# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7769 | 0 | 1.0000 | Occurrence of super antibiotic resistance genes in the downstream of the Yangtze River in China: Prevalence and antibiotic resistance profiles. The super antibiotic resistance genes (SARGs) demonstrate more severe threats than other antibiotic resistance genes while have not received enough attention in the environment. The study explored the prevalence and the antibiotic tolerance profiles of two typical SARGs, MCR-1 and NDM-1, and their hosting bacteria in the downstream of the Yangtze River and the nearby wastewater treatment plant (WWTP) and drinking water treatment plant (DWTP). Results indicated that MCR-1 and NDM-1 were prevalent in the influent and biological units of the WWTP. Their hosting bacteria were effectively removed, but 2.49 × 10(8) copies/L MCR-1 and 7.00 × 10(6) copies/L NDM-1 were still persistent in the effluent. In the Yangtze River, MCR-1 and NDM-1 were detected with higher abundance and antibiotic tolerance than the WWTP effluent and were significantly affected by nearby water contamination and human activities. In the DWTP, MCR-1 and NDM-1 were detected with average values 5.56 × 10(7) copies/L and 2.14 × 10(5) copies/L in the influent. Their hosting bacteria were undetectable in the effluent, but the two SARGs were still persistent with 1.39 × 10(7) copies/L and 6.29 × 10(4) copies/L, and were greatly enriched in the sludge. Molecular ecological networks demonstrated wide hosting relationships between MCR-1/NDM-1 and bacteria community in the DWTP. Redundancy analysis found that MCR-1 positively correlated with COD and NH(3)-N, while negatively correlated with turbidity. Additionally, MCR-1 hosting bacteria positively correlated with NO(3)(-)-N and negatively correlated with COD and NH(3)-N. NDM-1 positively correlated with turbidity and NDM-1 hosting bacteria positively correlated with COD and NO(2)(-)-N. The study demonstrated that the WWTP could not effectively remove SARGs with high amount of them being discharged into the Yangtze River. Then they were transported into the DWTP and the persistent SARGs in the effluent would probably be transferred into human, thus imposing great threats on public health. | 2019 | 30321718 |
| 7778 | 1 | 0.9999 | Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Municipal wastewater treatment plant (WWTP) effluents represent an important contamination source of antibiotic resistance, threatening the ecological safety of receiving environments. In this study, the release of antibiotic resistance to sulfonamides and tetracyclines in the effluents of ten WWTPs in China was investigated. Results indicate that the concentrations of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) ranged from 1.1 × 10(1) to 8.9 × 10(3) CFU mL(-1) and 3.6 × 10(1) (tetW) to 5.4 × 10(6) (tetX) copies mL(-1), respectively. There were insignificant correlations of the concentrations of ARB and ARGs with those of corresponding antibiotics. Strong correlations were observed between the total concentrations of tetracycline resistance genes and sulfonamide resistance genes, and both of which were significantly correlated with intI1 concentrations. Statistical analysis of the effluent ARG concentrations in different WWTPs revealed an important role of disinfection in eliminating antibiotic resistance. The release rates of ARB and ARGs through the effluents of ten WWTPs ranged from 5.9 × 10(12) to 4.8 × 10(15) CFU d(-1) and 6.4 × 10(12) (tetW) to 1.7 × 10(18) (sul1) copies d(-1), respectively. This study helps the effective assessment and scientific management of ecological risks induced by antibiotic resistance discharged from WWTPs. | 2017 | 28088530 |
