannot adequately simulate the nutrient conditions and growth rates in receiving water. In this study, chemostats were employed to simulate the continuous growth of bacteria in receiving water. Furthermore, the experimental setup allowed for separate investigations on the effects of nutrient levels (i.e., simulating background nutrients in river water) and bacterial growth rates on conjugation frequencies and resulting resistance levels. The study generates statistically sound ecological data that can be used to estimate the risk of wastewater-originated ARGs as part of the One Health framework. | 2022 | 36094214 |
| 3433 | 3 | 0.9999 | Effect of subinhibitory concentrations on the spreading of the ampicillin resistance gene bla(CMY-2) in an activated sludge microcosm. As the problem of multi-resistant bacteria grows a better understanding of the spread of antibiotic resistance genes is of utmost importance for society. Wastewater treatment plants contain subinhibitory concentrations of antibiotics and are thought to be hotspots for antibiotic resistance gene propagation. Here we evaluate the influence of sub-minimum inhibitory concentrations of antibiotics on the spread of resistance genes within the bacterial community in activated sludge laboratory-scale sequencing batch reactors. The mixed communities were fed two different ampicillin concentrations (500 and 5000 µg/L) and the reactors were run and monitored for 30 days. During the experiment the β-lactamase resistance gene bla(CMY-2) was monitored via qPCR and DNA samples were taken to monitor the effect of ampicillin on the microbial community. The relative copy number of bla(CMY-2) in the reactor fed with the sub-minimum inhibitory concentration of 500 µg/L ampicillin was spread out over a wider range of values than the control and 5000 µg/L ampicillin reactors indicating more variability of gene number in the 500 µg/L reactor. This result emphasises the problem of sub-minimum inhibitory concentrations of antibiotics in wastewater. High-throughput sequencing showed that continuous exposure to ampicillin caused a shift from a Bacteroidetes to Proteobacteria in the bacterial community. The combined use of qPCR and high-throughput sequencing showed that ampicillin stimulates the spread of resistance genes and leads to the propagation of microbial populations which are resistant to it. | 2025 | 39215485 |
| 6760 | 4 | 0.9998 | Mechanism of antibiotic resistance spread during sub-lethal ozonation of antibiotic-resistant bacteria with different resistance targets. The increase and spread of antibiotic-resistant bacteria (ARB) in aquatic environments and the dissemination of antibiotic resistance genes (ARGs) greatly impact environmental and human health. It is necessary to understand the mechanism of action of ARB and ARGs to formulate measures to solve this problem. This study aimed to determine the mechanism of antibiotic resistance spread during sub-lethal ozonation of ARB with different antibiotic resistance targets, including proteins, cell walls, and cell membranes. ARB conjugation and transformation frequencies increased after exposure to 0-1.0 mg/L ozone for 10 min. During sub-lethal ozonation, compared with control groups not stimulated by ozone, the conjugative transfer frequencies of E. coli DH5α (CTX), E. coli DH5α (MCR), and E. coli DH5α (GEN) increased by 1.35-2.02, 1.13-1.58, and 1.32-2.12 times, respectively; the transformation frequencies of E. coli DH5α (MCR) and E. coli DH5α (GEN) increased by 1.49-3.02 and 1.45-1.92 times, respectively. When target inhibitors were added, the conjugative transfer frequencies of antibiotics targeting cell wall and membrane synthesis decreased 0.59-0.75 and 0.43-0.76 times, respectively, while that for those targeting protein synthesis increased by 1-1.38 times. After inhibitor addition, the transformation frequencies of bacteria resistant to antibiotics targeting the cell membrane and proteins decreased by 0.76-0.89 and 0.69-0.78 times, respectively. Cell morphology, cell membrane permeability, reactive oxygen species, and antioxidant enzymes changed with different ozone concentrations. Expression of most genes related to regulating different antibiotic resistance targets was up-regulated when bacteria were exposed to sub-lethal ozonation, further confirming the target genes playing a crucial role in the inactivation of different target bacteria. These results will help guide the careful utilization of ozonation for bacterial inactivation, providing more detailed reference information for ozonation oxidation treatment of ARB and ARGs in aquatic environments. | 2024 | 38810347 |
| 7200 | 5 | 0.9998 | Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure. Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs) in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi (Brassica chinensis L.) to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC) levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg(-1) were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tetX, bla(CTX-M), and sul1 and sul2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems. | 2017 | 29099753 |
