Inactivation of a pathogenic NDM-1-positive Escherichia coli strain and the resistance gene bla(NDM-1) by TiO(2)/UVA photocatalysis. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
778701.0000Inactivation of a pathogenic NDM-1-positive Escherichia coli strain and the resistance gene bla(NDM-1) by TiO(2)/UVA photocatalysis. Proliferation of bla(NDM-1) in water and wastewater is particularly concerning because of multidrug-resistance and horizontal transfer of the gene. In the present study, a pathogenic NDM-1-positive Escherichia coli strain (named E. coli NDM-1) and the bla(NDM-1) gene were treated with titanium dioxide (TiO(2))/ultraviolet A (UVA) photocatalysis. Effects of catalyst dose, UVA intensity, and phosphate on bacteria and intracellular and extracellular bla(NDM-1) genes were determined. With increases in TiO(2) dose and UVA intensity, the inactivation rate of E. coli NDM-1 increased greatly in saline solution. However, phosphate in water hindered adsorption of bacteria to TiO(2) and partly changed the TiO(2) photocatalytic pathway, resulting in low degradation efficiency. Although inactivation of E. coli NDM-1 was highly efficient, TiO(2)/UVA photocatalysis had little effect on removal of the bla(NDM-1) gene. During the 2-h photocatalytic experiments, E. coli cells decreased by 4.7-log, while the bla(NDM-1) gene decreased by 0.7- ~ 1.5-log. Moreover, the degradation rate of extracellular bla(NDM-1) was ~2.7 times higher than that of intracellular genes. Abundance and transformation frequency of residual bla(NDM-1) genes remained high, even when bacteria were completely inactivated, indicating potential health risks. Increases in treatment time and UVA irradiation intensity are needed to remove the bla(NDM-1) gene to sufficiently low levels.202235842147
778910.9998Simultaneous removal of antibiotic-resistant Escherichia coli and its resistance genes by dielectric barrier discharge plasma. As emerging contaminants, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been widely detected in various aqueous environments. For antibiotic resistance to be inhibited in the environment, it is essential to control ARB and ARGs. In this study, dielectric barrier discharge (DBD) plasma was used to inactivate antibiotic resistant Escherichia coli (AR E. coli) and remove ARGs simultaneously. Within 15 s of plasma treatment, 10(8) CFU/mL of AR E. coli were inactivated by 97.9%. The rupture of the bacterial cell membrane and the increase of intracellular ROS are the main reasons for the rapid inactivation of bacteria. Intracellular ARGs (i-qnrB, i-blaCTX-M, i-sul2) and integron gene (i-int1) decreased by 2.01, 1.84, 2.40, and 2.73 log after 15 min of plasma treatment, respectively. In the first 5 min of discharge, extracellular ARGs (e-qnrB, e-blaCTX-M, e-sul2) and integron gene (e-int1) decreased by 1.99, 2.22, 2.66, and 2.80 log, respectively. The results of the ESR and quenching experiments demonstrated that ·OH and (1)O(2) played important roles in the removal of ARGs. This study shows that DBD plasma is an effective technique to control ARB and ARGs in waters.202337217128
780820.9997Visible light-driven C/O-g-C(3)N(4) activating peroxydisulfate to effectively inactivate antibiotic resistant bacteria and inhibit the transformation of antibiotic resistance genes: Insights on the mechanism. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) dissemination within water pose a serious threat to public health. Herein, C and O dual-doped g-C(3)N(4) (C/O-g-C(3)N(4)) photocatalyst, fabricated via calcination treatment, was utilized to activate peroxydisulfate (PDS) to investigate the disinfection effect on tetracycline-resistant Escherichia coli and the transformation frequency of ARGs. As a result, approximately 7.08 log E. coli were inactivated, and 72.36 % and 53.96 % of antibiotics resistance gene (tetB) and 16 S rRNA were degraded respectively within 80 min. Futhermore, the transformation frequency was reduced to 0.8. Characterization and theoretical results indicated that C and O doping in g-C(3)N(4) might lead to the electronic structure modulation and band gap energy reduction, resulting in the production of more free radicals. The mechanism analysis revealed that C/O-g-C(3)N(4) exhibited a lower adsorption energy and reaction energy barrier for PDS compared to g-C(3)N(4). This was beneficial for the homolysis of O-O bonds, forming SO(4)(•-) radicals. The attack of the generated active species led to oxidative stress in cells, resulting in damage to the electron transport chain and inhibition of ATP production. Our findings disclose a valuable insight for inactivating ARB, and provide a prospective strategy for ARGs dissemination in water contamination.202437976858
