From the Reclaimed Water Treatment Plant to Irrigation in Intensive Agriculture Farms: Assessment of the Fate of Antibiotics, Antibiotic Resistance Bacteria and Genes, and Microbial Pathogens at Real Scale. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
776001.0000From the Reclaimed Water Treatment Plant to Irrigation in Intensive Agriculture Farms: Assessment of the Fate of Antibiotics, Antibiotic Resistance Bacteria and Genes, and Microbial Pathogens at Real Scale. This work aims to investigate the occurrence of 31 antibiotics (ABs), 2 bacteria (Escherichia coli and Pseudomonas spp.) and their counterpart antibiotic-resistant bacteria (carbapenem and cephalosporin families), and several antibiotic-resistant genes (ARGs) throughout a full distribution system of reclaimed water (RW) in a real-scale scenario. The RW was analyzed (i) before and after the tertiary treatment (sand filtration and chlorination), (ii) during the storage period in secondary ponds before its use in irrigation, and (iii) directly in the droppers installed in four plastic-based greenhouses over 9 months. The results obtained in RW showed a bacterial concentration below the minimum required to reach class A (<10 CFU/100 mL, Regulation EU 2020/741), a reduction of the initial AB concentration (up to 13 ABs, total 4847 ± 1413 ng/L) of 58%, and no significant reduction of ARGs (Log units/100 mL: 16S rRNA (9.99 ± 0.80) > intI1 (8.80 ± 0.95) > bla(CTX-M32) (7.53 ± 0.63) > sul1 (7.08 ± 1.05) > bla(TEM) (6.81 ± 1.05) > qnrS (5.72 ± 0.82)). The storage of RW was a hotspot only for bacteria; an increase in all concentrations was observed in both main and secondary reservoirs, demonstrating that direct RW reuse is the most beneficial option to avoid significant bacterial regrowth. In all greenhouse droppers' systems, a significantly higher concentration of all bacteria was generally detected than in secondary reservoirs, demonstrating that this is another hotspot independent of whether the RW is used directly or not. Therefore, the RW storage and distribution may negatively affect the microbial water quality, while ABs and ARGs are detected along the entire scheme of urban wastewater reclamation and reuse, reaching the greenhouse environment (including soil and plants).202540923533
533810.9998Characterisation of microbial communities and quantification of antibiotic resistance genes in Italian wastewater treatment plants using 16S rRNA sequencing and digital PCR. The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in humans, animals and environment is a growing threat to public health. Wastewater treatment plants (WWTPs) are crucial in mitigating the risk of environmental contamination by effectively removing contaminants before discharge. However, the persistence of ARB and ARGs even after treatment is a challenge for the management of water system. To comprehensively assess antimicrobial resistance dynamics, we conducted a one-year monitoring study in three WWTPs in central Italy, both influents and effluents. We used seasonal sampling to analyze microbial communities by 16S rRNA, as well as to determine the prevalence and behaviour of major ARGs (sul1, tetA, bla(TEM), bla(OXA-48), bla(CTX-M-1 group), bla(KPC)) and the class 1 Integron (int1). Predominant genera included in order: Arcobacter, Acinetobacter, Flavobacterium, Pseudarcobacter, Bacteroides, Aeromonas, Trichococcus, Cloacibacterium, Pseudomonas and Streptococcus. A higher diversity of bacterial communities was observed in the effluents compared to the influents. Within these communities, we also identified bacteria that may be associated with antibiotic resistance and pose a significant threat to human health. The mean concentrations (in gene copies per liter, gc/L) of ARGs and int1 in untreated wastewater (absolute abundance) were as follows: sul1 (4.1 × 10(9)), tetA (5.2 × 10(8)), bla(TEM) (1.1 × 10(8)), bla(OXA-48) (2.1 × 10(7)), bla(CTX-M-1 group) (1.1 × 10(7)), bla(KPC) (9.4 × 10(5)), and int1 (5.5 × 10(9)). The mean values in treated effluents showed reductions ranging from one to three log. However, after normalizing to the 16S rRNA gene (relative abundance), it was observed that in 37.5 % (42/112) of measurements, the relative abundance of ARGs increased in effluents compared to influents. Furthermore, correlations were identified between ARGs and bacterial genera including priority pathogens. This study improves our understanding of the dynamics of ARGs and provides insights to develop more effective strategies to reduce their spread, protecting public health and preserving the future efficacy of antibiotics.202438750766