| 7771 | 2 | 0.9998 | Can chlorination co-select antibiotic-resistance genes? Selective pressures, such as chemical or heavy metal pollution, may co-select for bacterial antibiotic resistance in the environment. However, whether chlorination in water treatment can co-select antibiotic-resistant bacteria is controversial. In this study, high capacity quantitative polymerase chain reaction (qPCR) analysis was applied to target almost all known antibiotic-resistance genes (ARGs) (282 types) and 13 mobile genetic elements (MGEs) in bacteria detected in secondary effluents from a municipal wastewater treatment plant after chlorination. The results revealed that 125 unique ARGs were detected in non-chlorinated samples, and the number decreased (79-91 types) as the chlorine concentration was increased. Moreover, 7.49 × 10(4)-3.92 × 10(7) copies/100 ml water reduction of ARGs occurred with 4 mg Cl2/l. Considering the relative abundance of ARGs (i.e., ARG copies normalized to 16S rRNA gene copies), 119 ARGs decreased in response to chlorination, whereas only six ARGs, such as dfrA1, tetPB-03, tetPA, ampC-04, tetA-02, and erm(36), were potentially enriched by 10.90-, 10.06-, 8.63-, 6.86-, 3.77-, and 1.09-fold, respectively. Furthermore, the relative abundance of 12 detected MGEs was lower after chlorination. Therefore, chlorination was effective in reducing ARGs and MGEs rather than co-selecting them. | 2016 | 27192478 |
| 7225 | 3 | 0.9998 | Risk assessment of the spread of antibiotic resistance genes from hospitals to the receiving environment via wastewater treatment plants. Antibiotics and antibiotic resistance genes (ARGs) enter the receiving environment from hospitals through wastewater treatment plants (WWTPs), increasing the presence of exogenous ARGs and conditional pathogens in the receiving environment, thereby elevating the risk of drug resistance. This study, based on metagenomics, investigated changes in risk across each node in the ARG transmission chain, from hospitals through WWTPs to downstream receiving water and sediments. The results showed that the total concentration of antibiotics decreased from 1467.80 ± 215.30 µg/L in hospital wastewater to 111.52 ± 18.70 µg/L in downstream receiving water, achieving a 92.40 % removal rate. However, the types of high ecological risk antibiotics in hospital wastewater were only reduced by 38.46 % after treatment by hospitals and sewage treatment plants. The abundance of Rank I ARGs was reduced by 37.03 % in hospital sewage treatment stations and 28.57 % in WWTPs, but these ARGs accounted for 81.8 % of the Rank I ARGs in receiving water. The potential host bacteria for these ARGs were mainly Proteobacteria, which carried bacitracin and multidrug resistance genes. While WWTPs removed 66.67 % of the conditional pathogens, bacteria such as Acinetobacter and Streptococcus still entered the receiving water. MetaCompare revealed that the potential transmission risk of ARGs decreased by 24.31 % after hospital wastewater treatment and by 20.71 % after WWTPs, with the risk of the receiving water being 7.01 times that in sediments. The potential risk assessment framework developed in this study for antibiotics and ARGs in the environment provides a theoretical guidance for antibiotic treatment and ARGs environmental risk control. | 2025 | 41161238 |
| 7770 | 4 | 0.9998 | Mitigation of antibiotic resistance in a pilot-scale system treating wastewater from high-speed railway trains. Wastewater from high-speed railway trains represents a mobile reservoir of microorganisms with antibiotic resistance. It harbors abundant and diverse antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study investigated the removal of ARB and ARGs in a pilot-scale reactor, which consisted of an anaerobic/anoxic/oxic process, anaerobic/anoxic/aerobic process, and ozone-based disinfection to treat 1 m(3)/day wastewater from an electric multiple unit high-speed train. Further, the high prevalence of two mobile genetic elements (intI1 and Tn916/615) and five ARGs (tetA, tetG, qnrA, qnrS, bla(NDM-1), and ermF) was investigated using quantitative PCR. Significant positive correlations between ARGs (tetA, bla(NDM-1), and qnrA) and intI1 were identified (R(2) of 0.94, 0.85, and 0.70, respectively, P < 0.01). Biological treatment could significantly reduce Tn916/1545 (2.57 logs reduction) and Enterococci (2.56 logs reduction of colony forming unit (CFU)/mL), but the qnrS abundance increased (1.19 logs increase). Ozonation disinfection could further significantly decrease ARGs and Enterococci in wastewater, with a reduction of 1.67-2.49 logs and 3.16 logs CFU/mL, respectively. Moreover, food-related bacteria families which may contain opportunistic or parasitic pathogens (e.g., Moraxellaceae, Carnobacteriaceae, and Ruminococcaceae) were detected frequently. Enterococci filtered in this study shows multi-antibiotic resistance. Our study highlights the significance to mitigate antibiotic resistance from wastewater generated from high-speed railway trains, as a mobile source. | 2020 | 31864053 |