533130.9997Performance evaluation of ozonation for removal of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa and genes from hospital wastewater. The performance of ozonation for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) using Escherichia coli and Pseudomonas aeruginosa carrying ARGs from hospital wastewaters was evaluated in this study. Bacterial inactivation was determined using plate count methods and real time PCR for ARG damage (Sul1, bla(tem), bla(ctx), bla(vim) and qnrS). The reduction rate of bacterial cells and ARGs was increased by different amounts of transferred ozone dose from 11 to 45 mg/L. The concentration of 10(8) cfu/ml bacteria was reduced  to an acceptable level by ozone treatment after a 5 min contact time,  Although the removal rate was much higher for concentrations of 10(6) cfu/ml and 10(4) cfu/ml bacteria. Overall, the tendency of gene reduction by ozonation from more to less was 16S rRNA > sul1 > bla(tem) > bla(ctx) > qnrS > bla(vim). Given that plasmid-borne ARGs can potentially be transferred to other bacteria even after the disinfection process, our results can provide important insights into the fate of ARGs during hospital wastewater ozonation.202134972828
778840.9997Inactivation of antibiotic resistant Escherichia coli and degradation of its resistance genes by glow discharge plasma in an aqueous solution. Emerging contaminants such as antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are becoming a global environmental problem. In this study, the glow discharge plasma (GDP) was applied for degrading antibiotic resistant Escherichia coli (E. coli) with resistance genes (tetA, tetR, aphA) and transposase gene (tnpA) in 0.9% sterile saline. The results showed that GDP was able to inactivate the antibiotic resistant E. coli and remove the ARGs and reduce the risk of gene transfer. The levels of E. coli determined by 16S rRNA decreased by approximately 4.7 logs with 15 min of discharge treatment. Propidium monoazide - quantitative polymerase chain reaction (PMA-qPCR) tests demonstrated that the cellular structure of 4.8 more logs E. coli was destroyed in 15 min. The reduction of tetA, tetR, aphA, tnpA genes was increased to 5.8, 5.4, 5.3 and 5.5 logs with 30 min discharge treatment, respectively. The removal of ARGs from high salinity wastewater was also investigated. The total abundance of ARGs was reduced by 3.9 logs in 30 min. Scavenging tests indicated that hydroxyl radicals (·OH) was the most probable agents for bacteria inactivation and ARGs degradation. In addition, the active chlorine (Cl· and Cl(2)) which formed during the discharge may also contribute to the inactivation and degradation.202032229364
780750.9997Copper oxide/peroxydisulfate system for urban wastewater disinfection: Performances, reactive species, and antibiotic resistance genes removal. In this study, copper oxide (CuO) catalyzed peroxydisulfate (PDS) system was investigated for the inactivation of a broad range of pathogenic microorganisms from urban wastewater. Complete inactivation of Escherichia coli, Enterococcus, F-specific RNA bacteriophages from secondary treated wastewater was achieved after a short time (15-30 min) treatment with CuO (10 g/L)/PDS (1 mM) system, but spores of sulfite-reducing bacteria took 120 min. No bacterial regrowth occurred during storage after treatment. Significant reduction of the pathogens was explained by the generation of the highly selective Cu(III) oxidant, as the predominant reactive species, which could quickly oxidize guanine through a one-electron oxidation pathway. Additionally, the potential of the CuO (10 g/L)/PDS (1 mM) system to inactivate antibiotic-resistant bacteria and antibiotic resistance genes (ARB&Gs) was explored. Sulfamethoxazole-resistant E. coli was used as the model ARB and a 3.2 log of reduction was observed after 10 min of treatment. A considerable reduction (0.7-2.3 log) of selected ARGs including blaTEM, qnrS, emrB, sul1, and genes related to the dissemination of antibiotic resistance, including the Class 1 integron-integrase (intI1), and the insertion sequence (IS613) was achieved after 60 min treatment. All these findings indicated the promising applicability of the CuO/PDS system as a disinfection technology for wastewater reuse in agriculture.202234648831
