No evidential correlation between veterinary antibiotic degradation ability and resistance genes in microorganisms during the biodegradation of doxycycline. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
778401.0000No evidential correlation between veterinary antibiotic degradation ability and resistance genes in microorganisms during the biodegradation of doxycycline. Biodegradation of antibiotic residues in the environment by microorganisms may lead to the generation of antibiotic resistance genes (ARGs), which are of great concern to human health. The aim of this study was to determine whether there is a relationship between the ability to degrade antibiotic doxycycline (DOX) and the development of resistance genes in microorganisms. We isolated and identified ten bacterial strains from a vegetable field that had received long-term manure application as fertilizer and were capable of surviving in a series of DOX concentrations (25, 50, 80, and 100mg/L). Our results showed no evidential correlation between DOX degradation ability and the development of resistance genes among the isolated microorganisms that had high DOX degradation capability (P > 0.05). This was based on the fact that Escherichia sp. and Candida sp. were the most efficient bacterial strains to degrade DOX (92.52% and 91.63%, respectively), but their tetracycline resistance genes showed a relatively low risk of antibiotic resistance in a 7-day experiment. Moreover, the tetM of the ribosomal protection protein genes carried by these two preponderant bacteria was five-fold higher than that carried by other isolates (P < 0.05). Pearson correlations between the C(t)/C(0) of DOX and tet resistance genes of three isolates, except for Escherichia sp. and Candida sp., showed remarkable negative correlations (P < 0.05), mainly because tetG markedly increased during the DOX degradation process. Our results concluded that the biodegradation of antibiotic residues may not necessarily lead to the development of ARGs in the environment. In addition, the two bacteria that we isolated, namely, Escherichia sp. and Candida sp., are potential candidates for the engineering of environmentally friendly bacteria.201828942279
343210.9999Insights into the amplification of bacterial resistance to erythromycin in activated sludge. Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study. The resistance variation of total heterotrophic bacteria was studied during the biological treatment process, based on culture dependent method. The alterations of bacterial community resistant to erythromycin and nine typical erythromycin resistance genes were explored with molecular approaches, including high-throughput sequencing and quantitative polymerase chain reaction. The results revealed that the total heterotrophs tolerance level to erythromycin concentrations (higher than 32 mg/L) was significantly amplified during the activated sludge treatment, with the prevalence increased from 9.6% to 21.8%. High-throughput sequencing results demonstrated an obvious increase of the total heterotrophic bacterial diversity resistant to erythromycin. Proteobacteria and Bacteroidetes were the two dominant phyla in the influent and effluent of the bioreactor. However, the prevalence of Proteobacteria decreased from 76% to 59% while the total phyla number increased greatly from 18 to 29 through activated sludge treatment. The gene proportions of erm(A), mef(E) and erm(D) were greatly amplified after biological treatment. It is proposed that the transfer of antibiotic resistance genes through the variable mixtures of bacteria in the activated sludge might be the reason for the antibiotic resistance amplification. The amplified risk of antibiotic resistance in wastewater treatment needs to be paid more attention.201525957255
343320.9998Effect of subinhibitory concentrations on the spreading of the ampicillin resistance gene bla(CMY-2) in an activated sludge microcosm. As the problem of multi-resistant bacteria grows a better understanding of the spread of antibiotic resistance genes is of utmost importance for society. Wastewater treatment plants contain subinhibitory concentrations of antibiotics and are thought to be hotspots for antibiotic resistance gene propagation. Here we evaluate the influence of sub-minimum inhibitory concentrations of antibiotics on the spread of resistance genes within the bacterial community in activated sludge laboratory-scale sequencing batch reactors. The mixed communities were fed two different ampicillin concentrations (500 and 5000 µg/L) and the reactors were run and monitored for 30 days. During the experiment the β-lactamase resistance gene bla(CMY-2) was monitored via qPCR and DNA samples