# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7772 | 0 | 1.0000 | Metagenomic community composition and resistome analysis in a full-scale cold climate wastewater treatment plant. BACKGROUND: Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1-3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. RESULTS: Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%). The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14 × 10(4) gene copies/mL) followed by intI3 (4.97 × 10(3) gene copies/mL) while intI2 abundance remained low (6.4 × 10(1) gene copies/mL). CONCLUSIONS: Wastewater treatment successfully reduced the abundance of bacteria, DNA phage and antibiotic resistance genes although many antibiotic resistance genes remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria. | 2022 | 35033203 |
| 7774 | 1 | 0.9998 | Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system. In this study, we determined the abundance of 8 antibiotics (3 tetracyclines, 4 sulfonamides, and 1 trimethoprim), 12 antibiotic-resistant genes (10 tet, 2 sul), 4 antibiotic-resistant bacteria (tetracycline, sulfamethoxazole, and combined resistance), and class 1 integron integrase gene (intI1) in the effluent of residential areas, hospitals, and municipal wastewater treatment plant (WWTP) systems. The concentrations of total/individual targets (antibiotics, genes, and bacteria) varied remarkably among different samples, but the hospital samples generally had a lower abundance than the residential area samples. The WWTP demonstrated removal efficiencies of 50.8% tetracyclines, 66.8% sulfonamides, 0.5 logs to 2.5 logs tet genes, and less than 1 log of sul and intI1 genes, as well as 0.5 log to 1 log removal for target bacteria. Except for the total tetracycline concentration and the proportion of tetracycline-resistant bacteria (R (2) = 0.330, P < 0.05), there was no significant correlation between antibiotics and the corresponding resistant bacteria (P > 0.05). In contrast, various relationships were identified between antibiotics and antibiotic resistance genes (P < 0.05). Tet (A) and tet (B) displayed noticeable relationships with both tetracycline and combined antibiotic-resistant bacteria (P < 0.01). | 2015 | 25323405 |
| 5257 | 2 | 0.9998 | Removal of fecal indicator bacteria and antibiotic resistant genes in constructed wetlands. Wastewater discharge evidently increased bacterial diversity in the receiving waterbodies. The objective of this study was to evaluate the effectiveness of a constructed wetland in reducing fecal indicator bacteria (FIB) and antibiotic resistant genes (ARGs). We determined the prevalence and attenuation of fecal indicator bacteria including Escherichia coli and enterococci, along with ARGs, and human-associated Bacteroidales (HF183) markers by quantitative polymerase chain reaction (qPCR) method. Three types of water samples (inlet, intermediate, and outlet) from a constructed wetland were collected once a month from May to December in 2013. The overall reduction of E. coli was 50.0% based on culture method. According to the qPCR result, the overall removal rate of E. coli was only 6.7%. Enterococci were found in 62.5% of the wetland samples. HF183 genetic marker was detected in all final effluent samples with concentration ranging from 1.8 to 4.22 log(10) gene copies (GC)/100 ml. Of the ARGs tested, erythromycin resistance genes (ermF) were detected in 79.2% of the wetland samples. The class 1 integrase (intI1) was detected in all water samples with concentration ranging from 0.83 to 5.54 log(10) GC/100 ml. The overall removal rates of enterococci, HF183, intI1, and ermF were 84.0%, 66.6%, 67.2%, and 13.1%, respectively. | 2019 | 30758793 |