784760.9997Inactivation and change of tetracycline-resistant Escherichia coli in secondary effluent by visible light-driven photocatalytic process using Ag/AgBr/g-C(3)N(4). Control of antibiotic-resistant bacteria (ARB) and their related genes in secondary effluents has become a serious issue because of increased awareness of their health risks. A considerable number of techniques have been developed in recent years, particularly in relation to advanced oxidation. However, limited information is known about cellular behavior and resistance characteristic change during photocatalytic treatment. In this study, the inactivation of tetracycline (TC)-resistant Escherichia coli (TC-E. coli), removal of TC-resistant genes (TC-RGs), and antibiotic susceptibility were evaluated by employing photocatalytic treatment using Ag/AgBr/g-C(3)N(4) with visible light irradiation. The effects of light intensity, photocatalyst dosage, and reaction ambient temperature on photocatalysis were modelled and investigated. The rate of TC-E. coli removal was also optimized. Results demonstrated that the optimal conditions for TC-E. coli removal included light intensity of 96.0 mW/cm(2), photocatalyst dosage of 211.0 mg/L, and reaction ambient temperature of 23.7 °C. Under such conditions, the ARB removal rate was 6.1 log after 90 min and the related TC-RG removal rates were 49%, 86%, 69%, and 86% for tetA, tetM, tetQ, and intl1, respectively. The minimum inhibitory concentration test after photocatalysis shows that the antibiotic resistance of TC-E. coli was enhanced, which may be mainly due to the changes in the membrane potential and resulted in difficulty in destroying the bacteria through antibiotic contact. Hence, photocatalytic treatment could be an ideal method for ARB and antibiotic-resistant gene (ARG) control in wastewater, but the health risks of the remaining ARB and ARG should be investigated further.202031841919
676070.9997Mechanism of antibiotic resistance spread during sub-lethal ozonation of antibiotic-resistant bacteria with different resistance targets. The increase and spread of antibiotic-resistant bacteria (ARB) in aquatic environments and the dissemination of antibiotic resistance genes (ARGs) greatly impact environmental and human health. It is necessary to understand the mechanism of action of ARB and ARGs to formulate measures to solve this problem. This study aimed to determine the mechanism of antibiotic resistance spread during sub-lethal ozonation of ARB with different antibiotic resistance targets, including proteins, cell walls, and cell membranes. ARB conjugation and transformation frequencies increased after exposure to 0-1.0 mg/L ozone for 10 min. During sub-lethal ozonation, compared with control groups not stimulated by ozone, the conjugative transfer frequencies of E. coli DH5α (CTX), E. coli DH5α (MCR), and E. coli DH5α (GEN) increased by 1.35-2.02, 1.13-1.58, and 1.32-2.12 times, respectively; the transformation frequencies of E. coli DH5α (MCR) and E. coli DH5α (GEN) increased by 1.49-3.02 and 1.45-1.92 times, respectively. When target inhibitors were added, the conjugative transfer frequencies of antibiotics targeting cell wall and membrane synthesis decreased 0.59-0.75 and 0.43-0.76 times, respectively, while that for those targeting protein synthesis increased by 1-1.38 times. After inhibitor addition, the transformation frequencies of bacteria resistant to antibiotics targeting the cell membrane and proteins decreased by 0.76-0.89 and 0.69-0.78 times, respectively. Cell morphology, cell membrane permeability, reactive oxygen species, and antioxidant enzymes changed with different ozone concentrations. Expression of most genes related to regulating different antibiotic resistance targets was up-regulated when bacteria were exposed to sub-lethal ozonation, further confirming the target genes playing a crucial role in the inactivation of different target bacteria. These results will help guide the careful utilization of ozonation for bacterial inactivation, providing more detailed reference information for ozonation oxidation treatment of ARB and ARGs in aquatic environments.202438810347
