# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7765 | 0 | 1.0000 | Antibiotic resistance bacteria and antibiotic resistance genes survived from the extremely acidity posing a risk on intestinal bacteria in an in vitro digestion model by horizontal gene transfer. Antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants posing risk to human health. To investigate the pathogenic ARBs and the horizontal gene transfer (HGT) via both extracellular ARGs (eARGs) and intracellular ARGs (iARGs), an in vitro digestion simulation system was established to monitoring the ARB and ARGs passing through the artificial digestive tract. The results showed that ARB was mostly affected by the acidity of the gastric fluid with about 99% ARB (total population of 2.45 × 10(9)-2.54 × 10(9)) killed at pH 2.0 and severe damage of bacterial cell membrane. However, more than 80% ARB (total population of 2.71 × 10(9)-3.90 × 10(9)) survived the challenge when the pH of the gastric fluid was 3.0 and above. Most ARB died from the high acidity, but its ARGs, intI1 and 16 S rRNA could be detected. The eARGs (accounting for 0.03-24.56% of total genes) were less than iARGs obviously. The eARGs showed greater HGT potential than that of iARGs, suggesting that transformation occurred more easily than conjugation. The transferring potential followed: tet (100%) > sul (75%) > bla (58%), related to the high correlation of intI1 with tetA and sul2 (p < 0.01). Moreover, gastric juice of pH 1.0 could decrease the transfer frequency of ARGs by 2-3 order of magnitude compared to the control, but still posing potential risks to human health. Under the treatment of digestive fluid, ARGs showed high gene horizontal transfer potential, suggesting that food-borne ARBs pose a great risk of horizontal transfer of ARGs to intestinal bacteria. | 2022 | 36332408 |
| 7184 | 1 | 0.9998 | Effects of activated sludge and UV disinfection processes on the bacterial community and antibiotic resistance profile in a municipal wastewater treatment plant. Wastewater tertiary treatment has been pointed out as an effective alternative for reducing the concentration of antibiotic resistant bacteria and genes (ARB and ARGs) in wastewaters. The present work aimed to build on the current knowledge about the effects of activated sludge and UV irradiation on antibiotic resistance determinants in biologically treated wastewaters. For that, the microbial community and ARGs' composition of samples collected after preliminary (APT), secondary (AST), and tertiary (ATT) treatments in a full-scale wastewater treatment plant using a modified activated sludge (MAS) system followed by an UV stage (16 mJ/cm(2)) were investigated through culture-dependent and independent approaches (including metagenomics). A total of 24 phyla and 460 genera were identified, with predominance of Gammaproteobacteria in all samples. Pathogenic genera corresponded to 8.6% of all sequences on average, mainly Acinetobacter and Streptococcus. Significant differences (p < 0.05) in the proportion of pathogens were observed between APT and the other samples, suggesting that the secondary treatment reduced its abundance. The MAS achieved 64.0-99.7% average removal efficiency for total (THB) and resistant heterotrophic bacteria, although the proportions of ARB/THB have increased for sulfamethoxazole, cephalexin, ciprofloxacin, and tetracycline. A total of 10(7) copies/mL of intI1 gene remained in the final effluent, suggesting that the treatment did not significantly remove this gene and possibly other ARGs. In accordance, metagenomic results suggested that number of reads recruited to plasmid-associated ARGs became more abundant in the pool throughout the treatment, suggesting that it affected more the bacteria without these ARGs than those with it. In conclusion, disinfected effluents are still a potential source for ARB and ARGs, which highlights the importance to investigate ways to mitigate their release into the environment. | 2022 | 35060061 |
| 3432 | 2 | 0.9998 | Insights into the amplification of bacterial resistance to erythromycin in activated sludge. Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study. The resistance variation of total heterotrophic bacteria was studied during the biological treatment process, based on culture dependent method. The alterations of bacterial community resistant to erythromycin and nine typical erythromycin resistance genes were explored with molecular approaches, including high-throughput sequencing and quantitative polymerase chain reaction. The results revealed that the total heterotrophs tolerance level to erythromycin concentrations (higher than 32 mg/L) was significantly amplified during the activated sludge treatment, with the prevalence increased from 9.6% to 21.8%. High-throughput sequencing results demonstrated an obvious increase of the total heterotrophic bacterial diversity resistant to erythromycin. Proteobacteria and Bacteroidetes were the two dominant phyla in the influent and effluent of the bioreactor. However, the prevalence of Proteobacteria decreased from 76% to 59% while the total phyla number increased greatly from 18 to 29 through activated sludge treatment. The gene proportions of erm(A), mef(E) and erm(D) were greatly amplified after biological treatment. It is proposed that the transfer of antibiotic resistance genes through the variable mixtures of bacteria in the activated sludge might be the reason for the antibiotic resistance amplification. The amplified risk of antibiotic resistance in wastewater treatment needs to be paid more attention. | 2015 | 25957255 |