| 5338 | 5 | 0.9998 | Characterisation of microbial communities and quantification of antibiotic resistance genes in Italian wastewater treatment plants using 16S rRNA sequencing and digital PCR. The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in humans, animals and environment is a growing threat to public health. Wastewater treatment plants (WWTPs) are crucial in mitigating the risk of environmental contamination by effectively removing contaminants before discharge. However, the persistence of ARB and ARGs even after treatment is a challenge for the management of water system. To comprehensively assess antimicrobial resistance dynamics, we conducted a one-year monitoring study in three WWTPs in central Italy, both influents and effluents. We used seasonal sampling to analyze microbial communities by 16S rRNA, as well as to determine the prevalence and behaviour of major ARGs (sul1, tetA, bla(TEM), bla(OXA-48), bla(CTX-M-1 group), bla(KPC)) and the class 1 Integron (int1). Predominant genera included in order: Arcobacter, Acinetobacter, Flavobacterium, Pseudarcobacter, Bacteroides, Aeromonas, Trichococcus, Cloacibacterium, Pseudomonas and Streptococcus. A higher diversity of bacterial communities was observed in the effluents compared to the influents. Within these communities, we also identified bacteria that may be associated with antibiotic resistance and pose a significant threat to human health. The mean concentrations (in gene copies per liter, gc/L) of ARGs and int1 in untreated wastewater (absolute abundance) were as follows: sul1 (4.1 × 10(9)), tetA (5.2 × 10(8)), bla(TEM) (1.1 × 10(8)), bla(OXA-48) (2.1 × 10(7)), bla(CTX-M-1 group) (1.1 × 10(7)), bla(KPC) (9.4 × 10(5)), and int1 (5.5 × 10(9)). The mean values in treated effluents showed reductions ranging from one to three log. However, after normalizing to the 16S rRNA gene (relative abundance), it was observed that in 37.5 % (42/112) of measurements, the relative abundance of ARGs increased in effluents compared to influents. Furthermore, correlations were identified between ARGs and bacterial genera including priority pathogens. This study improves our understanding of the dynamics of ARGs and provides insights to develop more effective strategies to reduce their spread, protecting public health and preserving the future efficacy of antibiotics. | 2024 | 38750766 |
| 7777 | 6 | 0.9998 | Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs. | 2015 | 25950407 |
| 7179 | 7 | 0.9997 | Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. The propagation of antibiotic resistance genes (ARGs) is an emerging health concern worldwide. Thus, it is important to understand and mitigate their occurrence in different systems. In this study, 30 ARGs that confer resistance to tetracyclines, sulfonamides, quinolones or macrolides were detected in two activated sludge wastewater treatment plants (WWTPs) in northern China. Bacteria harboring ARGs persisted through all treatment units, and survived disinfection by chlorination in greater percentages than total Bacteria (assessed by 16S rRNA genes). Although the absolute abundances of ARGs were reduced from the raw influent to the effluent by 89.0%-99.8%, considerable ARG levels [(1.0 ± 0.2) × 10(3) to (9.5 ± 1.8) × 10(5) copies/mL)] were found in WWTP effluent samples. ARGs were concentrated in the waste sludge (through settling of bacteria and sludge dewatering) at (1.5 ± 2.3) × 10(9) to (2.2 ± 2.8) × 10(11) copies/g dry weight. Twelve ARGs (tetA, tetB, tetE, tetG, tetH, tetS, tetT, tetX, sul1, sul2, qnrB, ermC) were discharged through the dewatered sludge and plant effluent at higher rates than influent values, indicating overall proliferation of resistant bacteria. Significant antibiotic concentrations (2%-50% of raw influent concentrations) remained throughout all treatment units. This apparently