| 7773 | 3 | 0.9998 | Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Antibiotics and corresponding resistance genes and resistant bacteria have been considered as emerging pollutants worldwide. Wastewater treatment plants (WWTPs) are potential reservoirs contributing to the evolution and spread of antibiotic resistance. In this study, total concentrations of tetracycline and sulfonamide antibiotics in final effluent were detected at 652.6 and 261.1ng/L, respectively, and in treated sludge, concentrations were at 1150.0 and 76.0μg/kg dry weight (dw), respectively. The quantities of antibiotic resistance genes and antibiotic resistant bacteria in final effluent were quantified in the range of 9.12×10(5)-1.05×10(6) gene abundances /100mL (genomic copies/100mL) and 1.05×10(1)-3.09×10(3)CFU/mL, respectively. In treated sludge, they were quantified at concentrations of 1.00×10(8)-1.78×10(9) gene abandances/100mL and 7.08×10(6)-1.91×10(8)CFU/100mL, respectively. Significant reductions (2-3 logs, p<0.05) of antibiotic resistance genes and antibiotic resistant bacteria were observed between raw influent and final effluent. The gene abundances of tetO and tetW normalized to that of 16S rRNA genes indicated an apparent decrease as compared to sulI genes, which remained stable along each treatment stage. Significant correlations (R(2)=0.75-0.83, p<0.05) between numbers of resistant bacteria and antibiotic concentrations were observed in raw influent and final effluent. No significance (R(2)=0.15, p>0.05) was found between tet genes (tetO and tetW) with concentration of tetracyclines identified in wastewater, while a significant correlation (R(2)=0.97, p<0.05) was observed for sulI gene and total concentration of sulfonamides. Correlations of the quantities of antibiotic resistance genes and antibiotic resistant bacteria with corresponding concentrations of antibiotics in sludge samples were found to be considerably weak (R(2)=0.003-0.07). | 2012 | 22369865 |
| 5259 | 4 | 0.9998 | Distribution of antibiotic resistance genes in Bosten Lake, Xinjiang, China. The occurrence of antibiotic resistance genes (ARGs) and resistant bacteria was quantified in 17 water samples collected across Bosten Lake, Xinjiang, China. The heterotrophic plate count method was used to detect the levels of sulfonamide- and tetracycline-resistant bacteria, which have mean concentrations of 2.50×10(5) and 4.63×10(3) CFU/mL, respectively. The resistance genes of sulfonamide (sul1, sul2) and tetracycline (tetM, tetO and tetW) were detected, and results showed that all other ARGs except the tetO gene were obtained from all samples. Four of the obtained ARGs were further quantified, and results showed that the sulfonamide resistance genes were prevalent. The relative abundance was in the range of 2.81×10(-5) to 3.33×10(-3) for the sul1/16s-rRNA and 1.04×10(-5) to 3.80×10(-3) for the sul2/16s-rRNA. For the tet genes, the relative concentrations of tetM/16s-rRNA and tetW16s-rRNA ranged from 1.18×10(-5) to 2.46×10(-4) and 1.58×10(-6) to 4.19×10(-4), respectively. The concentration divergence among ARGs may be related to the different characteristics of each gene. This study validated that Bosten Lake was affected by ARGs and resistant bacteria, thus turning the lake into an important reservoir for the transfer of ARGs and resistant bacteria. | 2014 | 25225942 |
| 5255 | 5 | 0.9998 | Occurrence and removal of antibiotics, antibiotic resistance genes, and bacterial communities in hospital wastewater. Hospital wastewater contains a variety of human antibiotics and pathogens, which makes the treatment of hospital wastewater essential. However, there is a lack of research on these pollutants at hospital wastewater treatment plants. In this study, the characteristics and removal of antibiotics and antibiotic resistance genes (ARGs) in the independent treatment processes of hospitals of different scales (primary hospital, H1; secondary hospital, H2; and tertiary hospital, H3) were investigated. The occurrence of antibiotics and ARGs in wastewater from three hospitals varied greatly. The first-generation cephalosporin cefradine was detected at a concentration of 2.38 μg/L in untreated wastewater from H1, while the fourth-generation cephalosporin cefepime had the highest concentration, 540.39 μg/L, at H3. Ofloxacin was detected at a frequency of 100% and had removal efficiencies of 44.2%, 51.5%, and 81.6% at H1, H2, and H3, respectively. The highest relative abundances of the β-lactam resistance gene bla(GES-1) (1.77×10(-3) copies/16S rRNA), the quinolone resistance gene qnrA (8.81×10(-6) copies/16S rRNA), and the integron intI1 (1.86×10(-4) copies/16S rRNA) were detected in the treated wastewater. The concentrations of several ARGs were increased in the treated wastewater (e.g. bla(OXA-1), bla(OXA-10), and bla(TEM-1)). Several pathogenic or opportunistic bacteria (e.g. Acinetobacter, Klebsiella, Aeromonas, and Pseudomonas) were observed at high relative abundances in the treated wastewater. These results suggested the co-occurrence of antibiotics, ARGs, and antibiotic-resistant pathogens in hospital wastewater, and these factors may spread into the receiving aquatic environment. | 2021 | 34089156 |