were taken to monitor the effect of ampicillin on the microbial community. The relative copy number of bla(CMY-2) in the reactor fed with the sub-minimum inhibitory concentration of 500 µg/L ampicillin was spread out over a wider range of values than the control and 5000 µg/L ampicillin reactors indicating more variability of gene number in the 500 µg/L reactor. This result emphasises the problem of sub-minimum inhibitory concentrations of antibiotics in wastewater. High-throughput sequencing showed that continuous exposure to ampicillin caused a shift from a Bacteroidetes to Proteobacteria in the bacterial community. The combined use of qPCR and high-throughput sequencing showed that ampicillin stimulates the spread of resistance genes and leads to the propagation of microbial populations which are resistant to it.202539215485
352030.9998Influence of tetracycline on tetracycline-resistant heterotrophs and tet genes in activated sludge process. The concentrations of tetracycline-intermediate resistant, tetracycline-resistant heterotrophic bacteria, and total heterotrophic bacteria were examined to assess the influence of tetracycline on tetracycline-resistant heterotrophs by the R2A agar cultivation method in the tetracycline fortified activated sludge process and in the natural background. Results showed that the percentages of both tetracycline-intermediate resistant and tetracycline-resistant heterotrophic bacteria in total heterotrophic bacteria were significantly increased, after tetracycline was fed to activated sludge for a 3 months period under four different operating conditions, as compared with the background. In order to investigate the mechanism of activated sludge resistance to tetracycline, polymerase chain reaction experiments were carried out to analyze the existence and evolution of tet genes in the presence of tetracycline. Results revealed that only tet A and tet B genes out of the 11 target tet genes were observed in tetracycline treated activated sludge while no tet gene was detected in background. This indicated that tet A gene could accumulate in activated sludge with slower and continuous influent, while the accumulation of tet B gene could be attributed to shorter hydraulic retention time. Therefore, it was proposed in this study that tetracycline-resistant genes created by efflux pumps spread earlier and quicker to encode resistance to tetracycline, which facilitated the increase in tetracycline-resistance.201525424345
778540.9998Fate of Extracellular DNA in the Production of Fertilizers from Source-Separated Urine. The practice of urine source-separation for fertilizer production necessitates an understanding of the presence and impact of extracellular DNA in the urine. This study examines the fate of plasmid DNA carrying ampicillin and tetracycline resistance genes in aged urine, including its ability to be taken up and expressed by competent bacteria. Plasmid DNA incubated in aged urine resulted in a >2 log loss of bacterial transformation efficiency in Acinetobacter baylyi within 24 h. The concentration of ampicillin and tetracycline resistance genes, as measured with quantitative polymerase chain reaction, did not correspond with the observed transformation loss. When the plasmid DNA was incubated in aged urine that had been filtered (0.22 μm) or heated (75 °C), the transformation efficiencies were more stable than when the plasmids were incubated in unfiltered and unheated aged urine. Gel electrophoresis results indicated that plasmid linearization by materials larger than 100 kDa in the aged urine caused the observed transformation efficiency decreases. The results of this study suggest that extracellular DNA released into aged urine poses a low potential for the spread of antibiotic resistance genes to bacteria once it is released to the environment.202031965791
720050.9998Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure. Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs) in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi (Brassica chinensis L.) to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC) levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg(-1) were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tetX, bla(CTX-M), and sul1 and sul2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.201729099753