contributed selective pressure for ARG replication since the relative abundance of resistant bacteria (assessed by ARG/16S rRNA gene ratios) was significantly correlated to the corresponding effluent antibiotic concentrations. Similarly, the concentrations of various heavy metals (which induce a similar bacterial resistance mechanism as antibiotics - efflux pumps) were also correlated to the enrichment of some ARGs. Thus, curtailing the release of antibiotics and heavy metals to sewage systems (or enhancing their removal in pre-treatment units) may alleviate their selective pressure and mitigate ARG proliferation in WWTPs. | 2015 | 26372743 |
| 7764 | 8 | 0.9997 | Air-drying beds reduce the quantities of antibiotic resistance genes and class 1 integrons in residual municipal wastewater solids. This study investigated whether air-drying beds reduce antibiotic resistance gene (ARG) concentrations in residual municipal wastewater solids. Three laboratory-scale drying beds were operated for a period of nearly 100 days. Real-time PCR was used to quantify 16S rRNA genes, 16S rRNA genes specific to fecal bacteria (AllBac) and human fecal bacteria (HF183), the integrase gene of class 1 integrons (intI1), and five ARGs representing a cross-section of antibiotic classes and resistance mechanisms (erm(B), sul1, tet(A), tet(W), and tet(X)). Air-drying beds were capable of reducing all gene target concentrations by 1 to 5 orders of magnitude, and the nature of this reduction was consistent with both a net decrease in the number of bacterial cells and a lack of selection within the microbial community. Half-lives varied between 1.5 d (HF183) and 5.4 d (tet(X)) during the first 20 d of treatment. After the first 20 d of treatment, however, half-lives varied between 8.6 d (tet(X)) and 19.3 d (AllBac), and 16S rRNA gene, intI1, and sul1 concentrations did not change (P > 0.05). These results demonstrate that air-drying beds can reduce ARG and intI1 concentrations in residual municipal wastewater solids within timeframes typical of operating practices. | 2013 | 23909386 |
| 7236 | 9 | 0.9997 | The variation of antibiotic resistance genes and their links with microbial communities during full-scale food waste leachate biotreatment processes. The prevalence of antibiotic resistance genes (ARGs) has been widely reported in various environments. However, little is known of them in food waste (FW) leachate with high organic content and how their distribution is influenced by biotreatment processes. Here, twelve ARGs, two integrase genes and bacterial communities were investigated during two full-scale FW biotreatment processes. High ARGs abundances (absolute: 1.03 × 10(7)-2.82 × 10(9)copies/mL; relative: 0.076-2.778copies/16S rRNA) were observed across all samples. Although biotreatment effectively reduced absolute abundance of ARGs, additional bacteria acquiring ARGs caused an increase in their relative abundance, which further increased the transmission risk of ARGs. mexF, blaCTX-M, sul1 played crucial roles and sul1 might be considered as an indicator for the prediction of total ARGs. It is worrying that the discharge (effluent and sludge) included highly abundant ARGs (5.09 × 10(14)-4.83 × 10(15)copies/d), integrons (1.11 × 10(14)-6.04 × 10(14)copies/d) and potential pathogens (such as Pseudomonas and Streptococcus), which should be given more attentions. blaCTX-M and tetQ possessed most potential hosts, Proteobacteria-L and Firmicutes-W were predominant contributors of ARGs-hosts at genus level. This study suggested FW leachate biotreatment systems could be reservoirs of ARGs and facilitated the proliferation of them. The exploration of effective removal methods and formulation of emission standard are necessary for future ARGs mitigation. | 2021 | 33862482 |