| 7303 | 6 | 0.9998 | Stepwise impact of urban wastewater treatment on the bacterial community structure, antibiotic contents, and prevalence of antimicrobial resistance. Bacteria, antibiotics, and antibiotic resistance determinants are key biological pollutants in aquatic systems, which may lead to bacterial infections or prevent the cure of bacterial infections. In this study, we investigated how the wastewater treatment processes in wastewater treatment plants (WWTPs) affect these pollutants. We found that the addition of oxygen, polyaluminum chloride (PAC), and polyacrylamide (PAM), as well as ultraviolet (UV) disinfection could significantly alter the bacterial communities in the water samples. An overall shift from Gram-negative bacteria to Gram-positive bacteria was observed throughout the wastewater treatment steps, but the overall bacterial biomass was not reduced in the WWTP samples. The antibiotic contents were reduced by the WWTP, but the size of the reduction and the step when antibiotic degradation occurred differed among antibiotics. Ciprofloxacin, sulfamethoxazole and erythromycin could be removed completely by the WWTP, whereas cephalexin could not. The removal of ciprofloxacin, cephalexin, and erythromycin occurred in the anaerobic digester, whereas the removal of sulfamethoxazole occurred after the addition of PAC and PAM, and UV disinfection. Antimicrobial resistance determinants were highly prevalent in all of the samples analyzed, except for those targeting vancomycin and colistin. However, wastewater treatment was ineffective at removing antimicrobial resistance determinants from wastewater. There were strong correlations between intI1, floR, sul1, and ermB, thereby suggesting the importance of integrons for the spread of these antimicrobial resistance genes. In general, this study comprised a stepwise analysis of the impact of WWTPs on three biological pollutants: bacteria, antibiotics, and antimicrobial resistance determinants, where our results suggest that the design of WWTPs needs to be improved to address the threats due to these pollutants. | 2017 | 28967569 |
| 7302 | 7 | 0.9998 | Release of Antibiotic Resistant Bacteria by a Waste Treatment Plant from Romania. The occurrence and spread of bacterial antibiotic resistance are subjects of great interest, and the role of wastewater treatment plants has been attracting particular interest. These stations are a reservoir of bacteria, have a large range of organic and inorganic substances, and the amount of bacteria released into the environment is very high. The main purpose of the present study was to assess the removal degree of bacteria with resistance to antibiotics and identify the contribution of a wastewater treatment plant to the microbiota of Someşul Mic river water in Cluj county. The resistance to sulfamethoxazole and tetracycline and some of their representative resistance genes: sul1, tet(O), and tet(W) were assessed in this study. The results obtained showed that bacteria resistant to sulphonamides were more abundant than those resistant to tetracycline. The concentration of bacteria with antibiotic resistance changed after the treatment, namely, bacteria resistant to sulfamethoxazole. The removal of all bacteria and antibiotic-resistant bacteria was 98-99% and the degree of removal of bacteria resistant to tetracycline was higher than the bacteria resistant to sulfamethoxazole compared to total bacteria. The wastewater treatment plant not only contributed to elevating ARG concentrations, it also enhanced the possibility of horizontal gene transfer (HGT) by increasing the abundance of the intI1 gene. Even though the treatment process reduced the concentration of bacteria by two orders of magnitude, the wastewater treatment plant in Cluj-Napoca contributed to an increase in antibiotic-resistant bacteria concentrations up to 10 km downstream of its discharge in Someşul Mic river. | 2017 | 28781345 |
| 7183 | 8 | 0.9998 | Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Antibiotics are widely used in livestock for infection treatment and growth promotion. Wastes from animal husbandry are a potential environmental source of antibiotic-insensitive pathogens, and the removal efficiency of the resistance genotypes in current wastewater treatment plants (WWTPs) is unknown. In this study, quantitative PCR was used for evaluating antibiotic resistance genes in wastewater treatment processes. Six wastewater treatment plants in different swine farms were included in this study, and five antibiotic resistance genes (ARGs) were tested for each treatment procedure. All of the tested ARGs including tetA, tetW, sulI, sulII, and blaTEM genes were detected in six swine farms with considerable amounts. The results showed that antibiotic