533320.9998Antibiotic resistance profile of wastewater treatment plants in Brazil reveals different patterns of resistance and multi resistant bacteria in final effluents. Wastewater treatment plants (WWTPs) are recognized as important sources of Antibiotic Resistant Bacteria (ARBs) and Antibiotic Resistant Genes (ARGs), and might play a role in the removal and dissemination of antimicrobial resistance (AMR) in the environment. Detailed information about AMR removal by the different treatment technologies commonly applied in urban WWTPs is needed. This study investigated the occurrence, removal and characterization of ARBs in WWTPs employing different technologies: WWTP-A (conventional activated sludge-CAS), WWTP-B (UASB reactor followed by biological trickling filter) and WWTP-C (modified activated sludge followed by UV disinfection-MAS/UV). Samples of raw sewage (RI) and treated effluent (TE) were collected and, through the cultivation-based method using 11 antibiotics, the antibiotic resistance profiles were characterized in a one-year period. MAS was effective in reducing ARB counts (2 to 3 log units), compared to CAS (1 log unit) and UASB/BTF (0.5 log unit). The composition of cultivable ARB differed between RI and TE samples. Escherichia was predominant in RI (56/118); whilst in TE Escherichia (31/118) was followed by Bacillus (22/118), Shigella (14/118) and Enterococcus (14/118). Most of the isolates identified (370/394) harboured at least two ARGs and in over 80 % of the isolates, 4 or more ARG (int1, blaTEM, TetA, sul1 and qnrB) were detected. A reduction in the resistance prevalence was observed in effluents after CAS and MAS processes; whilst a slight increase was observed in treated effluents from UASB/BTF and after UV disinfection stage. The multi-drug resistance (MDR) phenotype was attributed to 84.3 % of the isolates from RI (27/32) and 63.6 % from TE (21/33) samples and 52.3 % of the isolates (34/65) were resistant to carbapenems (imipenem, meropenem, ertapenem). The results indicate that treated effluents are still a source for MDR bacteria and ARGs dissemination to aquatic environments. The importance of biological sewage treatment was reinforced by the significant reductions in ARB counts observed. However, implementation of additional treatments is needed to mitigate MDR bacteria release into the environment.202336240935
777830.9998Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Municipal wastewater treatment plant (WWTP) effluents represent an important contamination source of antibiotic resistance, threatening the ecological safety of receiving environments. In this study, the release of antibiotic resistance to sulfonamides and tetracyclines in the effluents of ten WWTPs in China was investigated. Results indicate that the concentrations of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) ranged from 1.1 × 10(1) to 8.9 × 10(3) CFU mL(-1) and 3.6 × 10(1) (tetW) to 5.4 × 10(6) (tetX) copies mL(-1), respectively. There were insignificant correlations of the concentrations of ARB and ARGs with those of corresponding antibiotics. Strong correlations were observed between the total concentrations of tetracycline resistance genes and sulfonamide resistance genes, and both of which were significantly correlated with intI1 concentrations. Statistical analysis of the effluent ARG concentrations in different WWTPs revealed an important role of disinfection in eliminating antibiotic resistance. The release rates of ARB and ARGs through the effluents of ten WWTPs ranged from 5.9 × 10(12) to 4.8 × 10(15) CFU d(-1) and 6.4 × 10(12) (tetW) to 1.7 × 10(18) (sul1) copies d(-1), respectively. This study helps the effective assessment and scientific management of ecological risks induced by antibiotic resistance discharged from WWTPs.201728088530