784680.9996Removal of antibiotic resistance genes and inactivation of antibiotic-resistant bacteria by oxidative treatments. The persistence of antibiotics in the environment because of human activities, such as seafood cultivation, has attracted great attention as they can give rise to antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). In this study, we explored the inactivation and removal efficiencies of Escherichia coli SR1 and sul1 (plasmid-encoded ARGs), respectively, in their extracellular and intracellular forms (eARGs and iARGs) by three commonly used fishery oxidants, namely chlorine, bromine, and potassium permanganate (KMnO(4)), at the practical effective concentration range (0.5, 5, and 15 mg/L). Kinetics data were obtained using laboratory phosphate-buffered saline (PBS). Following the same fishery oxidation methods, the determined kinetics models were tested by studying the SR1 and sul1 disinfection efficiencies in (sterilized) pond water matrix. At concentrations of 5 and 15 mg/L, all three oxidants achieved sufficient cumulative integrated exposure (CT values) to completely inactivate SR1 and efficiently remove sul1 (up to 4.0-log). The oxidation methods were then applied to an unsterilized pond water matrix in order to study and evaluate the indigenous ARB and ARGs disinfection efficiencies in aquaculture, which reached 1.4-log and 1.0-log during treatment with fishery oxidants used in pond preparation at high concentrations before stocking (5-15 mg/L), respectively. A high chlorine concentration (15 mg/L) could efficiently remove ARGs (or iARGs) from pond water, and the iARG removal efficiency was higher than that of eARGs in pond water. The method and results of this study could aid in guiding future research and practical disinfection to control the spread of ARGs and ARB in aquaculture.202134030387
779290.9996Comparative removal of two antibiotic resistant bacteria and genes by the simultaneous use of chlorine and UV irradiation (UV/chlorine): Influence of free radicals on gene degradation. The research aimed to remove antibiotic resistance by the simultaneous use of UV irradiation and chlorine (UV/chlorine). The inactivations of tetracycline resistant bacteria (TRB) during chlorination, UV irradiation, and UV/chlorine was investigated and compared with those of amoxicillin resistant bacteria (AmRB). Similar examination was also conducted for comparing the removals of their resistant genes (i.e., tetM and blaTem). The removals of antibiotic resistance highly depended on chlorine doses and UV intensities. The sufficient chlorine dose (20 mg.L(-1)) in the chlorination and the UV/chlorine completely inactivated TRB and AmRB (>7.3 log), while the UV irradiation could not achieve the complete disinfection. Microorganisms resistant to different antibiotics exhibit different susceptibility to the disinfection processes. The removals of antibiotic resistant genes (i.e., tetM and blaTem) were more difficult than those of TRB and AmRB. The UV/chlorine was the greatest process for tetM and blaTem removals, followed by chlorination and UV irradiation, respectively. Chlorination decreased the tetM and blaTem by 0.40-1.45 log and 1.04-2.45 log, respectively. The blaTem gene was highly reactive to chlorine, compared with tetM. The UV irradiation caused the tetM and blaTem reductions by 0.32-0.91 log and 0.59-0.96 log, respectively. The UV/chlorine improved the tetM and blaTem removals by 0.98-3.20 log and 1.28-3.36 log, respectively. The •OH contributed to the fraction of tetM and blaTem removals by 48% and 19%, respectively. The effect of reactive chlorine species on the tetM and blaTem removals was minor. The pseudo 1st-order kinetic constants (k') for tetM and blaTem removals by the UV/chlorine were highest. The •OH enhanced the k' values by 120% and 20% for the tetM and blaTem removals, respectively. The study showed the potential use of UV/chlorine for controlling antibiotic resistance.202133059146
7783100.9996Heterologous expression of the tetracycline resistance gene tetX to enhance degradability and safety in doxycycline degradation. Microbial remediation has the potential to inexpensively yet effectively decontaminate and restore contaminated environments, but the virulence of pathogens and risk of resistance gene transmission by microorganisms during antibiotic removal often limit its implementation. Here, a cloned tetX gene with clear evolutionary history was expressed to explore doxycycline (DOX) degradation and resistance variation during the degradation process. Phylogenetic analysis of tetX genes showed high similarity with those of pathogenic bacteria, such as Riemerella sp. and Acinetobacter sp. Successful tetX expression was performed in Escherichia coli