resistance is prevalent in livestock farming. The ARG levels were varied by wastewater treatment procedure, frequently with the highest level at anaerobic treatment tank and lowest in the activated sludge unit and the effluents. After normalizing the ARG levels to 16S rRNA gene copies, the results showed that ARGs in WWTP units fluctuated partly with the quantity of bacteria. Regardless of its importance in biodegradation, the anaerobic procedure may facilitate bacterial growth thus increasing the sustainability of the antibiotic resistance genotypes. After comparing the copy numbers in influx and efflux samples, the mean removal efficiency of ARGs ranged between 33.30 and 97.56%. The results suggested that treatments in the WWTP could partially reduce the spread of antibiotic-resistant bacteria, and additional procedures such as sedimentation may not critically affect the removal efficiency. | 2014 | 25064719 |
| 7819 | 9 | 0.9998 | Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. An ozone treatment system was investigated to analyze its impact on clinically relevant antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs). A concentration of 0.9±0.1g ozone per 1g DOC was used to treat conventional clarified wastewater. PCR, qPCR analyses, Illumina 16S Amplicon Sequencing, and PCR-DGGE revealed diverse patterns of resistances and susceptibilities of opportunistic bacteria and accumulations of some ARGs after ozone treatment. Molecular marker genes for enterococci indicated a high susceptibility to ozone. Although they were reduced by almost 99%, they were still present in the bacterial population after ozone treatment. In contrast to this, Pseudomonas aeruginosa displayed only minor changes in abundance after ozone treatment. This indicated different mechanisms of microorganisms to cope with the bactericidal effects of ozone. The investigated ARGs demonstrated an even more diverse pattern. After ozone treatment, the erythromycin resistance gene (ermB) was reduced by 2 orders of magnitude, but simultaneously, the abundance of two other clinically relevant ARGs increased within the surviving wastewater population (vanA, blaVIM). PCR-DGGE analysis and 16S-Amplicon-Sequencing confirmed a selection-like process in combination with a substantial diversity loss within the vital wastewater population after ozone treatment. Especially the PCR-DGGE results demonstrated the survival of GC-rich bacteria after ozone treatment. | 2016 | 27058129 |
| 3847 | 10 | 0.9998 | The impact and mechanism of quaternary ammonium compounds on the transmission of antibiotic resistance genes. The emergence of antibiotic resistance genes (ARGs) in microbes can be largely attributed to the abuse and misuse of antibiotics and biocides. Quaternary ammonium compounds (QACs) have been used worldwide as common disinfectants and detergents; however, their potential impact on the spread and diffusion of ARGs is still unknown. In this study, we detected the QAC resistance gene (qacEΔ1), the 1 integron gene (intI1), and 12 ARGs (sul1, sul2, cfr, cml, fexA, tetA, tetG, tetQ, tetX, ermB, bla(TEM,) and dfrA1) in 48 water samples from three watersheds by quantitative PCR (qPCR). We investigated the evolution of bacterial antibiotic resistance under QAC and antibiotic environmental pressures by long-term continuous culture. In addition, five QACs were selected to investigate the effect of QAC on the efficiency of conjugation transfer. The changes in bacterial cell membrane and production of reactive oxygen species (ROS) were detected by flow cytometry, revealing the mechanism by which QAC affects the spread of antibiotic resistance. Our results showed that the QAC resistance gene was ubiquitous in watersheds and it had significant correlation with intI1 and seven ARGs (r = 0.999, p < 0.01). QACs could increase the resistance of bacteria to multiple antibiotics. Furthermore, all five QACs promoted the conjugation transfer of the RP4 plasmid; the optimal concentration of QACs was about 10(-1)-10(-2) mg/L and their transfer efficiencies were between 1.33 × 10(-6) and 8.87 × 10(-5). QACs enhanced membrane permeability of bacterial cells and stimulated bacteria to produce ROS, which potentially promoted the transfer of plasmids between bacteria. In conclusion, this study demonstrated that QACs may facilitate the evolution and gene transfer of antibiotic resistance gene among microbiome. | 2019 | 31372954 |