776740.9998Degradation of plasmid-mediated resistance genes in poultry slaughterhouse wastewater employing a UV/H(2)O(2) process: A metagenomic approach. Poultry slaughterhouse effluents are important hotspots for the spread of both antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs), contributing to the antimicrobial resistance (AMR). This study reports a novel investigation to assess the effects of UV/H(2)O(2) treatment on the removal of metaplasmidome-mediated ARGs from poultry slaughterhouse effluents. The effluent samples were subjected at 0.005-0.15 mol L(-1) of H(2)O(2) and pH conditions (3, 5, 7 and 9). Bacterial community (rrs 16S rRNA), Escherichia coli (uidA) antimicrobial resistance (sul1 and int1) and metagenomic plasmid DNA removal were assessed. The UV/H(2)O(2) treatment employing H(2)O(2) = 0.01 mol L(-1) at pH 3 resulted in decreased of several markers (uidA, sul1 and int1). A metaplasmidome indicated the persistence of Burkholderiales order. The UV/H(2)O(2) process reduced plasmid-associated ARGs by 92.5% and 90.4% at pH 3 and 7, respectively. Persistent genes were mainly composed of genes associated with efflux pumps and resistance to beta-lactams and fluoroquinolones. These findings contribute to mitigate the spread of AMR in the agricultural sector, especially through the implementation of more efficient treatments, and reducing the use of antibiotics in livestock farming.202539826254
776450.9998Air-drying beds reduce the quantities of antibiotic resistance genes and class 1 integrons in residual municipal wastewater solids. This study investigated whether air-drying beds reduce antibiotic resistance gene (ARG) concentrations in residual municipal wastewater solids. Three laboratory-scale drying beds were operated for a period of nearly 100 days. Real-time PCR was used to quantify 16S rRNA genes, 16S rRNA genes specific to fecal bacteria (AllBac) and human fecal bacteria (HF183), the integrase gene of class 1 integrons (intI1), and five ARGs representing a cross-section of antibiotic classes and resistance mechanisms (erm(B), sul1, tet(A), tet(W), and tet(X)). Air-drying beds were capable of reducing all gene target concentrations by 1 to 5 orders of magnitude, and the nature of this reduction was consistent with both a net decrease in the number of bacterial cells and a lack of selection within the microbial community. Half-lives varied between 1.5 d (HF183) and 5.4 d (tet(X)) during the first 20 d of treatment. After the first 20 d of treatment, however, half-lives varied between 8.6 d (tet(X)) and 19.3 d (AllBac), and 16S rRNA gene, intI1, and sul1 concentrations did not change (P > 0.05). These results demonstrate that air-drying beds can reduce ARG and intI1 concentrations in residual municipal wastewater solids within timeframes typical of operating practices.201323909386
533260.9998Dynamics of antimicrobial resistance and susceptibility profile in full-scale hospital wastewater treatment plants. Drug resistance has become a matter of great concern, with many bacteria now resist multiple antibiotics. This study depicts the occurrence of antibiotic-resistant bacteria (ARB) and resistance patterns in five full-scale hospital wastewater treatment plants (WWTPs). Samples of raw influent wastewater, as well as pre- and post-disinfected effluents, were monitored for targeted ARB and resistance genes in September 2022 and February 2023. Shifts in resistance profiles of Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii antimicrobial-resistant indicators in the treated effluent compared to that in the raw wastewater were also worked out. Ceftazidime (6.78 × 10(5) CFU/mL) and cefotaxime (6.14 × 10(5) CFU/mL) resistant species showed the highest concentrations followed by ciprofloxacin (6.29 × 10(4) CFU/mL), and gentamicin (4.88 × 10(4) CFU/mL), in raw influent respectively. WWTP-D employing a combination of biological treatment and coagulation/clarification for wastewater decontamination showed promising results for reducing ARB emissions from wastewater. Relationships between treated effluent quality parameters and ARB loadings showed that high BOD(5) and nitrate levels were possibly contributing to the persistence and/or selection of ARBs in WWTPs. Furthermore, antimicrobial susceptibility tests of targeted species revealed dynamic shifts in resistance profiles through treatment processes, highlighting the potential for ARB and ARGs in hospital wastewater to persist or amplify during treatment.202439007309