| 7767 | 10 | 0.9997 | Degradation of plasmid-mediated resistance genes in poultry slaughterhouse wastewater employing a UV/H(2)O(2) process: A metagenomic approach. Poultry slaughterhouse effluents are important hotspots for the spread of both antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs), contributing to the antimicrobial resistance (AMR). This study reports a novel investigation to assess the effects of UV/H(2)O(2) treatment on the removal of metaplasmidome-mediated ARGs from poultry slaughterhouse effluents. The effluent samples were subjected at 0.005-0.15 mol L(-1) of H(2)O(2) and pH conditions (3, 5, 7 and 9). Bacterial community (rrs 16S rRNA), Escherichia coli (uidA) antimicrobial resistance (sul1 and int1) and metagenomic plasmid DNA removal were assessed. The UV/H(2)O(2) treatment employing H(2)O(2) = 0.01 mol L(-1) at pH 3 resulted in decreased of several markers (uidA, sul1 and int1). A metaplasmidome indicated the persistence of Burkholderiales order. The UV/H(2)O(2) process reduced plasmid-associated ARGs by 92.5% and 90.4% at pH 3 and 7, respectively. Persistent genes were mainly composed of genes associated with efflux pumps and resistance to beta-lactams and fluoroquinolones. These findings contribute to mitigate the spread of AMR in the agricultural sector, especially through the implementation of more efficient treatments, and reducing the use of antibiotics in livestock farming. | 2025 | 39826254 |
| 5358 | 11 | 0.9997 | Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Antimicrobial resistance represents a growing and significant public health threat, which requires a global response to develop effective strategies and mitigate the emergence and spread of this phenomenon in clinical and environmental settings. We investigated, therefore, the occurrence and abundance of several antibiotics and antibiotic resistance genes (ARGs), as well as bacterial community composition in wastewater effluents from different hospitals located in the Cluj County, Romania. Antibiotic concentrations ranged between 3.67 and 53.05 μg L(-1), and the most abundant antibiotic classes were β-lactams, glycopeptides, and trimethoprim. Among the ARGs detected, 14 genes confer resistance to β-lactams, aminoglycosides, chloramphenicol, macrolide-lincosamide-streptogramin B (MLSB) antibiotics, sulfonamides, and tetracyclines. Genes encoding quaternary ammonium resistance and a transposon-related element were also detected. The sulI and qacEΔ1 genes, which confer resistance to sulfonamides and quaternary ammonium, had the highest relative abundance with values ranging from 5.33 × 10(-2) to 1.94 × 10(-1) and 1.94 × 10(-2) to 4.89 × 10(-2) copies/16 rRNA gene copies, respectively. The dominant phyla detected in the hospital wastewater samples were Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Among selected hospitals, one of them applied an activated sludge and chlorine disinfection process before releasing the effluent to the municipal collector. This conventional wastewater treatment showed moderate removal efficiency of the studied pollutants, with a 55-81% decrease in antibiotic concentrations, 1-3 order of magnitude lower relative abundance of ARGs, but with a slight increase of some potentially pathogenic bacteria. Given this, hospital wastewaters (raw or treated) may contribute to the spread of these emerging pollutants in the receiving environments. To the best of our knowledge, this study quantified for the first time the abundance of antibiotics and ARGs in wastewater effluents from different Romanian hospitals. | 2017 | 28347610 |
| 7774 | 12 | 0.9997 | Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system. In this study, we determined the abundance of 8 antibiotics (3 tetracyclines, 4 sulfonamides, and 1 trimethoprim), 12 antibiotic-resistant genes (10 tet, 2 sul), 4 antibiotic-resistant bacteria (tetracycline, sulfamethoxazole, and combined resistance), and class 1 integron integrase gene (intI1) in the effluent of residential areas, hospitals, and municipal wastewater treatment plant (WWTP) systems. The concentrations of total/individual targets (antibiotics, genes, and bacteria) varied remarkably among different samples, but the hospital samples generally had a lower abundance than the residential area samples. The WWTP demonstrated removal efficiencies of 50.8% tetracyclines, 66.8% sulfonamides, 0.5 logs to 2.5 logs tet genes, and less than 1 log of sul and intI1 genes, as well as 0.5 log to 1 log removal for target bacteria. Except for the total tetracycline concentration and the proportion of tetracycline-resistant bacteria (R (2) = 0.330, P < 0.05), there was no significant correlation between antibiotics and the corresponding resistant bacteria (P > 0.05). In contrast, various relationships were identified between antibiotics and antibiotic resistance genes (P < 0.05). Tet (A) and tet (B) displayed noticeable relationships with both tetracycline and combined antibiotic-resistant bacteria (P < 0.01). | 2015 | 25323405 |