| 3515 | 6 | 0.9998 | Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China. The abundance and distribution of antibiotics and antibiotic resistance genes (ARGs) in soils from six parks using reclaimed water in Beijing, China, were characterized. Three classes of commonly used antibiotics (tetracycles, quinolones, and sulfonamides) were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The highest concentrations of tetracyclines and quinolones were 145.2 μg kg(-1) and 79.2 μg kg(-1), respectively. Detected tetG, tetW, sulI, and sulII genes were quantified by quantitative PCR. ARGs exhibited various abundances for different park soils. The integrase gene (intI1) as an indicator of horizontal gene transfer potential was also detected in high abundance, and had significant positive correlation with tetG, sulI, and sulII genes, suggesting that intI1 may be involved in ARGs dissemination. Both sulII and intI1 clones had high homology with some classes of pathogenic bacteria, such as Klebsiella oxytoca, Acinetobacter baumannii, Shigella flexneri, which could trigger potential public health concern. | 2014 | 24071635 |
| 5371 | 7 | 0.9997 | Prevalence of antimicrobial resistance in a full-scale drinking water treatment plant. Antibiotic resistance in drinking water has received increasing attention in recent years. In this study, the occurrence and abundance of antibiotic resistance genes (ARGs) in a drinking water treatment plant (DWTP) was comprehensively investigated using metagenomics. Bioinformatics analysis showed that 381 ARG subtypes belonging to 15 ARG types were detected, and bacitracin had the highest abundance (from 0.26 × 10(-2) to 0.86 copies/cell), followed by multidrug (from 0.57 × 10(-1) to 0.47 copies/cell) and sulfonamide (from 0.83 × 10(-2) to 0.35 copies/cell). Additionally, 933 ARG-carrying contigs (ACCs) were obtained from the metagenomic data, among which 153 contigs were annotated as pathogens. The most abundant putative ARG host was Staphylococcus (7.9%), which most frequently carried multidrug ARGs (43.2%). Additionally, 38 high-quality metagenome-assembled genomes (MAGs) were recovered, one of which was identified as Staphylococcus aureus (Bin.624) and harboured the largest number of ARGs (n = 16). Using the cultivation technique, 60 isolates were obtained from DWTP samples, and Staphylococcus spp. (n = 11) were found to be dominant in all isolates, followed by Bacillus spp. (n = 17). Antimicrobial susceptibility testing showed that most Staphylococcus spp. were multidrug resistant (MDR). These results deepen our understanding of the distribution profiles of ARGs and antibiotic resistant bacteria (ARB) in DWTPs for potential health risk evaluation. Our study also highlights the need for new and efficient water purification technologies that can be introduced and applied in DWTPs. | 2023 | 37331316 |
| 5260 | 8 | 0.9997 | Occurrence and Abundance of Antibiotic Resistance Genes in Chinese Traditional Pickles. With the widespread application and even misuse of antibiotics, antibiotic resistance genes (ARGs) are extensively present in various environments, from natural environment to fermented foods, posing emerging threat to public and environmental health. The real-time fluorescence quantitative PCR (qPCR) technique is commonly used to detect ARGs of environmental samples such as soil or water. In this study, eight types of pickles were collected from four regions of China and the existence of 13 resistance genes was assessed by qPCR. The results showed that a total of 11 resistance genes were detected in pickles, the blaTEM gene was detected in all samples, and the neo and cat genes were absent. The abundance of resistance