780160.9998Disinfection of swine wastewater using chlorine, ultraviolet light and ozone. Veterinary antibiotics are widely used at concentrated animal feeding operations (CAFOs) to prevent disease and promote growth of livestock. However, the majority of antibiotics are excreted from animals in urine, feces, and manure. Consequently, the lagoons used to store these wastes can act as reservoirs of antibiotics and antibiotic-resistant bacteria. There is currently no regulation or control of these systems to prevent the spread of these bacteria and their genes for antibiotic resistance into other environments. This study was conducted to determine the disinfection potential of chlorine, ultraviolet light and ozone against swine lagoon bacteria. Results indicate that a chlorine dose of 30 mg/L could achieve a 2.2-3.4 log bacteria reduction in lagoon samples. However, increasing the dose of chlorine did not significantly enhance the disinfection activity due to the presence of chlorine-resistant bacteria. The chlorine resistant bacteria were identified to be closely related to Bacillus subtilis and Bacillus licheniformis. A significant percentage of lagoon bacteria were not susceptible to the four selected antibiotics: chlortetracycline, lincomycin, sulfamethazine and tetracycline (TET). However, the presence of both chlorine and TET could inactivate all bacteria in one lagoon sample. The disinfection potential of UV irradiation and ozone was also examined. Ultraviolet light was an effective bacterial disinfectant, but was unlikely to be economically viable due to its high energy requirements. At an ozone dose of 100 mg/L, the bacteria inactivation efficiency could reach 3.3-3.9 log.200616678233
529170.9998Low-Concentration Ciprofloxacin Selects Plasmid-Mediated Quinolone Resistance Encoding Genes and Affects Bacterial Taxa in Soil Containing Manure. The spread of antimicrobial resistance in environment is promoted at least in part by the inappropriate use of antibiotics in animals and humans. The present study was designed to investigate the impact of different concentrations of ciprofloxacin in soil containing manure on the development of plasmid-mediated quinolone resistance (PMQR) - encoding genes and the abundance of soil bacterial communities. For these studies, high-throughput next-generation sequencing of 16S rRNA, real-time polymerase chain reaction and standard microbiologic culture methods were utilized. We demonstrated that the dissipate rate of relative abundances of some of PMQR-encoding genes, such as qnrS, oqxA and aac(6('))-Ib-cr, were significantly lower with ciprofloxacin 0.04 and 0.4 mg/kg exposure as compared to no-ciprofloxacin control and ciprofloxacin 4 mg/kg exposure during 2 month. Also, the number of ciprofloxacin resistant bacteria was significantly greater in ciprofloxacin 0.04 and 0.4 mg/kg exposure as compared with no-ciprofloxacin control and the ciprofloxacin 4 mg/kg exposure. In addition, lower ciprofloxacin concentration provided a selective advantage for the populations of Xanthomonadales and Bacillales in orders while Agrobacterium, Bacillus, Enterococcus, and Burkholderia in genera. These findings suggest that lower concentration of ciprofloxacin resulted in a slower rate of PMQR-encoding genes dissipation and selected development of ciprofloxacin-resistant bacteria in soil amended with manure.201627847506
712380.9998Presence and fate of antibiotic residues, antibiotic resistance genes and zoonotic bacteria during biological swine manure treatment. The presence and dissemination of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in the environment is of growing concern worldwide. Manure management practices, such as biological removal of nitrogen from swine manure, may help to decrease levels of antibiotic residues, antibiotic resistance genes and zoonotic bacteria present in manure before fertilization, thereby reducing environmental contamination. Therefore, the aim of this study was to monitor the presence and fate of seven antibiotic residues (colistin, sulfadiazine, trimethoprim, doxycycline, oxytetracycline, ceftiofur and tylosin A), nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) and two zoonotic bacteria (Salmonella Typhimurium and Campylobacter coli) during biological nitrogen removal from swine manure over time. Samples from the raw manure, the solid fraction, the liquid fraction and the storage lagoon were analyzed on two farms at six time points with an interval of two weeks. Only the antibiotics which were used during the three months preceding the first sampling could be detected before and after biological nitrogen removal from swine manure. Of all the antibiotics studied, doxycycline was recovered in all of the samples and sulfadiazine was recovered in most samples on both farms. For both antibiotics, there appears to be a reduction of the amount of residues present in the storage lagoon compared to the liquid fraction, however, this reduction was not statistically significant. A significant reduction of the relative abundances of most of the antibiotic resistance genes studied was observed when comparing the liquid fraction and the storage lagoon. For tet(L), no differences were observed between the fractions sampled and for sul2 and erm(F), a significant increase in relative abundances was observed on the second farm sampled. For the zoonotic bacteria, a reduction of at least 1 log was observed after biological nitrogen removal from swine manure. The results indicate that the concentration of certain antibiotic residues and several antibiotic resistance genes and the amount of zoonotic bacteria present in the manure may be reduced in the end product of the biological nitrogen removal from swine manure.201930878661