| 7193 | 11 | 0.9998 | Plasmid-mediated transfer of antibiotic resistance genes and biofilm formation in a simulated drinking water distribution system under chlorine pressure. The effects of disinfectants and plasmid-based antibiotic resistance genes (ARGs) on the growth of microorganisms and the plasmid-mediated transfer of ARGs in the water and biofilm of the drinking water distribution system under simulated conditions were explored. The heterotrophic plate count of the water in reactors with 0.1 mg/L NaClO and NH(2)Cl was higher than in the control groups. There was no similar phenomenon in biofilm. In the water of reactors containing NaClO, the aphA and bla genes were lower than in the antibiotic resistant bacteria group, while both genes were higher in the water of reactors with NH(2)Cl than in the control group. Chloramine may promote the transfer of ARGs in the water phase. Both genes in the biofilm of the reactors containing chlorine were lower than the control group. Correlation analysis between ARGs and water quality parameters revealed that the copy numbers of the aphA gene were significantly positively correlated with the copy numbers of the bla gene in water and significantly negatively correlated in biofilm (p < 0.05). The results of the sequencing assay showed that bacteria in the biofilm, in the presence of disinfectant, were primarily Gram-negative. 1.0 mg/L chlorine decreased the diversity of the community in the biofilm. The relative abundance of some bacteria that may undergo transfer increased in the biofilm of the reactor containing 0.1 mg/L chlorine. | 2025 | 39617560 |
| 7182 | 12 | 0.9998 | Effects of UV disinfection on phenotypes and genotypes of antibiotic-resistant bacteria in secondary effluent from a municipal wastewater treatment plant. To elucidate the effects of UV disinfection on antibiotic resistance in biologically-treated wastewater, we investigated the antibiotic resistance profiles, species of cultivable heterotrophic bacteria, and antibiotic-resistance genes (ARGs) in antibiotic-resistant bacteria before and after treatment. UV disinfection greatly changed the bacterial community structure and the antibiotic resistance in wastewater. The antibiotic resistance in wastewater samples was strongly associated with the bacterial community. The proportions of Gram-positive bacteria gradually increased with increasing UV fluence. The proportions of bacteria resistant to cephalexin, penicillin, and vancomycin all greatly decreased after UV treatment in both sampling events (July 2018 and January 2019), and those for bacteria resistant to ofloxacin, ciprofloxacin, and sulfadiazine increased, resulting from the alternative antibiotic resistance profiles among different genera. UV disinfection induced the selection of multi-antibiotic resistant (MAR) bacteria. For example, the MAR indices of Aeromonas, the dominant genus during the treatments, were significantly increased after UV irradiation (P < 0.05). The MAR index was also markedly increased (P < 0.05) at a fluence of 5 mJ/cm(2) in both events. In UV10 treatment, the bacterial community structure was greatly changed. The genera with relatively low MAR indices replaced that with high MAR indices, and became the dominant genera. As a result, the MAR indices of treated samples showed a decreased trend after 10 mJ/cm(2) UV irradiation. The detection frequencies of ARGs located on the chromosome varied mainly due to the evolution of the microbial community. The occurrence of ARGs (tetA, tetC, tetM, tetW, tetX, and sul1) located on plasmid DNA decreased after UV disinfection, and the average detection frequencies of tet and sul genes decreased by 15% and 6%, respectively (P < 0.05). Generally speaking, the effect of UV disinfection on the enrichment of antibiotic resistance is limited in this study, and horizontal gene transfer via the plasmids in surviving bacteria might be impaired due to the decreased abundance of ARGs on the plasmids. | 2019 | 30991178 |
| 5325 | 13 | 0.9998 | Genes encoding tetracycline resistance in a full-scale municipal wastewater treatment plant investigated during one year. Tetracycline-resistant bacteria and genes encoding tetracycline resistance are common in anthropogenic environments. We studied how wastewater treatment affects the prevalence and concentration of two genes, tetA and tetB, that encode resistance to tetracycline. Using real-time polymerase chain reaction (PCR) we analysed wastewater samples collected monthly for one year at eight key-sites in a full-scale municipal wastewater treatment plant (WWTP). We detected tetA and tetB at each sampling site and the concentration of both genes, expressed per wastewater volume or per total-DNA, decreased over the treatment process. The reduction of tetA and tetB was partly the result of the sedimentation process. The ratio of tetA and tetB, respectively, to total DNA was lower in or after the biological processes. Taken together our data show that tetracycline resistance genes occur throughout the WWTP, and that the concentrations are reduced under conventional operational strategies. | 2010 | 20154388 |