genes varied, aada1 (1.09 × 10(5) to 5.94 × 10(6) copies/g), blaTEM (1.48 × 10(5) to 2.2 × 10(6) copies/g), ermc (1.01 × 10(5) to 5.35 × 10(5) copies/g), hyg (1.35 × 10(5) to 1.93 × 10(6) copies/g), aadd (4.46 × 10(5) to 1.60 × 10(6) copies/g), nat1 (1.04 × 10(5) to 5.04 × 10(5) copies/g), nptII (2.17 × 10(4) to 1.69 × 10(5) copies/g), sul1 (2.01 × 10(5) to 4.60 × 10(5) copies/g), tetl (1.23 × 10(5) to 6.18 × 10(5) copies/g), shble (1.68 × 10(4) copies/g), and stra (4.8 × 10(4) to 1.9 × 10(5)copies/g). We also discussed the specificity and sensitivity assessment of qPCR applied to ARGs analysis in pickles, verifying the feasibility and validity of the method. Bacteria were isolated and purified from pickles as well and their antimicrobial resistance was studied. This study is of great significance for the risk assessment of resistance genes in pickles. Effective and preventive solutions were proposed to reduce the spread of resistance genes and protect public dietary health. | 2025 | 40230011 |
| 3089 | 9 | 0.9997 | Distribution characteristics of antibiotic resistance bacteria and related genes in urban recreational lakes replenished by different supplementary water source. The distribution characteristics of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in urban recreational water from different water-supply sources might be different. In this study, water samples were collected to detect the antibiotic resistance of heterotrophic bacteria to five antibiotics, and the content, phenotype, gene type and species distribution of resistant bacteria were analyzed. The results showed that the changes of bacteria resistance rate in two lakes to five kinds of antibiotics were synchronous with time, and it would reach its maximum in autumn. The detection of ARGs and int I in 80 resistance strains showed that the detection rate of tetG, tetA and int I was high. Here, 51.25% of the bacteria were doubly resistant to AMP-CTX. The 80 isolate strains were of nine genera and 19 species, among which Bacillus cereus, Escherichia coli, Aeromonas veronii, Aeromonas caviae and Raoultella ornithinolytica were the common ARB species in two lakes. Correlation analysis showed that the water temperature was significantly correlated with the content of ARB in sulfamethoxazole (SMZ) and cefotaxime (CTX) (p < 0.05), and the total phosphorus (TP) in FQ lake was significantly correlated with the content of AMP-resistant bacteria (p < 0.05), while there were no other correlations between the changes of other water quality indexes and the content of ARB (p > 0.05). | 2022 | 35228362 |
| 7778 | 10 | 0.9997 | Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Municipal wastewater treatment plant (WWTP) effluents represent an important contamination source of antibiotic resistance, threatening the ecological safety of receiving environments. In this study, the release of antibiotic resistance to sulfonamides and tetracyclines in the effluents of ten WWTPs in China was investigated. Results indicate that the concentrations of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) ranged from 1.1 × 10(1) to 8.9 × 10(3) CFU mL(-1) and 3.6 × 10(1) (tetW) to 5.4 × 10(6) (tetX) copies mL(-1), respectively. There were insignificant correlations of the concentrations of ARB and ARGs with those of corresponding antibiotics. Strong correlations were observed between the total concentrations of tetracycline resistance genes and sulfonamide resistance genes, and both of which were significantly correlated with intI1 concentrations. Statistical analysis of the effluent ARG concentrations in different WWTPs revealed an important role of disinfection in eliminating antibiotic resistance. The release rates of ARB and ARGs through the effluents of ten WWTPs ranged from 5.9 × 10(12) to 4.8 × 10(15) CFU d(-1) and 6.4 × 10(12) (tetW) to 1.7 × 10(18) (sul1) copies d(-1), respectively. This study helps the effective assessment and scientific management of ecological risks induced by antibiotic resistance discharged from WWTPs. | 2017 | 28088530 |