777070.9997Mitigation of antibiotic resistance in a pilot-scale system treating wastewater from high-speed railway trains. Wastewater from high-speed railway trains represents a mobile reservoir of microorganisms with antibiotic resistance. It harbors abundant and diverse antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study investigated the removal of ARB and ARGs in a pilot-scale reactor, which consisted of an anaerobic/anoxic/oxic process, anaerobic/anoxic/aerobic process, and ozone-based disinfection to treat 1 m(3)/day wastewater from an electric multiple unit high-speed train. Further, the high prevalence of two mobile genetic elements (intI1 and Tn916/615) and five ARGs (tetA, tetG, qnrA, qnrS, bla(NDM-1), and ermF) was investigated using quantitative PCR. Significant positive correlations between ARGs (tetA, bla(NDM-1), and qnrA) and intI1 were identified (R(2) of 0.94, 0.85, and 0.70, respectively, P < 0.01). Biological treatment could significantly reduce Tn916/1545 (2.57 logs reduction) and Enterococci (2.56 logs reduction of colony forming unit (CFU)/mL), but the qnrS abundance increased (1.19 logs increase). Ozonation disinfection could further significantly decrease ARGs and Enterococci in wastewater, with a reduction of 1.67-2.49 logs and 3.16 logs CFU/mL, respectively. Moreover, food-related bacteria families which may contain opportunistic or parasitic pathogens (e.g., Moraxellaceae, Carnobacteriaceae, and Ruminococcaceae) were detected frequently. Enterococci filtered in this study shows multi-antibiotic resistance. Our study highlights the significance to mitigate antibiotic resistance from wastewater generated from high-speed railway trains, as a mobile source.202031864053
777180.9997Can chlorination co-select antibiotic-resistance genes? Selective pressures, such as chemical or heavy metal pollution, may co-select for bacterial antibiotic resistance in the environment. However, whether chlorination in water treatment can co-select antibiotic-resistant bacteria is controversial. In this study, high capacity quantitative polymerase chain reaction (qPCR) analysis was applied to target almost all known antibiotic-resistance genes (ARGs) (282 types) and 13 mobile genetic elements (MGEs) in bacteria detected in secondary effluents from a municipal wastewater treatment plant after chlorination. The results revealed that 125 unique ARGs were detected in non-chlorinated samples, and the number decreased (79-91 types) as the chlorine concentration was increased. Moreover, 7.49 × 10(4)-3.92 × 10(7) copies/100 ml water reduction of ARGs occurred with 4 mg Cl2/l. Considering the relative abundance of ARGs (i.e., ARG copies normalized to 16S rRNA gene copies), 119 ARGs decreased in response to chlorination, whereas only six ARGs, such as dfrA1, tetPB-03, tetPA, ampC-04, tetA-02, and erm(36), were potentially enriched by 10.90-, 10.06-, 8.63-, 6.86-, 3.77-, and 1.09-fold, respectively. Furthermore, the relative abundance of 12 detected MGEs was lower after chlorination. Therefore, chlorination was effective in reducing ARGs and MGEs rather than co-selecting them.201627192478
532390.9997Monitoring and assessing the impact of wastewater treatment on release of both antibiotic-resistant bacteria and their typical genes in a Chinese municipal wastewater treatment plant. Wastewater treatment plants (WWTPs) are important hotspots for the spread of antibiotic resistance. However, the release and impact factors of both antibiotic resistant bacteria and the relevant genes over long periods in WWTPs have rarely been investigated. In this study, the fate of bacteria and genes resistant to six commonly used antibiotics was assessed over a whole year. In WWTP effluent and biosolids, a high prevalence of heterotrophic bacteria resistant to vancomycin, cephalexin, sulfadiazine and erythromycin were detected, each with a proportion of over 30%. The corresponding genes (vanA, ampC, sulI and ereA) were all detected in proportions of (2.2 ± 0.8) × 10(-10), (6.2 ± 3.2) × 10(-9), (1.2 ± 0.8) × 10(-7) and (7.6 ± 4.8) × 10(-8), respectively, in the effluent. The sampling season imposed considerable influence on the release of all ARB. High release loads of most ARB were detected in the spring, while low release loads were generally found