| 3432 | 14 | 0.9998 | Insights into the amplification of bacterial resistance to erythromycin in activated sludge. Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study. The resistance variation of total heterotrophic bacteria was studied during the biological treatment process, based on culture dependent method. The alterations of bacterial community resistant to erythromycin and nine typical erythromycin resistance genes were explored with molecular approaches, including high-throughput sequencing and quantitative polymerase chain reaction. The results revealed that the total heterotrophs tolerance level to erythromycin concentrations (higher than 32 mg/L) was significantly amplified during the activated sludge treatment, with the prevalence increased from 9.6% to 21.8%. High-throughput sequencing results demonstrated an obvious increase of the total heterotrophic bacterial diversity resistant to erythromycin. Proteobacteria and Bacteroidetes were the two dominant phyla in the influent and effluent of the bioreactor. However, the prevalence of Proteobacteria decreased from 76% to 59% while the total phyla number increased greatly from 18 to 29 through activated sludge treatment. The gene proportions of erm(A), mef(E) and erm(D) were greatly amplified after biological treatment. It is proposed that the transfer of antibiotic resistance genes through the variable mixtures of bacteria in the activated sludge might be the reason for the antibiotic resistance amplification. The amplified risk of antibiotic resistance in wastewater treatment needs to be paid more attention. | 2015 | 25957255 |
| 7784 | 15 | 0.9998 | No evidential correlation between veterinary antibiotic degradation ability and resistance genes in microorganisms during the biodegradation of doxycycline. Biodegradation of antibiotic residues in the environment by microorganisms may lead to the generation of antibiotic resistance genes (ARGs), which are of great concern to human health. The aim of this study was to determine whether there is a relationship between the ability to degrade antibiotic doxycycline (DOX) and the development of resistance genes in microorganisms. We isolated and identified ten bacterial strains from a vegetable field that had received long-term manure application as fertilizer and were capable of surviving in a series of DOX concentrations (25, 50, 80, and 100mg/L). Our results showed no evidential correlation between DOX degradation ability and the development of resistance genes among the isolated microorganisms that had high DOX degradation capability (P > 0.05). This was based on the fact that Escherichia sp. and Candida sp. were the most efficient bacterial strains to degrade DOX (92.52% and 91.63%, respectively), but their tetracycline resistance genes showed a relatively low risk of antibiotic resistance in a 7-day experiment. Moreover, the tetM of the ribosomal protection protein genes carried by these two preponderant bacteria was five-fold higher than that carried by other isolates (P < 0.05). Pearson correlations between the C(t)/C(0) of DOX and tet resistance genes of three isolates, except for Escherichia sp. and Candida sp., showed remarkable negative correlations (P < 0.05), mainly because tetG markedly increased during the DOX degradation process. Our results concluded that the biodegradation of antibiotic residues may not necessarily lead to the development of ARGs in the environment. In addition, the two bacteria that we isolated, namely, Escherichia sp. and Candida sp., are potential candidates for the engineering of environmentally friendly bacteria. | 2018 | 28942279 |
| 6749 | 16 | 0.9998 | The influence of ZnO nanoparticles on horizontal transfer of resistance genes in lab and soil conditions. Antibiotic resistance is a severe problem that threatens the achievements of modern medicine. Metallic nanoparticles may promote the horizontal transfer of resistance genes due to their toxicity to bacterial cells and metal-induced co-selection mechanisms. In this study, we investigated the toxicity of ZnO nanoparticles to E. coli DH5α laboratory strain and the abundance of soil microbial community. Moreover, the influence of ZnO nanoparticles on resistance gene transfer in laboratory and soil conditions was evaluated. ZnO nanoparticles at concentrations up to 10 mg L(-1) reduced the survival of E. coli cells by 14.6% and increased the transformation frequency by almost 1.8 fold. In soil, ZnO nanoparticles at a concentration of 1000 mg kg(-1) affected the total abundance of bacteria, causing a decrease in the 16S rRNA gene copy number. We did not detect the presence of 11 target antibiotic resistance genes (sul1, sul2, imp2, imp5, bla(CTX-M), ermB, mefA, strB, aadA1, tetA1, tetB), which confer resistance to five classes of antibiotics in soil treated with ZnO nanoparticles. No elevated conjugation frequency was observed in soil microbial communities treated with ZnO nanoparticles. However, the increase in czcA gene copies indicates the spread of genetic elements harbouring metal resistance. The data shows that metallic nanoparticles promote the spread of antibiotic and metal resistance genes. The broad implication of the present research is that the inevitable nanoparticles environmental pollution may lead to the further dissemination of antibiotic resistance and profoundly influence public health. | 2023 | 36764431 |