528990.9998Examination of the Aerobic Microflora of Swine Feces and Stored Swine Manure. Understanding antibiotic resistance in agricultural ecosystems is critical for determining the effects of subtherapeutic and therapeutic uses of antibiotics for domestic animals. This study was conducted to ascertain the relative levels of antibiotic resistance in the aerobic bacterial population to tetracycline, tylosin, and erythromycin. Swine feces and manure samples were plated onto various agar media with and without antibiotics and incubated at 37°C. Colonies were counted daily. Randomly selected colonies were isolated and characterized by 16S rRNA sequence analyses and additional antibiotic resistance and biochemical analyses. Colonies were recovered at levels of 10 to 10 CFU mL for swine slurry and 10 to 10 CFU g swine feces, approximately 100-fold lower than numbers obtained under anaerobic conditions. Addition of antibiotics to the media resulted in counts that were 60 to 80% of those in control media without added antibiotics. Polymerase chain reaction analyses for antibiotic resistance genes demonstrated the presence of a number of different resistance genes from the isolates. The recoverable aerobic microflora of swine feces and manure contain high percentages of antibiotic-resistant bacteria, which include both known and novel genera and species, and a variety of antibiotic resistance genes. Further analyses of these and additional isolates should provide additional information on these organisms as potential reservoirs of antibiotic resistance genes in these ecosystems.201627065407
3847100.9998The impact and mechanism of quaternary ammonium compounds on the transmission of antibiotic resistance genes. The emergence of antibiotic resistance genes (ARGs) in microbes can be largely attributed to the abuse and misuse of antibiotics and biocides. Quaternary ammonium compounds (QACs) have been used worldwide as common disinfectants and detergents; however, their potential impact on the spread and diffusion of ARGs is still unknown. In this study, we detected the QAC resistance gene (qacEΔ1), the 1 integron gene (intI1), and 12 ARGs (sul1, sul2, cfr, cml, fexA, tetA, tetG, tetQ, tetX, ermB, bla(TEM,) and dfrA1) in 48 water samples from three watersheds by quantitative PCR (qPCR). We investigated the evolution of bacterial antibiotic resistance under QAC and antibiotic environmental pressures by long-term continuous culture. In addition, five QACs were selected to investigate the effect of QAC on the efficiency of conjugation transfer. The changes in bacterial cell membrane and production of reactive oxygen species (ROS) were detected by flow cytometry, revealing the mechanism by which QAC affects the spread of antibiotic resistance. Our results showed that the QAC resistance gene was ubiquitous in watersheds and it had significant correlation with intI1 and seven ARGs (r = 0.999, p < 0.01). QACs could increase the resistance of bacteria to multiple antibiotics. Furthermore, all five QACs promoted the conjugation transfer of the RP4 plasmid; the optimal concentration of QACs was about 10(-1)-10(-2) mg/L and their transfer efficiencies were between 1.33 × 10(-6) and 8.87 × 10(-5). QACs enhanced membrane permeability of bacterial cells and stimulated bacteria to produce ROS, which potentially promoted the transfer of plasmids between bacteria. In conclusion, this study demonstrated that QACs may facilitate the evolution and gene transfer of antibiotic resistance gene among microbiome.201931372954