in the winter. In comparison, the ARG loads changed only slightly over various seasons. No statistical relevance was found between all ARB abundances and their corresponding genes over the long-term investigation period. This inconsistent behavior indicates that bacteria and genes should both be considered when exploring resistance characteristics in wastewater. A redundancy analysis was adopted to assess the impact of wastewater quality and operational conditions on antibiotic resistance. The results indicated that most ARB and ARG proportions were positively related to the COD and turbidity of the raw sewage, while negatively related to those of the effluent. DO and temperature exhibited strong negative relevance to most ARB prevalence.201424927359
7774100.9997Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system. In this study, we determined the abundance of 8 antibiotics (3 tetracyclines, 4 sulfonamides, and 1 trimethoprim), 12 antibiotic-resistant genes (10 tet, 2 sul), 4 antibiotic-resistant bacteria (tetracycline, sulfamethoxazole, and combined resistance), and class 1 integron integrase gene (intI1) in the effluent of residential areas, hospitals, and municipal wastewater treatment plant (WWTP) systems. The concentrations of total/individual targets (antibiotics, genes, and bacteria) varied remarkably among different samples, but the hospital samples generally had a lower abundance than the residential area samples. The WWTP demonstrated removal efficiencies of 50.8% tetracyclines, 66.8% sulfonamides, 0.5 logs to 2.5 logs tet genes, and less than 1 log of sul and intI1 genes, as well as 0.5 log to 1 log removal for target bacteria. Except for the total tetracycline concentration and the proportion of tetracycline-resistant bacteria (R (2) = 0.330, P < 0.05), there was no significant correlation between antibiotics and the corresponding resistant bacteria (P > 0.05). In contrast, various relationships were identified between antibiotics and antibiotic resistance genes (P < 0.05). Tet (A) and tet (B) displayed noticeable relationships with both tetracycline and combined antibiotic-resistant bacteria (P < 0.01).201525323405
5358110.9997Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Antimicrobial resistance represents a growing and significant public health threat, which requires a global response to develop effective strategies and mitigate the emergence and spread of this phenomenon in clinical and environmental settings. We investigated, therefore, the occurrence and abundance of several antibiotics and antibiotic resistance genes (ARGs), as well as bacterial community composition in wastewater effluents from different hospitals located in the Cluj County, Romania. Antibiotic concentrations ranged between 3.67 and 53.05 μg L(-1), and the most abundant antibiotic classes were β-lactams, glycopeptides, and trimethoprim. Among the ARGs detected, 14 genes confer resistance to β-lactams, aminoglycosides, chloramphenicol, macrolide-lincosamide-streptogramin B (MLSB) antibiotics, sulfonamides, and tetracyclines. Genes encoding quaternary ammonium resistance and a transposon-related element were also detected. The sulI and qacEΔ1 genes, which confer resistance to sulfonamides and quaternary ammonium, had the highest relative abundance with values ranging from 5.33 × 10(-2) to 1.94 × 10(-1) and 1.94 × 10(-2) to 4.89 × 10(-2) copies/16 rRNA gene copies, respectively. The dominant phyla detected in the hospital wastewater samples were Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Among selected hospitals, one of them applied an activated sludge and chlorine disinfection process before releasing the effluent to the municipal collector. This conventional wastewater treatment showed moderate removal efficiency of the studied pollutants, with a 55-81% decrease in antibiotic concentrations, 1-3 order of magnitude lower relative abundance of ARGs, but with a slight increase of some potentially pathogenic bacteria. Given this, hospital wastewaters (raw or treated) may contribute to the spread of these emerging pollutants in the receiving environments. To the best of our knowledge, this study quantified for the first time the abundance of antibiotics and ARGs in wastewater effluents from different Romanian hospitals.201728347610