| 5256 | 11 | 0.9997 | Characterization of antibiotic resistance genes and bacteria in a municipal water resource recovery facility. Municipal water resource recovery facilities (WRRFs) are important sources of antibiotic-resistant bacteria and genes (ARB and ARGs). In this study, antibiotic-resistant total heterotrophic bacteria (THB(R) ) counts (CFU/ml) cultivated from influent, effluent of activated sludge process, and outflow of disinfection unit of an urban WRRF were investigated for the presence of 16, 32, 64, and 128 μg/ml of nine antibiotics. The isolates of Pseudomonas spp., Acinetobacter spp., and Escherichia coli obtained from effluent of activated sludge process were subjected for molecular identification by detecting the 16S rRNA gene sequences. Additionally, using the polymerase chain reaction method (PCR), the isolates were investigated for the presence of bla(SHV) , bla(TEM) , bla(CTX-M) , bla(VIM) , sul1, and qnrS genes. According to the results, the abundance of THB(R) counts was not significantly reduced by the biological treatment except for cefixime and sulfamethoxazole; it also increased for some antibiotics after disinfection unit. The average removal efficiency of THB(R) resistant to ciprofloxacin, sulfamethoxazole, and ceftazidime were 7.9 ± 1.7%, 41.8 ± 2.1%, and 14.4 ± 6.2%, respectively. Also, all the tested isolates were resistant to at least four antibiotics. For all antibiotics, the resistance ratio (THB(R) /THB) significantly increased in the effluent and after chlorination unit. Among 12 resistant isolates, bla(TEM) and sul1 genes were the most frequently detected ones involved in 92% and 83% of the isolates, respectively. Both bla(TEM) and sul1 genes were found in 100% of E. coli, and 83% and 67% of Pseudomonas spp. isolates, respectively. Further efforts are necessary to limit the transmission of ARB and ARGs from WRRFs into the environment and prevent human health threats. PRACTITIONER POINTS: The ratio of resistance significantly increased after biological treatment. Up to 40% of heterotrophic bacteria in the effluent was antibiotic resistant. bla(TEM) and sul1 genes were more prevalent (92%) in all isolates of bacteria. Both bla(TEM) and sul1 genes were found in 100% of E. coli isolates. Pseudomonas spp. holds bla(TEM) and sul1 genes in 83% and 67% of isolates, respectively. | 2022 | 35765862 |
| 3088 | 12 | 0.9997 | Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. The occurrence of sulfonamide and tetracycline resistance and their pollution profile in the aquaculture environment of Tianjin, northern China, were investigated. The presence of antibiotic-resistant bacteria was identified and the corresponding antibiotic resistance genes (ARGs) were quantified at 6 aquaculture farms in Tianjin. Sulfonamide-resistance genes were prevalent and their concentrations were the highest detected (3.0 × 10(-5) to 3.3 × 10(-4) for sul1/16S rDNA, 2.0 × 10(-4) to 1.8 × 10(-3) for sul2/16S rDNA) among the various ARGs, most likely because the use of sulfonamides is more prevalent than tetracyclines in this area. Bacillus was the most dominant bacterial genus in both sulfamethoxazole resistant bacteria (63.27% of the total resistant bacteria) and tetracycline-resistant bacteria (57.14% of the total resistant bacteria). At least two of those genes (tetM, tetO, tetT, tetW, sul1 and sul2) were detected in the isolates of Bacillus cereus, Bacillus subtilis, Bacillus megaterium and Acinetobacter lwofii, and all of the above genes were detected in B. cereus, suggesting the occurrence of multi-resistance in the studied area. The genetic transfer of sul1 between intestinal bacteria (e.g., Enterococcus spp.) and indigenous bacteria (e.g., Bacillus spp.) was implied by phylogenetic analysis. Several strains of resistant opportunistic pathogens (e.g., Acinetobacter spp.) were found in indigenous bacteria, which increase the risk of ARGs to public health. Overall, this is the first study to comprehensively investigate the antibiotic resistance profile by analyzing the species of antibiotic-resistant bacteria and adopting qualitative and quantitative methods to investigate ARGs at a typical aquaculture area in northern China. | 2012 | 22377146 |