| 7183 | 3 | 0.9998 | Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Antibiotics are widely used in livestock for infection treatment and growth promotion. Wastes from animal husbandry are a potential environmental source of antibiotic-insensitive pathogens, and the removal efficiency of the resistance genotypes in current wastewater treatment plants (WWTPs) is unknown. In this study, quantitative PCR was used for evaluating antibiotic resistance genes in wastewater treatment processes. Six wastewater treatment plants in different swine farms were included in this study, and five antibiotic resistance genes (ARGs) were tested for each treatment procedure. All of the tested ARGs including tetA, tetW, sulI, sulII, and blaTEM genes were detected in six swine farms with considerable amounts. The results showed that antibiotic resistance is prevalent in livestock farming. The ARG levels were varied by wastewater treatment procedure, frequently with the highest level at anaerobic treatment tank and lowest in the activated sludge unit and the effluents. After normalizing the ARG levels to 16S rRNA gene copies, the results showed that ARGs in WWTP units fluctuated partly with the quantity of bacteria. Regardless of its importance in biodegradation, the anaerobic procedure may facilitate bacterial growth thus increasing the sustainability of the antibiotic resistance genotypes. After comparing the copy numbers in influx and efflux samples, the mean removal efficiency of ARGs ranged between 33.30 and 97.56%. The results suggested that treatments in the WWTP could partially reduce the spread of antibiotic-resistant bacteria, and additional procedures such as sedimentation may not critically affect the removal efficiency. | 2014 | 25064719 |
| 7182 | 4 | 0.9998 | Effects of UV disinfection on phenotypes and genotypes of antibiotic-resistant bacteria in secondary effluent from a municipal wastewater treatment plant. To elucidate the effects of UV disinfection on antibiotic resistance in biologically-treated wastewater, we investigated the antibiotic resistance profiles, species of cultivable heterotrophic bacteria, and antibiotic-resistance genes (ARGs) in antibiotic-resistant bacteria before and after treatment. UV disinfection greatly changed the bacterial community structure and the antibiotic resistance in wastewater. The antibiotic resistance in wastewater samples was strongly associated with the bacterial community. The proportions of Gram-positive bacteria gradually increased with increasing UV fluence. The proportions of bacteria resistant to cephalexin, penicillin, and vancomycin all greatly decreased after UV treatment in both sampling events (July 2018 and January 2019), and those for bacteria resistant to ofloxacin, ciprofloxacin, and sulfadiazine increased, resulting from the alternative antibiotic resistance profiles among different genera. UV disinfection induced the selection of multi-antibiotic resistant (MAR) bacteria. For example, the MAR indices of Aeromonas, the dominant genus during the treatments, were significantly increased after UV irradiation (P < 0.05). The MAR index was also markedly increased (P < 0.05) at a fluence of 5 mJ/cm(2) in both events. In UV10 treatment, the bacterial community structure was greatly changed. The genera with relatively low MAR indices replaced that with high MAR indices, and became the dominant genera. As a result, the MAR indices of treated samples showed a decreased trend after 10 mJ/cm(2) UV irradiation. The detection frequencies of ARGs located on the chromosome varied mainly due to the evolution of the microbial community. The occurrence of ARGs (tetA, tetC, tetM, tetW, tetX, and sul1) located on plasmid DNA decreased after UV disinfection, and the average detection frequencies of tet and sul genes decreased by 15% and 6%, respectively (P < 0.05). Generally speaking, the effect of UV disinfection on the enrichment of antibiotic resistance is limited in this study, and horizontal gene transfer via the plasmids in surviving bacteria might be impaired due to the decreased abundance of ARGs on the plasmids. | 2019 | 30991178 |