| 7237 | 13 | 0.9997 | Dominant denitrifying bacteria are important hosts of antibiotic resistance genes in pig farm anoxic-oxic wastewater treatment processes. The anoxic-oxic (A/O) wastewater treatment process that is widely used in pig farms in China is an important repository for antibiotic resistance genes (ARGs). However, the distribution of ARGs and their hosts in the A/O process has not been well characterized. In this study, the wastewaters in the anoxic and oxic tanks for A/O processes were collected from 38 pig farms. The concentrations of 20 subtypes of ARGs, 5 denitrification-related genes, 2 integrons, and bacterial community composition were investigated. Bacterial genome binning was performed using metagenome sequencing. In this study, 20 subtypes of ARGs and integrons were detected in all sampling sites. A total of 16 of the 20 subtypes of ARGs were detected with the highest abundance in anoxic tanks, and sul1 was detected with a maximum average abundance of 19.21 ± 0.24 log(10) (copies/mL). Cooccurrence patterns were observed for some genes in the pig farm A/O process, such as sul1 and intl1, sul1 and tetG, and tetO and tetW. There was a significant cooccurrence pattern between the dominant denitrifying bacteria and some ARGs (bla(TEM), ermB, tetC, tetH and tetQ), so the dominant denitrifying bacteria were considered to be potential ARG hosts. In addition, 170 highly abundant bacterial genome bins were assembled and further confirmed that the denitrifying bacteria Brachymonas, Candidatus Competibacter, Thiobacillus and Steroidobacter were the important ARG hosts in the pig farm A/O process, providing a useful reference for the surveillance and risk management of ARGs in pig farm wastewater. | 2020 | 32615347 |
| 5323 | 14 | 0.9997 | Monitoring and assessing the impact of wastewater treatment on release of both antibiotic-resistant bacteria and their typical genes in a Chinese municipal wastewater treatment plant. Wastewater treatment plants (WWTPs) are important hotspots for the spread of antibiotic resistance. However, the release and impact factors of both antibiotic resistant bacteria and the relevant genes over long periods in WWTPs have rarely been investigated. In this study, the fate of bacteria and genes resistant to six commonly used antibiotics was assessed over a whole year. In WWTP effluent and biosolids, a high prevalence of heterotrophic bacteria resistant to vancomycin, cephalexin, sulfadiazine and erythromycin were detected, each with a proportion of over 30%. The corresponding genes (vanA, ampC, sulI and ereA) were all detected in proportions of (2.2 ± 0.8) × 10(-10), (6.2 ± 3.2) × 10(-9), (1.2 ± 0.8) × 10(-7) and (7.6 ± 4.8) × 10(-8), respectively, in the effluent. The sampling season imposed considerable influence on the release of all ARB. High release loads of most ARB were detected in the spring, while low release loads were generally found in the winter. In comparison, the ARG loads changed only slightly over various seasons. No statistical relevance was found between all ARB abundances and their corresponding genes over the long-term investigation period. This inconsistent behavior indicates that bacteria and genes should both be considered when exploring resistance characteristics in wastewater. A redundancy analysis was adopted to assess the impact of wastewater quality and operational conditions on antibiotic resistance. The results indicated that most ARB and ARG proportions were positively related to the COD and turbidity of the raw sewage, while negatively related to those of the effluent. DO and temperature exhibited strong negative relevance to most ARB prevalence. | 2014 | 24927359 |