| 3087 | 13 | 0.9997 | Diversity and abundance of antibiotic resistance of bacteria during the seedling period in marine fish cage-culture areas of Hainan, China. Antibiotic resistance has become an important focus of research in the aquaculture environment. However, few studies have evaluated antibiotic resistance during the seedling period in marine fish cage-culture areas. In this study, culture-dependent methods and quantitative polymerase chain reaction were used to identify and detect cultivable heterotrophic antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), respectively, during the seedling period in a marine fish cage-culture areas of Hainan, China. Bacterial resistance to amoxicillin, erythromycin, and gentamicin was generally high (average on 27.67%, 23.61% and 37.32%, respectively), whereas resistance to furazolidone and nitrofurantoin was generally low (average on 0.14% and 7.425%). Alteromonas (32.72%) and Vibrio (24.77%) were the dominant genus of ARB. Most ARB were opportunistic pathogens, belonging to the phylum Proteobacteria (96.02%). The abundance of sul family genes was higher than that of tet family genes. Overall, the abundance of ARGs and the resistance rates in HW was highest. | 2019 | 30955742 |
| 5258 | 14 | 0.9997 | Occurrence of seventeen veterinary antibiotics and resistant bacterias in manure-fertilized vegetable farm soil in four provinces of China. This study focused on the occurrence of seventeen veterinary antibiotics and six resistant bacterias in soils from the vegetable farms fertilized with animal manure in China. Seventeen veterinary antibiotics, including sulfonamides, quinolones, tetracyclines, macrolides and amphenicols, were detected by high performance liquid chromatography/tandem mass spectrometer in all the 53 soil samples collected in four provinces during August 2016. The concentrations of target antibiotics in the soil samples ranged from not detectable to 415.00 μg/kg dry weight with the mean residual levels of the five classes followed order: tetracyclines (82.75 μg/kg) > quinolones (12.78 μg/kg) > macrolides (12.24 μg/kg) > sulfonamides (2.61 μg/kg) > amphenicols (0.06 μg/kg). Moreover, the highest antibiotic levels were found mainly in soil from organic vegetable farms. Risk assessment by using the methods of risk quotient, suggested that oxytetracycline, chlortetracycline, enrofloxacin and ciprofloxacin could pose severe ecological risk in sampled soils. Resistant strains were isolated in 30 samples, with Escherichia coli and Klebsiella pneumonia found the dominant bacterial hosts with resistance genes. Antibiotic resistance genes, including tetA, tetB, qnrS, oqxA, sul1, sul2, ermA and floR, were detected in the strains resistant to: tetracyclines, quinolones, sulfonamides, macrolides and amphenicols resistance, respectively. Overall, there was a correlation between the results of antibiotic risk assessment with the detection of resistance genes from isolated strains in the soils. | 2019 | 30317094 |
| 5333 | 15 | 0.9997 | Antibiotic resistance profile of wastewater treatment plants in Brazil reveals different patterns of resistance and multi resistant bacteria in final effluents. Wastewater treatment plants (WWTPs) are recognized as important sources of Antibiotic Resistant Bacteria (ARBs) and Antibiotic Resistant Genes (ARGs), and might play a role in the removal and dissemination of antimicrobial resistance (AMR) in the environment. Detailed information about AMR removal by the different treatment technologies commonly applied in urban WWTPs is needed. This study investigated the occurrence, removal and characterization of ARBs in WWTPs employing different technologies: WWTP-A (conventional activated sludge-CAS), WWTP-B (UASB reactor followed by biological trickling filter) and WWTP-C (modified activated sludge followed by UV disinfection-MAS/UV). Samples of raw sewage (RI) and treated effluent (TE) were collected and, through the cultivation-based method using 11 antibiotics, the antibiotic resistance profiles were characterized in a one-year period. MAS was effective in reducing ARB counts (2 to 3 log units), compared to CAS (1 log unit) and UASB/BTF (0.5 log unit). The composition of cultivable ARB differed between RI and TE samples. Escherichia was predominant in RI (56/118); whilst in TE Escherichia (31/118) was followed