| 7252 | 5 | 0.9998 | Aerobic Composting and Anaerobic Digestion Decrease the Copy Numbers of Antibiotic-Resistant Genes and the Levels of Lactose-Degrading Enterobacteriaceae in Dairy Farms in Hokkaido, Japan. Efficient methods for decreasing the spread of antimicrobial resistance genes (ARGs) and transfer of antimicrobial-resistant bacteria (ARB) from livestock manure to humans are urgently needed. Aerobic composting (AC) or anaerobic digestion (AD) are widely used for manure treatment in Japanese dairy farms. To clarify the effects of AC and AD on antimicrobial resistance, the abundances of antimicrobial (tetracycline and cefazolin)-resistant lactose-degrading Enterobacteriaceae as indicator bacteria, copy numbers of ARGs (tetracycline resistance genes and β-lactamase coding genes), and concentrations of residual antimicrobials in dairy cow manure were determined before and after treatment. The concentration of tetracycline/cefazolin-resistant lactose-degrading Enterobacteriaceae was decreased over 1,000-fold by both AC and AD. ARGs such as tetA, tetB, and bla (TEM) were frequently detected and their copy numbers were significantly reduced by ∼1,000-fold by AD but not by AC. However, several ARG copies remained even after AD treatment. Although concentrations of the majority of residual antimicrobials were decreased by both AC and AD, oxytetracycline level was not decreased after treatment in most cases. In addition, 16S rRNA gene amplicon-based metagenomic analysis revealed that both treatments changed the bacterial community structure. These results suggest that both AC and AD could suppress the transmission of ARB, and AD could reduce ARG copy numbers in dairy cow manure. | 2021 | 34659165 |
| 5323 | 6 | 0.9998 | Monitoring and assessing the impact of wastewater treatment on release of both antibiotic-resistant bacteria and their typical genes in a Chinese municipal wastewater treatment plant. Wastewater treatment plants (WWTPs) are important hotspots for the spread of antibiotic resistance. However, the release and impact factors of both antibiotic resistant bacteria and the relevant genes over long periods in WWTPs have rarely been investigated. In this study, the fate of bacteria and genes resistant to six commonly used antibiotics was assessed over a whole year. In WWTP effluent and biosolids, a high prevalence of heterotrophic bacteria resistant to vancomycin, cephalexin, sulfadiazine and erythromycin were detected, each with a proportion of over 30%. The corresponding genes (vanA, ampC, sulI and ereA) were all detected in proportions of (2.2 ± 0.8) × 10(-10), (6.2 ± 3.2) × 10(-9), (1.2 ± 0.8) × 10(-7) and (7.6 ± 4.8) × 10(-8), respectively, in the effluent. The sampling season imposed considerable influence on the release of all ARB. High release loads of most ARB were detected in the spring, while low release loads were generally found in the winter. In comparison, the ARG loads changed only slightly over various seasons. No statistical relevance was found between all ARB abundances and their corresponding genes over the long-term investigation period. This inconsistent behavior indicates that bacteria and genes should both be considered when exploring resistance characteristics in wastewater. A redundancy analysis was adopted to assess the impact of wastewater quality and operational conditions on antibiotic resistance. The results indicated that most ARB and ARG proportions were positively related to the COD and turbidity of the raw sewage, while negatively related to those of the effluent. DO and temperature exhibited strong negative relevance to most ARB prevalence. | 2014 | 24927359 |
| 7193 | 7 | 0.9998 | Plasmid-mediated transfer of antibiotic resistance genes and biofilm formation in a simulated drinking water distribution system under chlorine pressure. The effects of disinfectants and plasmid-based antibiotic resistance genes (ARGs) on the growth of microorganisms and the plasmid-mediated transfer of ARGs in the water and biofilm of the drinking water distribution system under simulated conditions were explored. The heterotrophic plate count of the water in reactors with 0.1 mg/L NaClO and NH(2)Cl was higher than in the control groups. There was no similar phenomenon in biofilm. In the water of reactors containing NaClO, the aphA and bla genes were lower than in the antibiotic resistant bacteria group, while both genes were higher in the water of reactors with NH(2)Cl than in the control group. Chloramine may promote the transfer of ARGs in the water phase. Both genes in the biofilm of the reactors containing chlorine were lower than the control group. Correlation analysis between ARGs and water quality parameters revealed that the copy numbers of the aphA gene were significantly positively correlated with the copy numbers of the bla gene in water and significantly negatively correlated in biofilm (p < 0.05). The results of the sequencing assay showed that bacteria in the biofilm, in the presence of disinfectant, were primarily Gram-negative. 1.0 mg/L chlorine decreased the diversity of the community in the biofilm. The relative abundance of some bacteria that may undergo transfer increased in the biofilm of the reactor containing 0.1 mg/L chlorine. | 2025 | 39617560 |