and confirmed by SDS-PAGE and Western blot. Our results showed that 95.0 ± 1.0% of the DOX (50 mg/L) was degraded by the recombinant strain (ETD-1 with tetX) within 48 h, which was significantly higher than that for the control (38.9 ± 8.7%) and the empty plasmid bacteria (8.8 ± 5.1%) (P < 0.05). The tetX gene products in ETD-1 cell extracts also exhibited an efficient DOX degradation ability, with a degradation rate of 80.5 ± 1.2% at 168 h. Furthermore, there was no significant proliferation of the tetX resistance gene during DOX degradation (P > 0.05). The efficient and safe DOX-degrading capacity of the recombinant strain ETD-1 makes it valuable and promising for antibiotic removal in the environment.202031968275
7794110.9996Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control. This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L). The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L). By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L). However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.201525738838
7791120.9996Investigation of reduction in risk from antibiotic resistance genes in laboratory wastewater by using O(3) , ultrasound, and autoclaving. Biological laboratory wastewater containing both antibiotic-resistant bacteria (ARB) and antibiotics is a potential source of antibiotic resistance genes (ARGs). Thus, we determined the efficacy of autoclaving, a common disinfection method, in eliminating 5 ARGs (sul1, sul2, tetW, tetM, amp) and the integrase-encoding gene intI1 from laboratory wastewater. Autoclaving (15 min, 121°C) inactivated all bacteria including ARB, whereas ARGs persisted in the wastewater with limited reduction even after 60 min of treatment. Ozonation (O(3) ), ultrasound (US), O(3) /US, and autoclaving followed by O(3) were investigated for their ability to reduce ARGs in laboratory wastewater. With O(3) and O(3) /US, the reduction rate ranged from 5.44 to 7.13 log for all ARGs investigated. Wastewater treatment with US alone did not reduce ARGs under the present experimental conditions (150 W, 53 kHz). Among the four treatments, autoclaving followed by O(3) treatment showed the highest reduction rates in the shortest time; however, further optimization and investigation are needed for the advanced treatment of bio-laboratory wastewater. Overall, this study provides novel insights into ARG sources and demonstrates that advanced oxidation methods can be useful to optimize laboratory wastewater treatment for ARG inactivation. PRACTITIONER POINTS: Bio-laboratory wastewater is potential reservoir of ARGs. Conventional autoclaving was not able to reduce ARGs to a low level. Autoclaving-O(3) completely eliminate all the bacteria. Autoclaving-O(3) reduced ARGs efficiently (6.12-7.86 logs removal in 60 min).202132891064
7795130.9996Factors influencing the removal of antibiotic-resistant bacteria and antibiotic resistance genes by the electrokinetic treatment. The performance of the electrokinetic remediation process on the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) was evaluated with different influencing factors. With chlortetracycline (CTC), oxytetracycline (OTC), and tetracycline (TC) as template chemicals, the removal of both ARB and ARGs was enhanced with the increase of voltage gradient (0.4-1.2 V cm(-1)) and prolonged reaction time (3-14 d). The greatest removal (26.01-31.48% for ARB, 37.93-83.10% for ARGs) was obtained applying a voltage of 1.2 V cm(-1), leading to the highest electrical consumption. The effect of polarity reversal intervals on the inactivation ratio of ARB followed the order of 0 h (66.06-80.00%) > 12 h (17.07-24.75%) > 24 h (10.44-13.93%). Lower pH, higher current density, and more evenly-distributed voltage drop was observed with a polarity reversal interval of 12 h compared with that of 24 h, leading to more efficient electrochemical reactions in soil. Compared with sul genes, tet genes were more vulnerable to be attacked in an electric field. It was mainly attributed to the lower abundance of tet genes (except tetM) and the varied effects of electrokinetic remediation process on different ARGs. Moreover, a relatively less removal ratio of tetC and tetG was obtained mainly due to the mechanism of the efflux pump upregulation. Both tet and sul genes were positively correlated with TC-resistant bacteria. The efflux pump genes like tetG and the cellular protection genes like tetM showed different correlations with ARB. This study enhances the current understanding on the removal strategies of ARB and ARGs, and it provides important parameters for their destruction by the electrokinetic treatment.201829807293