| 3510 | 15 | 0.9997 | Spatiotemporal profile of tetracycline and sulfonamide and their resistance on a catchment scale. Tetracyclines and sulfonamides are the two classes of antibiotics commonly used in the medical, industrial and agricultural activities. Their extensive usage has caused the proliferation and propagation of resistant bacteria (ARB) and resistance genes (ARGs) in the environment. In this study, the occurrence and distribution of tetracyclines (TC, OTC and CTC) and sulfonamides (SMX, SCX and TMP), their associated ARB and ARGs were quantified in water and sediments collected from the mainstream of Liaohe River, northeast China. The average concentration of tetracyclines was higher in May, while the concentration of sulfonamides was slightly higher in October. The highest concentrations of the total tetracyclines and sulfonamides in sediments were 2.7×10(3) ng/g and 2.1×10(2) ng/g respectively detected in May. All detected ARGs were found generally with high abundance. The tetA, tetB and tetE genes were dominant (4.4×10(-2) to 9.8×10(-1) copies of tet genes/copies of 16S rRNA genes) in total communities, and the average abundance of sul genes was expressed above 10(-1) in the water samples in May and October. Redundance analysis (RDA) and principle component analysis (PCA) indicated that the antibiotic residue was the most important contributor to the level of tetracycline and sulfonamide resistance genes, and some hydrogeological conditions (e.g. flow rate, intersection settlement) influenced the distribution of resistance genes. Results from this study could help understand the proliferation and propagation of antibiotic resistance on a river catchment scale and mitigate the potential risks to public health. | 2018 | 30029318 |
| 7766 | 16 | 0.9997 | Native Microalgae-Bacteria Consortia: A Sustainable Approach for Effective Urban Wastewater Bioremediation and Disinfection. Urban wastewater is a significant by-product of human activities. Conventional urban wastewater treatment plants have limitations in their treatment, mainly concerning the low removal efficiency of conventional and emerging contaminants. Discharged wastewater also contains harmful microorganisms, posing risks to public health, especially by spreading antibiotic-resistant bacteria and genes. Therefore, this study assesses the potential of a native microalgae-bacteria system (MBS) for urban wastewater bioremediation and disinfection, targeting NH(4)(+)-N and PO(4)(3-)-P removal, coliform reduction, and antibiotic resistance gene mitigation. The MBS showed promising results, including a high specific growth rate (0.651 ± 0.155 d(-1)) and a significant average removal rate of NH(4)(+)-N and PO(4)(3-)-P (9.05 ± 1.24 mg L(-1) d(-1) and 0.79 ± 0.06 mg L(-1) d(-1), respectively). Microalgae-induced pH increase rapidly reduces coliforms (r > 0.9), including Escherichia coli, within 3 to 6 days. Notably, the prevalence of intI1 and the antibiotic resistance genes sul1 and bla(TEM) are significantly diminished, presenting the MBS as a sustainable approach for tertiary wastewater treatment to combat eutrophication and reduce waterborne disease risks and antibiotic resistance spread. | 2024 | 39065189 |
| 3504 | 17 | 0.9997 | Distribution of antibiotic resistance genes and bacteria from six atmospheric environments: Exposure risk to human. Antibiotic resistance genes (ARGs), as an emerging environmental pollutant, have received widespread attention. There are many studies on ARGs in water and soil. However, there are few studies on airborne ARGs. We used qPCR to detect 19 ARG subtypes in six atmospheric environments. Among the different atmospheric environments including wastewater treatment plant (fine screens and sludge thickener), bathroom, laboratory, hospital and outdoor, the highest total concentration of ARGs is detected in the haze outdoor (9 × 10(5) copies/m(3)), while the lowest is in the bathroom atmosphere (4.2 × 10(4) copies/m(3)). Furthermore, β-lactam ARGs are found to be the dominant ARGs in these 6 atmospheric environments. Due to the large number and widespread use of antibiotics, the airborne ARGs in hospital have the highest diversity and equitability. The β-lactam ARGs are significantly positively correlated with sulfonamides ARGs, indicating the mechanism of co-resistance since these two ARGs may be on the same genetic elements and thus simultaneously exhibit both resistances. The network analysis provides potential host information between the airborne ARGs and the coexisted microbial taxa. Sphingomonas and Bradyhizoblum strains presumably host for tetracycline and β-lactam ARGs, respectively. The ADD(outdoor) of bla(TEM-1) was 7.8 × 10(5) copies/d/kg, more than the ADD (7.6 × 10(3) copies/d/kg) of bla(TEM-1) by drinking water. We can't ignore ARGs in the atmospheric environments. | 2019 | 31400672 |