| 7250 | 8 | 0.9998 | Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids. The objective of this research was to investigate the ability of anaerobic and aerobic digesters to reduce the quantity of antibiotic resistant bacteria in wastewater solids. Lab-scale digesters were operated at different temperatures (22 °C, 37 °C, 46 °C, and 55 °C) under both anaerobic and aerobic conditions and fed wastewater solids collected from a full-scale treatment facility. Quantitative PCR was used to track five genes encoding tetracycline resistance (tet(A), tet(L), tet(O), tet(W), and tet(X)) and the gene encoding the integrase (intI1) of class 1 integrons. Statistically significant reductions in the quantities of these genes occurred in the anaerobic reactors at 37 °C, 46 °C, and 55 °C, with the removal rates and removal efficiencies increasing as a function of temperature. The aerobic digesters, in contrast, were generally incapable of significantly decreasing gene quantities, although these digesters were operated at much shorter mean hydraulic residence times. This research suggests that high temperature anaerobic digestion of wastewater solids would be a suitable technology for eliminating various antibiotic resistance genes, an emerging pollutant of concern. | 2010 | 21058743 |
| 7766 | 9 | 0.9998 | Native Microalgae-Bacteria Consortia: A Sustainable Approach for Effective Urban Wastewater Bioremediation and Disinfection. Urban wastewater is a significant by-product of human activities. Conventional urban wastewater treatment plants have limitations in their treatment, mainly concerning the low removal efficiency of conventional and emerging contaminants. Discharged wastewater also contains harmful microorganisms, posing risks to public health, especially by spreading antibiotic-resistant bacteria and genes. Therefore, this study assesses the potential of a native microalgae-bacteria system (MBS) for urban wastewater bioremediation and disinfection, targeting NH(4)(+)-N and PO(4)(3-)-P removal, coliform reduction, and antibiotic resistance gene mitigation. The MBS showed promising results, including a high specific growth rate (0.651 ± 0.155 d(-1)) and a significant average removal rate of NH(4)(+)-N and PO(4)(3-)-P (9.05 ± 1.24 mg L(-1) d(-1) and 0.79 ± 0.06 mg L(-1) d(-1), respectively). Microalgae-induced pH increase rapidly reduces coliforms (r > 0.9), including Escherichia coli, within 3 to 6 days. Notably, the prevalence of intI1 and the antibiotic resistance genes sul1 and bla(TEM) are significantly diminished, presenting the MBS as a sustainable approach for tertiary wastewater treatment to combat eutrophication and reduce waterborne disease risks and antibiotic resistance spread. | 2024 | 39065189 |
| 7123 | 10 | 0.9998 | Presence and fate of antibiotic residues, antibiotic resistance genes and zoonotic bacteria during biological swine manure treatment. The presence and dissemination of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in the environment is of growing concern worldwide. Manure management practices, such as biological removal of nitrogen from swine manure, may help to decrease levels of antibiotic residues, antibiotic resistance genes and zoonotic bacteria present in manure before fertilization, thereby reducing environmental contamination. Therefore, the aim of this study was to monitor the presence and fate of seven antibiotic residues (colistin, sulfadiazine, trimethoprim, doxycycline, oxytetracycline, ceftiofur and tylosin A), nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) and two zoonotic bacteria (Salmonella Typhimurium and Campylobacter coli) during biological nitrogen removal from swine manure over time. Samples from the raw manure, the solid fraction, the liquid fraction and the storage lagoon were analyzed on two farms at six time points with an interval of two weeks. Only the antibiotics which were used during the three months preceding the first sampling could be detected before and after biological nitrogen removal from swine manure. Of all the antibiotics studied, doxycycline was recovered in all of the samples and sulfadiazine was recovered in most samples on both farms. For both antibiotics, there appears to be a reduction of the amount of residues present in the storage lagoon compared to the liquid fraction, however, this reduction was not statistically significant. A significant reduction of the relative abundances of most of the antibiotic resistance genes studied was observed when comparing the liquid fraction and the storage lagoon. For tet(L), no differences were observed between the fractions sampled and for sul2 and erm(F), a significant increase in relative abundances was observed on the second farm sampled. For the zoonotic bacteria, a reduction of at least 1 log was observed after biological nitrogen removal from swine manure. The results indicate that the concentration of certain antibiotic residues and several antibiotic resistance genes and the amount of zoonotic bacteria present in the manure may be reduced in the end product of the biological nitrogen removal from swine manure. | 2019 | 30878661 |