7790140.9995Disinfection of polymicrobial urines by electrochemical oxidation: Removal of antibiotic-resistant bacteria and genes. In this work, data obtained from the University Hospital Complex of Albacete (Spain) were selected as a case study to carry out the disinfection experiments. To do this, different configurations of electrochemical reactors were tested for the disinfection of complex urines. Results showed that 4-6 logs bacterial removal were achieved for every bacterium tested when working with a microfluidic flow-through reactor after 180 min (0.423 Ah dm(-3)). The MIKROZON® cell reached a total disinfection after 60 min (1.212 Ah dm(-3)), causing severe damages induced in the cell walls observed in SEM images. The concentration profiles of the electrogenerated disinfectants in solution could explain the differences observed. Additionally, a mean decrease in the ARGs concentration ranked as follows: bla(KPC) (4.18-logs) > bla(TEM) (3.96-logs) > ermB (3.23-logs) using the MIKROZON® cell. This electro-ozonizer could be considered as a suitable alternative to reduce the risk of antibiotic resistance spread. Hence, this study provides an insight into different electrochemical reactors for the disinfection of complex hospital urine matrices and contributes to reduce the spread of antibiotic resistance through the elimination of ARGs. A topic of great importance nowadays that needs to be further studied.202234923384
7766150.9995Native Microalgae-Bacteria Consortia: A Sustainable Approach for Effective Urban Wastewater Bioremediation and Disinfection. Urban wastewater is a significant by-product of human activities. Conventional urban wastewater treatment plants have limitations in their treatment, mainly concerning the low removal efficiency of conventional and emerging contaminants. Discharged wastewater also contains harmful microorganisms, posing risks to public health, especially by spreading antibiotic-resistant bacteria and genes. Therefore, this study assesses the potential of a native microalgae-bacteria system (MBS) for urban wastewater bioremediation and disinfection, targeting NH(4)(+)-N and PO(4)(3-)-P removal, coliform reduction, and antibiotic resistance gene mitigation. The MBS showed promising results, including a high specific growth rate (0.651 ± 0.155 d(-1)) and a significant average removal rate of NH(4)(+)-N and PO(4)(3-)-P (9.05 ± 1.24 mg L(-1) d(-1) and 0.79 ± 0.06 mg L(-1) d(-1), respectively). Microalgae-induced pH increase rapidly reduces coliforms (r > 0.9), including Escherichia coli, within 3 to 6 days. Notably, the prevalence of intI1 and the antibiotic resistance genes sul1 and bla(TEM) are significantly diminished, presenting the MBS as a sustainable approach for tertiary wastewater treatment to combat eutrophication and reduce waterborne disease risks and antibiotic resistance spread.202439065189
7824160.9995H(2)O(2) and/or TiO(2) photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes. Inactivating antibiotic resistant bacteria (ARB) and removing antibiotic resistance genes (ARGs) are very important to prevent their spread into the environment. Previous efforts have been taken to eliminate ARB and ARGs from aqueous solution and sludges, however, few satisfying results have been obtained. This study investigated whether photocatalysis by TiO(2) was able to reduce the two ARGs, mecA and ampC, within the host ARB, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, respectively. The addition of H(2)O(2) and matrix effect on the removal of ARB and ARGs were also studied. TiO(2) thin films showed great effect on both ARB inactivation and ARGs removal. Approximately 4.5-5.0 and 5.5-5.8 log ARB reductions were achieved by TiO(2) under 6 and 12mJ/cm(2) UV(254) fluence dose, respectively. For ARGs, 5.8 log mecA reduction and 4.7 log ampC reduction were achieved under 120mJ/cm(2) UV(254) fluence dose in the presence of TiO(2). Increasing dosage of H(2)O(2) enhanced the removal efficiencies of ARB and ARGs. The results also demonstrated that photocatalysis by TiO(2) was capable of removing both intracellular and extracellular forms of ARGs. This study provided a potential alternative method for the removal of ARB and ARGs from aqueous solution.201727776873