5340120.9997Hospital wastewaters: A reservoir and source of clinically relevant bacteria and antibiotic resistant genes dissemination in urban river under tropical conditions. The occurrence and dissemination of antibiotic resistant genes (ARGs) that are associated with clinical pathogens and the evaluation of associated risks are still under-investigated in developing countries under tropical conditions. In this context, cultivable and molecular approaches were performed to assess the dissemination of bacteria and the antibiotic resistance genes in aquatic environment in Kinshasa, Democratic Republic of the Congo. Cultivable approach quantified β-lactam, carbapenem resistant, and total Escherichia coli and Enterobacteriaceae in river sediments and surface waters that receive raw hospital effluents. The molecular approach utilized Quantitative Polymerase Chain Reaction (qPCR) to quantify the total bacteria and the richness of relevant bacteria (Escherichia coli, Enterococcus, and Pseudomonas), and antibiotic resistance genes (ARGs: bla(OXA-48), bla(CTX-M), bla(IMP), bla(TEM)) in sediment samples. Statistical analysis were employed to highlight the significance of hospital contribution and seasonal variation of bacteria and ARGs into aquatic ecosystems in suburban municipalities of Kinshasa, Democratic Republic of the Congo. The contribution of hospitals to antibiotic resistance proliferation is higher in the dry season than during the wet season (p < 0.05). Hospital similarly contributed Escherichia coli, Enterococcus, and Pseudomonas and ARGs significantly to the sediments in both seasons (p < 0.05). The organic matter content correlated positively with E. coli (r = 0.50, p < 0.05). The total bacterial load correlated with Enterococcus, and Pseudomonas (0.49 < r < 0.69, p < 0.05). Each ARG correlated with the total bacterial load or at least one relevant bacteria (0.41 < r < 0.81, p < 0.05). Our findings confirm that hospital wastewaters contributed significantly to antibiotic resistance profile and the significance of this contribution increased in the dry season. Moreover, our analysis highlights this risk from untreated hospital wastewaters in developing countries, which presents a great threat to public health.202032470679
5307130.9997Increased Antimicrobial and Multidrug Resistance Downstream of Wastewater Treatment Plants in an Urban Watershed. Development and spread of antimicrobial resistance (AMR) and multidrug resistance (MDR) through propagation of antibiotic resistance genes (ARG) in various environments is a global emerging public health concern. The role of wastewater treatment plants (WWTPs) as hot spots for the dissemination of AMR and MDR has been widely pointed out by the scientific community. In this study, we collected surface water samples from sites upstream and downstream of two WWTP discharge points in an urban watershed in the Bryan-College Station (BCS), Texas area, over a period of nine months. E. coli isolates were tested for resistance to ampicillin, tetracycline, sulfamethoxazole, ciprofloxacin, cephalothin, cefoperazone, gentamycin, and imipenem using the Kirby-Bauer disc diffusion method. Antimicrobial resistant heterotrophic bacteria were cultured on R2A media amended with ampicillin, ciprofloxacin, tetracycline, and sulfamethoxazole for analyzing heterotrophic bacteria capable of growth on antibiotic-containing media. In addition, quantitative real-time polymerase chain reaction (qPCR) method was used to measure eight ARG - tetA, tetW, aacA, ampC, mecA, ermA, blaTEM, and intI1 in the surface water collected at each time point. Significant associations (p < 0.05) were observed between the locations of sampling sites relative to WWTP discharge points and the rate of E. coli isolate resistance to tetracycline, ampicillin, cefoperazone, ciprofloxacin, and sulfamethoxazole together with an increased rate of isolate MDR. The abundance of antibiotic-resistant heterotrophs was significantly greater (p < 0.05) downstream of WWTPs compared to upstream locations for all tested antibiotics. Consistent with the results from the culture-based methods, the concentrations of all ARG were substantially higher in the downstream sites compared to the upstream sites, particularly in the site immediately downstream of the WWTP effluent discharges (except mecA). In addition, the Class I integron (intI1) genes were detected in high amounts at all sites and all sampling points, and were about ∼20 times higher in the downstream sites (2.5 × 10(7) copies/100 mL surface water) compared to the upstream sites (1.2 × 10(6) copies/100 mL surface water). Results suggest that the treated WWTP effluent discharges into surface waters can potentially contribute to the occurrence and prevalence of AMR in urban watersheds. In addition to detecting increased ARG in the downstream sites by qPCR, findings from this study also report an increase in viable AMR (HPC) and MDR (E. coli) in these sites. This data will benefit establishment of improved environmental regulations and practices to help manage AMR/MDR and ARG discharges into the environment, and to develop mitigation strategies and effective treatment of wastewater.202134108949
5303140.9997Wastewater irrigation increases the abundance of potentially harmful gammaproteobacteria in soils in Mezquital Valley, Mexico. Wastewater contains large amounts of pharmaceuticals, pathogens, and antimicrobial resistance determinants. Only a little is known about the dissemination of resistance determinants and changes in soil microbial communities affected by wastewater irrigation. Community DNAs from Mezquital Valley soils under irrigation with untreated wastewater for 0 to 100 years were analyzed by quantitative real-time PCR for the presence of sul genes, encoding resistance to sulfonamides. Amplicon sequencing of bacterial 16S rRNA genes from community DNAs from soils irrigated for 0, 8, 10, 85, and 100 years was performed and revealed a 14% increase of the relative abundance of Proteobacteria in rainy season soils and a 26.7% increase in dry season soils for soils irrigated for 100 years with wastewater. In particular, Gammaproteobacteria, including potential pathogens, such as Pseudomonas, Stenotrophomonas, and Acinetobacter spp., were found in wastewater-irrigated fields. 16S rRNA gene sequencing of 96 isolates from soils irrigated with wastewater for 100 years (48 from dry and 48 from rainy season soils) revealed that 46% were affiliated with the Gammaproteobacteria (mainly potentially pathogenic Stenotrophomonas strains) and 50% with the Bacilli, whereas all 96 isolates from rain-fed soils (48 from dry and 48 from rainy season soils) were affiliated with the Bacilli. Up to six types of antibiotic resistance were found in isolates from wastewater-irrigated soils; sulfamethoxazole resistance was the most abundant (33.3% of the isolates), followed by oxacillin resistance (21.9% of the isolates). In summary, we detected an increase of potentially harmful bacteria and a larger incidence of resistance determinants in wastewater-irrigated soils, which might result in health risks for farm workers and consumers of wastewater-irrigated crops.201424951788
7775150.9997Accumulation of pharmaceuticals, Enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in central Mexico. Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19-28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15 × 10(-3) ± 0.22 × 10(-3) copies/16S rDNA) than in non-irrigated soils (4.35 × 10(-5)± 1.00 × 10(-5) copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61 × 10(-4) ± 0.59 × 10(-4) versus 2.99 × 10(-5) ± 0.26 × 10(-5) copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass.201223049795
7777160.9997Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs.201525950407
5331170.9997Performance evaluation of ozonation for removal of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa and genes from hospital wastewater. The performance of ozonation for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) using Escherichia coli and Pseudomonas aeruginosa carrying ARGs from hospital wastewaters was evaluated in this study. Bacterial inactivation was determined using plate count methods and real time PCR for ARG damage (Sul1, bla(tem), bla(ctx), bla(vim) and qnrS). The reduction rate of bacterial cells and ARGs was increased by different amounts of transferred ozone dose from 11 to 45 mg/L. The concentration of 10(8) cfu/ml bacteria was reduced  to an acceptable level by ozone treatment after a 5 min contact time,  Although the removal rate was much higher for concentrations of 10(6) cfu/ml and 10(4) cfu/ml bacteria. Overall, the tendency of gene reduction by ozonation from more to less was 16S rRNA > sul1 > bla(tem) > bla(ctx) > qnrS > bla(vim). Given that plasmid-borne ARGs can potentially be transferred to other bacteria even after the disinfection process, our results can provide important insights into the fate of ARGs during hospital wastewater ozonation.202134972828