| 5324 | 18 | 0.9997 | Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load. Antibiotics and antibiotic resistant bacteria enter wastewater treatment plants (WWTPs), an environment where resistance genes can potentially spread and exchange between microbes. Several antibiotic resistance genes (ARGs) were quantified using qPCR in three WWTPs of decreasing capacity located in Helsinki, Tallinn, and Tartu, respectively: sulphonamide resistance genes (sul1 and sul2), tetracycline resistance genes (tetM and tetC), and resistance genes for extended spectrum beta-lactams (blaoxa-58, blashv-34, and blactx-m-32). To avoid inconsistencies among qPCR assays we normalised the ARG abundances with 16S rRNA gene abundances while assessing if the respective genes increased or decreased during treatment. ARGs were detected in most samples; sul1, sul2, and tetM were detected in all samples. Statistically significant differences (adjusted p<0.01) between the inflow and effluent were detected in only four cases. Effluent values for blaoxa-58 and tetC decreased in the two larger plants while tetM decreased in the medium-sized plant. Only blashv-34 increased in the effluent from the medium-sized plant. In all other cases the purification process caused no significant change in the relative abundance of resistance genes, while the raw abundances fell by several orders of magnitude. Standard water quality variables (biological oxygen demand, total phosphorus and nitrogen, etc.) were weakly related or unrelated to the relative abundance of resistance genes. Based on our results we conclude that there is neither considerable enrichment nor purification of antibiotic resistance genes in studied conventional WWTPs. | 2014 | 25084517 |
| 7768 | 19 | 0.9997 | Drinking water biofiltration: Behaviour of antibiotic resistance genes and the association with bacterial community. Antibiotic resistance genes (ARGs) are being detected in drinking water frequently, constituting a major public health issue. As a typical drinking water treatment process, the biofilter may harbour various ARGs due to the filter biofilms established during the filtration process. The objective of this study was to investigate the behaviour of ARGs (bla(CTX-M), bla(OXA-1), bla(TEM), ermB, tetA, tetG, tetQ, tetW, tetX, sul 1, sul 2, dfrA1 and dfrA12) and their possible association with bacteria in a bench-scale biofiltration system. The impact of filter media on horizontal gene transfer (HGT) was also explored using a model conjugative plasmid, RP1. The biofiltration system comprised four types of biofilters, including sand, granular activated carbon (GAC), GAC sandwich, and anthracite-sand biofilters. Results showed that although the absolute abundance of ARGs decreased (0.97-log reduction on average), the ARGs' abundance normalised to bacterial numbers showed an increasing trend in the filtered water. Biofilms collected from the surface layer revealed the lowest relative abundance of ARGs (p < 0.01) compared to the deeper layer biofilms, indicating that the proportion of ARG-carrying bacteria was greater in the lower position. Most chosen ARG numbers correlated to Proteobacteria, Acidobacteria and Nitrospirae phyla, which accounted for 51.9%, 5.2% and 2.0% of the biofilm communities, respectively. GAC media revealed the highest transfer frequency (2.60 × 10(-5)), followed by anthracite (5.31 × 10(-6)) and sand (2.47 × 10(-6)). Backwashing can reduce the transferability of RP1 plasmid significantly in biofilms but introduces more transconjugants into the planktonic phase. Overall, the results of this study could enhance our understanding of the prevalence of ARGs in drinking water biofiltration treatment. | 2020 | 32650149 |