3421110.9998Survival of antibiotic resistant bacteria following artificial solar radiation of secondary wastewater effluent. Urban wastewater treatment plant effluents represent one of the major emission sources of antibiotic-resistant bacteria (ARB) in natural aquatic environments. In this study, the effect of artificial solar radiation on total culturable heterotrophic bacteria and ARB (including amoxicillin-resistant, ciprofloxacin-resistant, rifampicin-resistant, sulfamethoxazole-resistant, and tetracycline-resistant bacteria) present in secondary effluent was investigated. Artificial solar radiation was effective in inactivating the majority of environmental bacteria, however, the proportion of strains with ciprofloxacin-resistance and rifampicin-resistance increased in the surviving populations. Isolates of Pseudomonas putida, Serratia marcescens, and Stenotrophomonas maltophilia nosocomial pathogens were identified as resistant to solar radiation and to at least three antibiotics. Draft genome sequencing and typing revealed isolates carrying multiple resistance genes; where S. maltophilia (resistant to all studied antibiotics) sequence type was similar to strains isolated in blood infections. Results from this study confirm that solar radiation reduces total bacterial load in secondary effluent, but may indirectly increase the relative abundance of ARB.201829898509
5325120.9998Genes encoding tetracycline resistance in a full-scale municipal wastewater treatment plant investigated during one year. Tetracycline-resistant bacteria and genes encoding tetracycline resistance are common in anthropogenic environments. We studied how wastewater treatment affects the prevalence and concentration of two genes, tetA and tetB, that encode resistance to tetracycline. Using real-time polymerase chain reaction (PCR) we analysed wastewater samples collected monthly for one year at eight key-sites in a full-scale municipal wastewater treatment plant (WWTP). We detected tetA and tetB at each sampling site and the concentration of both genes, expressed per wastewater volume or per total-DNA, decreased over the treatment process. The reduction of tetA and tetB was partly the result of the sedimentation process. The ratio of tetA and tetB, respectively, to total DNA was lower in or after the biological processes. Taken together our data show that tetracycline resistance genes occur throughout the WWTP, and that the concentrations are reduced under conventional operational strategies.201020154388
7124130.9998Changes in diversity of cultured bacteria resistant to erythromycin and tetracycline in swine manure during simulated composting and lagoon storage. This study investigated the impact of composting and lagoon storage on survival and change in diversity of tetracycline-resistant (Tc(r) ) and erythromycin-resistant (Em(r) ) bacteria and the resistance genes they carry in swine manure. Treatments were arranged as a 2 × 2 factorial design: composting vs lagoon storage and 0 vs 1% Surround WP Crop Protectant (a clay product) in three replicates. After 48 days of treatments, resistant bacteria were enumerated by selective plating and identified by 16S rRNA gene sequencing. The erm and the tet gene(s) carried by the resistant isolates were screened using class-specific PCR assays. The plate counts of Tc(r) and Em(r) bacteria decreased by 4-7 logs by composting, but only by 1-2 logs by the lagoon treatment. During the treatments, Acinetobacter gave way to Pseudomonas and Providencia as the largest resistant genera. The clay product had little effect on survival or diversity of resistant bacteria. Of six classes of erm and seven classes of tet genes tested, changes in prevalence were also noted. The results indicate that composting can dramatically shift Tc(r) and Em(r) bacterial populations, and composting can be an effective and practical approach to decrease dissemination of antibiotic resistance from swine farms to the environment. SIGNIFICANCE AND IMPACT OF THE STUDY: The presented research provided evidence that composting is much more effective than lagoon storage in dramatically decreasing culturable bacteria resistant to erythromycin and tetracycline in swine manure. Considerable diversity changes of resistant bacteria were also demonstrated during composting or lagoon storage. Overall, Acinetobacter was the major resistant genus in untreated swine manure, but pseudomonads and Providencia became the major resistant genera after the treatments. This is the first study that investigated diversity changes of cultured bacteria resistant to these two antibiotics during composting and lagoon storage of swine manure. New genes encoding resistance to the two antibiotics were also implied in the cultured isolates.201526031793