by Bacillus (22/118), Shigella (14/118) and Enterococcus (14/118). Most of the isolates identified (370/394) harboured at least two ARGs and in over 80 % of the isolates, 4 or more ARG (int1, blaTEM, TetA, sul1 and qnrB) were detected. A reduction in the resistance prevalence was observed in effluents after CAS and MAS processes; whilst a slight increase was observed in treated effluents from UASB/BTF and after UV disinfection stage. The multi-drug resistance (MDR) phenotype was attributed to 84.3 % of the isolates from RI (27/32) and 63.6 % from TE (21/33) samples and 52.3 % of the isolates (34/65) were resistant to carbapenems (imipenem, meropenem, ertapenem). The results indicate that treated effluents are still a source for MDR bacteria and ARGs dissemination to aquatic environments. The importance of biological sewage treatment was reinforced by the significant reductions in ARB counts observed. However, implementation of additional treatments is needed to mitigate MDR bacteria release into the environment. | 2023 | 36240935 |
| 7771 | 16 | 0.9997 | Can chlorination co-select antibiotic-resistance genes? Selective pressures, such as chemical or heavy metal pollution, may co-select for bacterial antibiotic resistance in the environment. However, whether chlorination in water treatment can co-select antibiotic-resistant bacteria is controversial. In this study, high capacity quantitative polymerase chain reaction (qPCR) analysis was applied to target almost all known antibiotic-resistance genes (ARGs) (282 types) and 13 mobile genetic elements (MGEs) in bacteria detected in secondary effluents from a municipal wastewater treatment plant after chlorination. The results revealed that 125 unique ARGs were detected in non-chlorinated samples, and the number decreased (79-91 types) as the chlorine concentration was increased. Moreover, 7.49 × 10(4)-3.92 × 10(7) copies/100 ml water reduction of ARGs occurred with 4 mg Cl2/l. Considering the relative abundance of ARGs (i.e., ARG copies normalized to 16S rRNA gene copies), 119 ARGs decreased in response to chlorination, whereas only six ARGs, such as dfrA1, tetPB-03, tetPA, ampC-04, tetA-02, and erm(36), were potentially enriched by 10.90-, 10.06-, 8.63-, 6.86-, 3.77-, and 1.09-fold, respectively. Furthermore, the relative abundance of 12 detected MGEs was lower after chlorination. Therefore, chlorination was effective in reducing ARGs and MGEs rather than co-selecting them. | 2016 | 27192478 |
| 5249 | 17 | 0.9997 | Characteristics of heterotrophic endophytic bacteria in four kinds of edible raw vegetables: species distribution, antibiotic resistance, and related genes. This study aimed to explore antibiotic resistance characteristics and species of heterotrophic endophytic bacteria (HEB) in four kinds of edible raw vegetables, including radishes, lettuces, onions, and tomatoes. A total of 144 HEB were isolated and tested for resistance to sulfamethoxazole (SMZ), tetracycline (TET), cefotaxime (CTX), and ciprofloxacin (CIP), and their species were identified by 16S rRNA gene sequencing. Antibiotic resistance genes (ARGs) and class I integron in antibiotic-resistant isolates were analyzed by polymerase chain reaction. The results showed radishes had the highest, while tomatoes had the lowest concentration of antibiotic-resistant HEB. SMZ and CTX were predominant antibiotic-resistant phenotypes in HEB. The multi-resistant phenotypes, the combinations SMZ-TET-CTX and SMZ-TET-CIP, accounted for 9.34% of all antibiotic-resistant phenotypes, mainly in radishes and lettuces. Bacillus, Pseudomonas, Staphylococcus, and Stenotrophomonas showed resistance to two antibiotics and existed in more than one kind of vegetable, and were the main carriers of sul1, sul2, blaTEM, and intI1 genes. Therefore, these four genera were considered potential hosts of ARGs in edible raw vegetables. The study provides an early warning regarding health risks associated with ingesting antibiotic-resistant bacteria through raw vegetable consumption. | 2024 | 39611313 |