| 7226 | 11 | 0.9998 | Seasonal variation in antibiotic resistance genes and bacterial phenotypes in swine wastewater during three-chamber anaerobic pond treatment. Antibiotic resistance is a global public health concern. Antibiotic usage in pigs makes swine wastewater (SW) a reservoir for antibiotic resistance genes (ARGs). SW is usually stored and treated in a three-chamber anaerobic pond (3-CAP) in medium and small pig farms in northern China. However, the yet unexplored presence of ARGs in SW during 3-CAP treatment may result in ARGs spreading into the environment if farmers apply SW to farmland as a liquid organic fertilizer. This study investigated the profiles of and changes in ARGs in SW during its treatment in 3-CAP over four seasons and analyzed the correlation between ARGs and bacterial phenotypes, along with the physicochemical parameters of the water. The results revealed that ARG abundance decreased considerably after 3-CAP treatment in April (47%), October (47%), and December (62%) but increased in May (43%) and August (73%). The ARG copies in the influent and other SW samples increased significantly from 10(7) copies/mL in April to 10(9) copies/mL in October and were maintained in December. The increase in ARG abundance was not as rapid as the growth of the bacterial population, resulting in lower relative abundance in October and December. Bacterial communities possessed more sul1 and tetM genes, which were also positively correlated with mobile genetic elements. After the 3-CAP treatment, 16% of antibiotics and 60% of heavy metals were removed, and both had a weak correlation with ARGs. Predicted phenotypes showed that gram-positive (G(+)) and gram-negative (G(-)) bacteria have different capacities for carrying ARGs. G(+) bacteria carry more ARGs than G(-) bacteria. This study revealed the persistence of ARGs in SW after 3-CAP treatment over different seasons. Applying SW in the proper month will mitigate ARG dissemination to the environment. | 2023 | 36208778 |
| 7200 | 12 | 0.9998 | Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure. Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs) in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi (Brassica chinensis L.) to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC) levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg(-1) were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tetX, bla(CTX-M), and sul1 and sul2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems. | 2017 | 29099753 |
| 7094 | 13 | 0.9998 | Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China. The occurrence and distribution of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) and finished water are not well understood, and even less is known about the contribution of each treatment process to resistance gene reduction. The prevalence of ten commonly detected sulfonamide and tetracycline resistance genes, namely, sul I, sul II, tet(C), tet(G), tet(X), tet(A), tet(B), tet(O), tet(M) and tet(W) as well as 16S-rRNA genes, were surveyed in seven DWTPs in the Yangtze River Delta, China, with SYBR Green I-based real-time quantitative polymerase chain reaction. All of the investigated ARGs were detected in the source waters of the seven DWTPs, and sul I, sul II, tet(C) and tet(G) were the four most abundant ARGs. Total concentrations of ARGs belonging to either the sulfonamide or tetracycline resistance gene class were above 10(5) copies/mL. The effects of a treatment process on ARG removal varied depending on the overall treatment scheme of the DWTP. With combinations of the treatment procedures, however, the copy numbers of resistance genes were reduced effectively, but the proportions of ARGs to bacteria numbers increased in several cases. Among the treatment processes, the biological treatment tanks might serve as reservoirs of ARGs. ARGs were found in finished water of two plants, imposing a potential risk to human health. The results presented in this study not only provide information for the management of antibiotics and ARGs but also facilitate improvement of drinking water quality. | 2014 | 24984233 |