3519140.9998Fate of chlortetracycline- and tylosin-resistant bacteria in an aerobic thermophilic sequencing batch reactor treating swine waste. Antibiotics have been added to animal feed for decades. Consequently, food animals and their wastes constitute a reservoir of antibiotic-resistant bacteria. The objective of this work was to characterize the impact of an aerobic thermophilic biotreatment on aerobic, antibiotic-resistant bacteria in swine waste. The proportion of tylosin- and chlortetracycline-resistant bacteria grown at 25 degrees C, 37 degrees C, and 60 degrees C decreased after treatment, but they were still abundant (10(2) to 10(8) most probable number ml(-1)) in the treated swine waste. The presence of 14 genes conferring resistance to tylosin and chlortetracycline was assessed by polymerase chain reaction in bacterial populations grown at 25 degrees C, 37 degrees C, and 60 degrees C, with or without antibiotics. In 22 cases, genes were detected before but not after treatment. The overall gene diversity was wider before [tet(BLMOSY), erm(AB)] than after [tet(LMOS), erm(B)] treatment. Analysis by denaturing gradient gel electrophoresis of amplified 16S ribosomal DNA (rDNA) fragments generally showed a reduction of the bacterial diversity, except for total populations grown at 60 degrees C and for tylosin-resistant populations grown at 37 degrees C. The latter were further investigated by cloning and sequencing their 16S rDNA. Phylotypes found before treatment were all closely related to Enterococcus hirae, whereas six different phylotypes, related to Pseudomonas, Alcaligenes, and Pusillimonas, were found after treatment. This work demonstrated that the aerobic thermophilic biotreatment cannot be considered as a means for preventing the dissemination of aerobic antibiotic-resistant bacteria and their resistance genes to the environment. However, since pathogens do not survive the biotreatment, the effluent does not represent an immediate threat to animal or human health.200919125305
7800150.9998Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: inactivation, antibiotic resistance profiles and antibiotic resistance genes. AIMS: To evaluate the effect of ultraviolet (UV) disinfection on antibiotic-resistant Escherichia coli. METHODS AND RESULTS: Antibiotic-resistant E. coli strains were isolated from a wastewater treatment plant and subjected to UV disinfection. The effect of UV disinfection on the antibiotic resistance profiles and the antibiotic resistance genes (ARGs) of antibiotic-resistant E. coli was evaluated by a combination of antibiotic susceptibility analysis and molecular methods. Results indicated that multiple-antibiotic-resistant (MAR) E. coli were more resistant at low UV doses and required a higher UV dose (20 mJ cm(-2) ) to enter the tailing phase compared with those of antibiotic-sensitive E. coli (8 mJ cm(-2) ). UV disinfection caused a selective change in the inhibition zone diameters of surviving antibiotic-resistant E. coli and a slight damage to ARGs. The inhibition zone diameters of the strains resistant to antibiotics were more difficult to alter than those susceptible to antibiotics because of the existence and persistence of corresponding ARGs. CONCLUSIONS: The resistance of MAR bacteria to UV disinfection at low UV doses and the changes in inhibition zone diameters could potentially contribute to the selection of antibiotic-resistant bacteria in wastewater treatment after UV disinfection. The risk of spread of antibiotic resistance still exists owing to the persistence of ARGs. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study highlights the acquisition of other methods to control the spread of ARGs.201728459506
3431160.9998Correlation between Bacterial Cell Density and Abundance of Antibiotic Resistance on Milking Machine Surfaces Assessed by Cultivation and Direct qPCR Methods. The relative abundance of antibiotic-resistant bacteria and antibiotic-resistance genes was surveyed for different parts of a milking machine. A cultivation approach based on swab samples showed a highly diverse microbiota, harboring resistances against cloxacillin, ampicillin, penicillin, and tetracycline. This approach demonstrated a substantial cloxacillin resistance of numerous taxa within milking machine microbiota coming along with regular use of cloxacillin for dry-off therapy of dairy cows. For the less abundant tetracycline-resistant bacteria we found a positive correlation between microbial cell density and relative abundance of tetracycline-resistant microorganisms (R(2) = 0.73). This indicated an accelerated dispersion of resistant cells for sampling locations with high cell density. However, the direct quantification of the tetM gene from the swap samples by qPCR showed the reverse relation to bacterial density if normalized against the abundance of 16S rRNA genes (R(2) = 0.88). The abundance of 16S rRNA genes was analyzed by qPCR combined with a propidium monoazide treatment, which eliminates 16S rRNA gene signals in negative controls.202337166501