| 3421 | 17 | 0.9998 | Survival of antibiotic resistant bacteria following artificial solar radiation of secondary wastewater effluent. Urban wastewater treatment plant effluents represent one of the major emission sources of antibiotic-resistant bacteria (ARB) in natural aquatic environments. In this study, the effect of artificial solar radiation on total culturable heterotrophic bacteria and ARB (including amoxicillin-resistant, ciprofloxacin-resistant, rifampicin-resistant, sulfamethoxazole-resistant, and tetracycline-resistant bacteria) present in secondary effluent was investigated. Artificial solar radiation was effective in inactivating the majority of environmental bacteria, however, the proportion of strains with ciprofloxacin-resistance and rifampicin-resistance increased in the surviving populations. Isolates of Pseudomonas putida, Serratia marcescens, and Stenotrophomonas maltophilia nosocomial pathogens were identified as resistant to solar radiation and to at least three antibiotics. Draft genome sequencing and typing revealed isolates carrying multiple resistance genes; where S. maltophilia (resistant to all studied antibiotics) sequence type was similar to strains isolated in blood infections. Results from this study confirm that solar radiation reduces total bacterial load in secondary effluent, but may indirectly increase the relative abundance of ARB. | 2018 | 29898509 |
| 7799 | 18 | 0.9998 | Combating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma. The increase in antibiotic resistance has become a global challenge to public health. In this study, an atmospheric cold plasma (ACP) system was applied for combating methicillin-resistant Staphylococcus aureus (MRSA) and its methicillin resistance gene (mecA) during food wastewater treatment. The plate count and flow cytometry methods were employed to estimate the damage in MRSA induced by plasma treatment. A quantitative real-time PCR (qPCR) method was used to assess the plasma-induced degradation of the mecA genes. The inactivation of MRSA and degradation of extracellular (e-) and intracellular (i-)mecA genes were investigated in phosphate buffered solution as a function of plasma exposure. A relatively low plasma influence of 0.12 kJ/cm(2) accounted for 5-log MRSA and 1.4-log e-mecA genes reduction, while only around 0.19-log degradation for i-mecA genes. As the plasma intensity was accumulated to 0.35 kJ/cm(2), the reduction of e- and i-mecA genes was increased to 2.6 and 0.8 logs, respectively. The degradation of i-mecA genes was much slower than that of e-mecA genes due to the protective effects of the outer envelopes or intracellular components against plasma. The matrix effect of wastewater effluents shielded both antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) from plasma disinfection, which led to a lower degradation efficacy. Our results could support the development and optimization of plasma-based wastewater treatment. | 2018 | 30248853 |
| 3430 | 19 | 0.9998 | Benzalkonium chloride alters phenotypic and genotypic antibiotic resistance profiles in a source water used for drinking water treatment. Antibiotic resistance is a major public health concern. Triclosan is an antimicrobial compound with direct links to antibiotic resistance that was widely used in soaps in the U.S. until its ban by the U.S. Food and Drug Administration. Benzalkonium chloride (BAC), a quaternary ammonium compound, has widely replaced triclosan in soaps marketed as an antibacterial. BAC has been detected in surface waters and its presence will likely increase following increased use in soap products. The objective of this study was to determine the effect of BAC on relative abundance of antibiotic resistance in a bacterial community from a surface water used as a source for drinking water treatment. Bench-scale microcosm experiments were conducted with microbial communities amended with BAC at concentrations ranging from 0.1 μg L(-1) to 500 μg L(-1). Phenotypic antibiotic resistance was quantified by culturing bacteria in the presence of different antibiotics, and genotypic resistance was determined using qPCR to quantify antibiotic resistance genes (ARGs). BAC at concentrations ranging from 0.1 μg L(-1) to 500 μg L(-1) was found to positively select for bacteria resistant to ciprofloxacin and sulfamethoxazole, and negatively select against bacteria with resistance to six other antibiotics. Exposure to BAC for 14 days increased the relative abundance of sul1 and bla(TEM). This study re-highlights the importance of employing both culture and non-culture-based techniques to identify selection for antibiotic resistance. The widespread use of BAC will likely impact antibiotic resistance profiles of bacteria in the environment, including in source waters used for drinking water, wastewater treatment plants, and natural waterways. | 2020 | 31767233 |