7799170.9995Combating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma. The increase in antibiotic resistance has become a global challenge to public health. In this study, an atmospheric cold plasma (ACP) system was applied for combating methicillin-resistant Staphylococcus aureus (MRSA) and its methicillin resistance gene (mecA) during food wastewater treatment. The plate count and flow cytometry methods were employed to estimate the damage in MRSA induced by plasma treatment. A quantitative real-time PCR (qPCR) method was used to assess the plasma-induced degradation of the mecA genes. The inactivation of MRSA and degradation of extracellular (e-) and intracellular (i-)mecA genes were investigated in phosphate buffered solution as a function of plasma exposure. A relatively low plasma influence of 0.12 kJ/cm(2) accounted for 5-log MRSA and 1.4-log e-mecA genes reduction, while only around 0.19-log degradation for i-mecA genes. As the plasma intensity was accumulated to 0.35 kJ/cm(2), the reduction of e- and i-mecA genes was increased to 2.6 and 0.8 logs, respectively. The degradation of i-mecA genes was much slower than that of e-mecA genes due to the protective effects of the outer envelopes or intracellular components against plasma. The matrix effect of wastewater effluents shielded both antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) from plasma disinfection, which led to a lower degradation efficacy. Our results could support the development and optimization of plasma-based wastewater treatment.201830248853
7776180.9995Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater. Antibiotic resistance in wastewater is becoming a major public health concern, but poorly understood about impact of disinfection on antibiotic resistant bacteria and antibiotic resistance genes. The UV disinfection of antibiotic resistant heterotrophic bacteria and their relevant genes in the wastewater of a municipal wastewater treatment plant has been evaluated. Two commonly used antibiotics, erythromycin and tetracycline were selected because of their wide occurrences in regard to the antibiotic resistance problem. After UV treatment at a fluence of 5mJcm(-2), the log reductions of heterotrophic bacteria resistant to erythromycin and tetracycline in the wastewater were found to be 1.4±0.1 and 1.1±0.1, respectively. The proportion of tetracycline-resistant bacteria (5%) was nearly double of that before UV disinfection (3%). Tetracycline-resistant bacteria exhibited more tolerance to UV irradiation compared to the erythromycin-resistant bacteria (p<0.05). Gene copy numbers were quantified via qPCR and normalized to the volume of original sample. The total concentrations of erythromycin- and tetracycline-resistance genes were (3.6±0.2)×10(5) and (2.5±0.1)×10(5) copies L(-1), respectively. UV treatment at a fluence of 5mJcm(-2) removed the total erythromycin- and tetracycline-resistance genes by 3.0±0.1 log and 1.9±0.1 log, respectively. UV treatment was effective in reducing antibiotic resistance in the wastewater.201324055024
7786190.9995Effect of solar photo-Fenton process in raceway pond reactors at neutral pH on antibiotic resistance determinants in secondary treated urban wastewater. Solar photo-Fenton process in raceway pond reactors was investigated at neutral pH as a sustainable tertiary treatment of real urban wastewater. In particular, the effect on antibiotic resistance determinants was evaluated. An effective inactivation of different wild bacterial populations was achieved considering total and cefotaxime resistant bacteria. The detection limit (1 CFU mL(-1)) was achieved in the range 80-100 min (5.4-6.7 kJ L(-1) of cumulative solar energy required) for Total Coliforms (TC) (40-60 min for resistant TC, 4.3-5.2 kJ L(-1)), 60-80 min (4.5-5.4 kJ L(-1)) for Escherichia coli (E. coli) (40 min for resistant E. coli, 4.1-4.7 kJ L(-1)) and 40-60 min (3.9-4.5 kJ L(-1)) for Enterococcus sp. (Entero) (30-40 min for resistant Entero, 3.2-3.8 kJ L(-1)) with 20 mg L(-1) Fe(2+) and 50 mg L(-1) H(2)O(2). Under these mild oxidation conditions, 7 out of the 10 detected antibiotics were effectively removed (60-100%). As the removal of antibiotic resistance genes (ARGs) is of concern, no conclusive results were obtained, as sulfonamide resistance gene was reduced to some extent (relative abundance <1), meanwhile class 1 integron intI1 and ß-lactam resistance genes were not affected. Accordingly, more research and likely more intensive oxidative conditions are needed for an efficient ARGs removal.201931202058