| 7251 | 14 | 0.9998 | Effects of tetracycline antibiotics in chicken manure on soil microbes and antibiotic resistance genes (ARGs). China is the world's largest livestock and poultry breeding country, but also the largest use of veterinary antibiotics. When a large amount of chicken manure is applied to the soil, it will cause the number of antibiotic residues and resistant bacteria to increase, which will bring about the pollution of antibiotic resistance genes (ARGs) in the soil, and then increase the risk of environmental pollution and human health. Field experiments were conducted to study the changes of soil tetracycline antibiotic residues, resistant bacteria and resistance genes treated with different types and dosage of chicken manure (no chicken manure, (CK), low fresh chicken manure treatment (300 kg·667 m(-2)), high fresh chicken manure treatment (600 kg·667 m(-2)), low decomposed chicken manure treatment (300 kg·667 m(-2)) and high decomposed chicken manure treatment (600 kg·667 m(-2))). After one-year application of chicken manure, content of soil organic matter increased by 1.0%-3.2% compared with the control. The activity of soil catalase significantly increased by 84.3-91.5%, 81.9-102.9% in fresh and decomposed chicken manure treatments compared with the control, respectively. The amount of soil resistant bacteria under the same treatment was in the order of Anti-OTC > Anti-TC > Anti-CTC. After one-year application of chicken manure, the total tetracycline amount in the soil was increased by 168.5-217.9% compared with the control. The amount of antibiotic residue in soil treated with fresh chicken manure was 3.0-9.1% higher than that treated with decomposed chicken manure. The abundance of ARGs in the soil was in the order of that treated with high fresh chicken manure > low fresh chicken manure > high decomposed chicken manure > low decomposed chicken manure. The risk of tetracycline antibiotics to soil ecological environment may be greatly reduced after chicken manure decomposed. | 2022 | 34114159 |
| 7767 | 15 | 0.9998 | Degradation of plasmid-mediated resistance genes in poultry slaughterhouse wastewater employing a UV/H(2)O(2) process: A metagenomic approach. Poultry slaughterhouse effluents are important hotspots for the spread of both antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs), contributing to the antimicrobial resistance (AMR). This study reports a novel investigation to assess the effects of UV/H(2)O(2) treatment on the removal of metaplasmidome-mediated ARGs from poultry slaughterhouse effluents. The effluent samples were subjected at 0.005-0.15 mol L(-1) of H(2)O(2) and pH conditions (3, 5, 7 and 9). Bacterial community (rrs 16S rRNA), Escherichia coli (uidA) antimicrobial resistance (sul1 and int1) and metagenomic plasmid DNA removal were assessed. The UV/H(2)O(2) treatment employing H(2)O(2) = 0.01 mol L(-1) at pH 3 resulted in decreased of several markers (uidA, sul1 and int1). A metaplasmidome indicated the persistence of Burkholderiales order. The UV/H(2)O(2) process reduced plasmid-associated ARGs by 92.5% and 90.4% at pH 3 and 7, respectively. Persistent genes were mainly composed of genes associated with efflux pumps and resistance to beta-lactams and fluoroquinolones. These findings contribute to mitigate the spread of AMR in the agricultural sector, especially through the implementation of more efficient treatments, and reducing the use of antibiotics in livestock farming. | 2025 | 39826254 |
| 7197 | 16 | 0.9998 | The response of copper resistance genes, antibiotic resistance genes, and intl1/2 to copper addition during anaerobic digestion in laboratory. Heavy metal pollution can serve as a selective pressure for antibiotic resistance genes in polluted environments. Anaerobic fermentation, as a recommended wastewater treatment method, is an effective mitigation measure of antibiotic resistance diffusion. To explore the influence of copper on anaerobic fermentation, we exposed the fermentation substrate to copper in a laboratory setup. We found that the relative abundance of 8 genes (pcoD, tetT, tetA, tetB, tetO, qnrS, ermA and ermB) increased at the late stage of fermentation and their abundance was linked to copper content. Corynebacterium and Streptococcus were significantly positively correlated with ermA, ermB, tetA and tetB (P < 0.05). The relative abundance of tetT was significantly positively correlated with Terrisporobacter, Clostridium_sensu_stricto_1 and Turicibacter (P < 0.05). We screened 90 strains of copper resistant bacteria from blank, medium and high copper test groups on days 25, 31 and 37. The number of fragments carried by a single strain increased with time while intl1, ermA and ermB existed in almost all combinations of the multiple fragments we identified. The relative abundance of these three genes were linearly correlated with Corynebacterium and Streptococcus. The antibiotic resistance genes carried by class 1 integrons gradually increased with time in the fermentation system and integrons carrying ermA and ermB most likely contributed to host survival through the late stages of fermentation. The genera Corynebacterium and Streptococcus may be the primary carriers of such integrated mobile gene element and this was most likely the reason for their rebound in relative abundance during the late fermentation stages. | 2021 | 33418156 |