3521170.9998Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures. Subinhibitory levels of antibiotics can promote the development of antibiotic resistance in bacteria. However, it is unclear whether antibiotic concentrations released into aquatic systems exert adequate pressure to select populations with resistance traits. To examine this issue, 15 mesocosms containing pristine surface water were treated with oxytetracycline (OTC) for 56 days at five levels (0, 5, 20, 50, and 250 microg L(-1)), and six tetracycline-resistance genes (tet(B), tet(L), tet(M), ted(O), tet(Q), and tet(W)), the sum of those genes (tet(R)), "total" 16S-rRNA genes, and transposons (Tn916 and Tn 1545) were monitored using real-time PCR. Absolute water-column resistance-gene abundances did not change at any OTC exposure. However, an increase was observed in the ratio of tet(R) to 16S-rRNA genes in the 250 microg L(-1) OTC units, and an increase in the selection rate of Tc(r) genes (relative to 16S-rRNA genes) was seen when OTC levels were at 20 microg L(-1). Furthermore, tet(M) and Tn916/1545 gene abundances correlated among all treatments (r2 = 0.701, p = 0.05), and there were similar selection patterns of tetR and Tn916/1545 genes relative to the OTC level, suggesting a possible mechanism for retention of specific resistance genes within the systems.200818754392
7119180.9998Assessing the benefits of composting poultry manure in reducing antimicrobial residues, pathogenic bacteria, and antimicrobial resistance genes: a field-scale study. The poultry industry in the European Union produces 13 million tons of manure annually, which represents a major health and environmental challenge. Composting is an environmental-friendly technique for the management of manure, but there are few studies about antibiotic residues and antimicrobial resistances at a field scale. The goal of this study was to determine if the composting of poultry manure at a field scale would result in the reduction of antibiotic residues, pathogenic bacteria, and antibiotic resistance genes (ARGs) in the final fertilizer product. A 10-week composting of poultry manure spiked with enrofloxacin, doxycycline, and ciprofloxacin was performed. The determination of antibiotics residues and 22 selected ARGs was carried out together with the identification of bacteria by metagenomics. In the case of ciprofloxacin and doxycycline, a 90% decrease was observed after composting for 3 weeks. Sixteen ARGs were detected at the beginning of the experiment; 12 of them decreased from week 0 to week 10 (reduction of 73.7-99.99%). The presence of potentially pathogenic bacteria, such as, Campylobacter coli or commensal bacteria such as Escherichia coli decreases along the composting process. In conclusion, 10-week composting of poultry manure promotes the reduction of antibiotic residues and most of the ARGs and pathogenic bacteria.202032399873
3429190.9998Emergence of phenotypic and genotypic resistance in the intestinal microbiota of rainbow trout (Oncorhynchus mykiss) exposed long-term to sub-inhibitory concentrations of sulfamethoxazole. Natural waters are contaminated globally with pharmaceuticals including many antibiotics. In this study, we assessed the acquisition of antimicrobial resistance in the culturable intestinal microbiota of rainbow trout (Oncorhynchus mykiss) exposed for 6 months to sub-inhibitory concentrations of sulfamethoxazole (SMX), one of the most prevalent antibiotics in natural waters. SMX was tested at three concentrations: 3000 µg/L, a concentration that had no observed effect (NOEC) on the in vitro growth of fish intestinal microbiota; 3 µg/L, a theoretical predicted no effect concentration (PNEC) for long-term studies in natural environments; and 0.3 µg/L, a concentration detected in many surveys of surface waters from various countries including the USA. In two independent experiments, the emergence of phenotypic resistance and an increased prevalence of bacteria carrying a sulfonamide-resistance gene (sul1) were observed in SMX-exposed fish. The emergence of phenotypic resistance to1000 mg/L SMX was significant in fish exposed to 3 µg/L SMX and was in large part independent of sul resistance genes. The prevalence of bacteria carrying the sul1 resistance gene increased significantly in the culturable intestinal microbiota of SMX-exposed fish, but the sul1-positive population was in large part susceptible to 1000 mg/L SMX, suggesting that the gene confers a lower resistance level or a growth advantage. The increased prevalence of sul1 bacteria was observed in all groups of SMX-exposed fish. Overall, this study suggests that fish exposed long-term to waters contaminated with low levels of antibiotics serve as reservoir of antimicrobial resistant genes and of resistant bacteria, a potential threat to public health.202134545508