5324180.9997Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load. Antibiotics and antibiotic resistant bacteria enter wastewater treatment plants (WWTPs), an environment where resistance genes can potentially spread and exchange between microbes. Several antibiotic resistance genes (ARGs) were quantified using qPCR in three WWTPs of decreasing capacity located in Helsinki, Tallinn, and Tartu, respectively: sulphonamide resistance genes (sul1 and sul2), tetracycline resistance genes (tetM and tetC), and resistance genes for extended spectrum beta-lactams (blaoxa-58, blashv-34, and blactx-m-32). To avoid inconsistencies among qPCR assays we normalised the ARG abundances with 16S rRNA gene abundances while assessing if the respective genes increased or decreased during treatment. ARGs were detected in most samples; sul1, sul2, and tetM were detected in all samples. Statistically significant differences (adjusted p<0.01) between the inflow and effluent were detected in only four cases. Effluent values for blaoxa-58 and tetC decreased in the two larger plants while tetM decreased in the medium-sized plant. Only blashv-34 increased in the effluent from the medium-sized plant. In all other cases the purification process caused no significant change in the relative abundance of resistance genes, while the raw abundances fell by several orders of magnitude. Standard water quality variables (biological oxygen demand, total phosphorus and nitrogen, etc.) were weakly related or unrelated to the relative abundance of resistance genes. Based on our results we conclude that there is neither considerable enrichment nor purification of antibiotic resistance genes in studied conventional WWTPs.201425084517
5344190.9997Seasonal dynamics of tetracycline resistance gene transport in the Sumas River agricultural watershed of British Columbia, Canada. Environmental transport of contaminants that can influence the development of antibiotic resistance in bacteria is an important concern in the management of ecological and human health risks. Agricultural regions are locales where practices linked to food crop and livestock production can introduce contaminants that could alter the selective pressures for the development of antibiotic resistance in microbiota. This is important in regions where the use of animal manure or municipal biosolids as waste and/or fertilizer could influence selection for antibiotic resistance in pathogenic bacterial species. To investigate the environmental transport of contaminants that could lead to the development of antibiotic resistance in bacteria, a watershed with one of the highest levels of intensity of agricultural activity in Canada was studied; the Sumas River located 60 km east of Vancouver, British Columbia. This two-year assessment monitored four selected tetracycline resistance genes (tet(O), tet(M), tet(Q), tet(W)) and water quality parameters (temperature, specific conductivity, turbidity, suspended solids, nitrate, phosphate and chloride) at eight locations across the watershed. The tetracycline resistance genes (Tc(r)) abundances in the Sumas River network ranged between 1.47 × 10(2) and 3.49 × 10(4) copies/mL and ranged between 2.3 and 6.9 copies/mL in a control stream (located far from agricultural activities) for the duration of the study. Further, Tc(r) abundances that were detected in the wet season months ranged between 1.3 × 10(3) and 2.29 × 10(4) copies/mL compared with dry season months (ranging between 0.6 and 31.2 copies/mL). Highest transport rates between 1.67 × 10(11) and 1.16 × 10(12) copies/s were observed in November 2005 during periods of high rainfall. The study showed that elevated concentrations of antibiotic resistance genes in the order of 10(2)-10(4) copies/mL can move through stream networks in an agricultural watershed but seasonal variations strongly influenced specific transport patterns of these genes.201829453178