| 8036 | 17 | 0.9998 | Abundances of Tetracycline Resistance Genes and Tetracycline Antibiotics during Anaerobic Digestion of Swine Waste. The impact of anaerobic digestion of animal waste on the persistence of antibiotic resistance genes (ARGs) and antibiotics is not widely studied. Two identical, 800-L digesters seeded with swine slurry were followed up to 100 d in three separate trials. The trials received varying amounts of antibiotic-free corn ( L.) mixed with water to maintain the digestion process. Biogas production, seven tetracycline resistance () genes, and three tetracyclines and their transformation products were measured. Biogas production proportionally increased as the feeding loads increased between trials. In Trial 1, log gene copies showed small but statistically significant ( < 0.01) increases during digestion. In Trial 2, anaerobic digestion did not have a significant ( > 0.05) effect except for significant reductions in B ( < 0.0001) and G ( = 0.0335) log gene copies. In Trial 3, which received the highest amount of corn mix, log copies of the 16S ribosomal RNA and the genes significantly ( < 0.0001) reduced over time during digestion. Up to 36 μg L tetracycline, 112 μg L chlortetracycline, 11.9 mg L isochlortetracycline, and 30 μg L 4-epitetracycline were detected both in the liquid and solid digestates. Results of this study revealed that although anaerobic digestion of swine waste can produce useful biogas, it does not result in complete removal of bacteria, ARGs, and antibiotics regardless of differences in the feeding loads between trials. Further effluent and sludge treatments are required prior to their downstream use in crop production to minimize emergence and environmental dissemination of antimicrobial-resistant bacteria through animal manure. | 2019 | 30640349 |
| 8013 | 18 | 0.9998 | New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. This study investigated the variations in antibiotic (sulfonamide and tetracycline) resistance genes (ARGs) and resistant bacteria (ARB) during manure anaerobic digestion (AD) at 35 ℃ and 55 ℃, and discussed the mechanisms of variations in ARGs. The AD lasted for 60 days, five ARGs and intI1 each decreased in abundance after AD at the thermophilic temperature, while only half decreased at the mesophilic temperature. On days 10, 30, and 60, sulfonamide and tetracycline ARB were screened on selective media. During thermophilic AD, ARB numbers reduced by 4-log CFUs per gram dry manure, but only by approximately 1-log CFU at the mesophilic temperature. However, ARB composition analysis showed that at either temperature, no significant reduction in identified ARB species was observed. Furthermore, 72 ARB clones were randomly selected to detect the ARGs they harbored, and the results showed that each ARG was harbored by various hosts, and no definitive link existed between ARGs and bacterial species. In addition, by comparison with the identified host by culture method, the host prediction results based on the correlation analysis between ARGs and the bacterial community was proven to be unreliable. Overall, these findings indicated that relationships between ARB and ARGs were intricate. | 2020 | 31685315 |
| 7119 | 19 | 0.9998 | Assessing the benefits of composting poultry manure in reducing antimicrobial residues, pathogenic bacteria, and antimicrobial resistance genes: a field-scale study. The poultry industry in the European Union produces 13 million tons of manure annually, which represents a major health and environmental challenge. Composting is an environmental-friendly technique for the management of manure, but there are few studies about antibiotic residues and antimicrobial resistances at a field scale. The goal of this study was to determine if the composting of poultry manure at a field scale would result in the reduction of antibiotic residues, pathogenic bacteria, and antibiotic resistance genes (ARGs) in the final fertilizer product. A 10-week composting of poultry manure spiked with enrofloxacin, doxycycline, and ciprofloxacin was performed. The determination of antibiotics residues and 22 selected ARGs was carried out together with the identification of bacteria by metagenomics. In the case of ciprofloxacin and doxycycline, a 90% decrease was observed after composting for 3 weeks. Sixteen ARGs were detected at the beginning of the experiment; 12 of them decreased from week 0 to week 10 (reduction of 73.7-99.99%). The presence of potentially pathogenic bacteria, such as, Campylobacter coli or commensal bacteria such as Escherichia coli decreases along the composting process. In conclusion, 10-week composting of poultry manure promotes the reduction of antibiotic residues and most of the ARGs and pathogenic bacteria. | 2020 | 32399873 |