| 5338 | 18 | 0.9997 | Characterisation of microbial communities and quantification of antibiotic resistance genes in Italian wastewater treatment plants using 16S rRNA sequencing and digital PCR. The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in humans, animals and environment is a growing threat to public health. Wastewater treatment plants (WWTPs) are crucial in mitigating the risk of environmental contamination by effectively removing contaminants before discharge. However, the persistence of ARB and ARGs even after treatment is a challenge for the management of water system. To comprehensively assess antimicrobial resistance dynamics, we conducted a one-year monitoring study in three WWTPs in central Italy, both influents and effluents. We used seasonal sampling to analyze microbial communities by 16S rRNA, as well as to determine the prevalence and behaviour of major ARGs (sul1, tetA, bla(TEM), bla(OXA-48), bla(CTX-M-1 group), bla(KPC)) and the class 1 Integron (int1). Predominant genera included in order: Arcobacter, Acinetobacter, Flavobacterium, Pseudarcobacter, Bacteroides, Aeromonas, Trichococcus, Cloacibacterium, Pseudomonas and Streptococcus. A higher diversity of bacterial communities was observed in the effluents compared to the influents. Within these communities, we also identified bacteria that may be associated with antibiotic resistance and pose a significant threat to human health. The mean concentrations (in gene copies per liter, gc/L) of ARGs and int1 in untreated wastewater (absolute abundance) were as follows: sul1 (4.1 × 10(9)), tetA (5.2 × 10(8)), bla(TEM) (1.1 × 10(8)), bla(OXA-48) (2.1 × 10(7)), bla(CTX-M-1 group) (1.1 × 10(7)), bla(KPC) (9.4 × 10(5)), and int1 (5.5 × 10(9)). The mean values in treated effluents showed reductions ranging from one to three log. However, after normalizing to the 16S rRNA gene (relative abundance), it was observed that in 37.5 % (42/112) of measurements, the relative abundance of ARGs increased in effluents compared to influents. Furthermore, correlations were identified between ARGs and bacterial genera including priority pathogens. This study improves our understanding of the dynamics of ARGs and provides insights to develop more effective strategies to reduce their spread, protecting public health and preserving the future efficacy of antibiotics. | 2024 | 38750766 |
| 5303 | 19 | 0.9997 | Wastewater irrigation increases the abundance of potentially harmful gammaproteobacteria in soils in Mezquital Valley, Mexico. Wastewater contains large amounts of pharmaceuticals, pathogens, and antimicrobial resistance determinants. Only a little is known about the dissemination of resistance determinants and changes in soil microbial communities affected by wastewater irrigation. Community DNAs from Mezquital Valley soils under irrigation with untreated wastewater for 0 to 100 years were analyzed by quantitative real-time PCR for the presence of sul genes, encoding resistance to sulfonamides. Amplicon sequencing of bacterial 16S rRNA genes from community DNAs from soils irrigated for 0, 8, 10, 85, and 100 years was performed and revealed a 14% increase of the relative abundance of Proteobacteria in rainy season soils and a 26.7% increase in dry season soils for soils irrigated for 100 years with wastewater. In particular, Gammaproteobacteria, including potential pathogens, such as Pseudomonas, Stenotrophomonas, and Acinetobacter spp., were found in wastewater-irrigated fields. 16S rRNA gene sequencing of 96 isolates from soils irrigated with wastewater for 100 years (48 from dry and 48 from rainy season soils) revealed that 46% were affiliated with the Gammaproteobacteria (mainly potentially pathogenic Stenotrophomonas strains) and 50% with the Bacilli, whereas all 96 isolates from rain-fed soils (48 from dry and 48 from rainy season soils) were affiliated with the Bacilli. Up to six types of antibiotic resistance were found in isolates from wastewater-irrigated soils; sulfamethoxazole resistance was the most abundant (33.3% of the isolates), followed by oxacillin resistance (21.9% of the isolates). In summary, we detected an increase of potentially harmful bacteria and a larger incidence of resistance determinants in wastewater-irrigated soils, which might result in health risks for farm workers and consumers of wastewater-irrigated crops. | 2014 | 24951788 |