The dissimilarity of antibiotic and quorum sensing inhibitor on activated sludge nitrification system: Microbial communities and antibiotic resistance genes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
774201.0000The dissimilarity of antibiotic and quorum sensing inhibitor on activated sludge nitrification system: Microbial communities and antibiotic resistance genes. Effects of antibiotics (azithromycin, AZM, 1-40 mg/L) and quorum sensing inhibitor (QSI, 2(5H)-furanone, 1-40 mg/L) combined pollution with environmental concentration of copper on bacterial/archaeal community and antibiotic resistance genes (ARGs) in activated sludge system were explored. QSI inhibited nitrification more obviously than AZM. AZM and QSI were synergistic inhibitions on bacterial diversity, and AZM inhibited bacterial compositions more than QSI. While, QSI had more impacts on archaeal diversity/compositions. Less interactions among bacteria and archaea communities with Aquimonas as keystone genus. Functional differences in bacteria/archaea communities were little, and AZM had more effects on metabolism. AZM mainly affected nitrifying bacteria (Candidatus Nitrospira nitrificans and Nitrosomonas). Specific denitrifying bacteria were enriched by AZM (Brevundimonas, 1.76-31.69%) and QSI (Comamonas, 0.61-9.61%), respectively. AZM enriched ARGs more easily than QSI and they were antagonistic to proliferation of ARGs. Bacteria were main hosts of ARGs (macrolide-lincosamide-streptogramin B, other/efflux, etc.) and archaea (Methanosphaerula, Methanolobus) carried multiple ARGs.202235306131
807210.9995Response of microbial communities based on full-scale classification and antibiotic resistance genes to azithromycin and copper combined pollution in activated sludge nitrification laboratory mesocosms at low temperature. This study aimed to investigate the short-term response of abundant-rare genera and antibiotic resistance genes (ARGs) to azithromycin (AZM, 0.05-40 mg/L) and copper (1 mg/L) combined pollution in activated sludge nitrification system at low temperature. Nitrification was as expected inhibited in stress- and post-effects periods under AZM concentration higher than 5 mg/L. Abundant and rare taxa presented dissimilar responses based on full-scale classification. Conditionally rare or abundant taxa (CRAT) were keystone taxa. Relative abundance of ammonia-oxidizing archaea increased, and three aerobic denitrifying bacteria (Brevundimonas, Comamonas and Trichococcus) were enriched (from 9.83% to 68.91% in total). Ammonia nitrogen assimilating into Org-N and denitrification may be nitrogen pathways based on predict analysis. 29 ARGs were found with more co-occurrence patterns and high concentration of AZM (greater than 5 mg/L) caused their proliferation. Importantly, expect for some abundant taxa, rare taxa, potential pathogens and nitrogen-removal functional genera were the main potential hosts of ARGs.202134523571
807020.9993Impacts of combined pollution under gradient increasing and gradient decreasing exposure modes on activated sludge: Microbial communities and antibiotic resistance genes. The responses of microbial communities and antibiotic resistance genes (ARGs) to azithromycin and copper combined pollution under gradient increasing (from 0.5 to 10 mg/L) and decreasing exposure (from 10 to 0.5 mg/L) modes were investigated. Nitrification was inhibited more obviously under gradient increasing exposure mode. Responses of archaeal community and function structure were more obvious than bacteria under both exposure modes. The dominant bacterial and archaeal compositions (Hyphomicrobium, Euryarchaeota, etc.) were affected by two exposure modes, except some rare archaea (Methanoregula and Methanosarcina). There were more positive correlations between bacteria and archaea, and Nitrospira was keystone genus. Ammonia-oxidizing archaea (0.37-3.06%) and complete ammonia oxidizers (Nitrospira_ENR4) were enriched, and Nitrososphaera_viennensis was closely related to denitrifying genes (napA/B, nosZ, etc.). 50 ARG subtypes were detected and specific ARG subtypes (aac, ImrA, etc.) proliferated in two exposure modes. Bacteria and archaea were common hosts for 24 ARGs and contributed to their shifts.202234921920
807130.9993Impact of ciprofloxacin and copper combined pollution on activated sludge: Abundant-rare taxa and antibiotic resistance genes. This study aimed to explore the impacts of ciprofloxacin (CIP, 0.05-40 mg/L) and copper (3 mg/L) combined pollution on nitrification, microbial community and antibiotic resistance genes (ARGs) in activated sludge system during stress- and post-effect periods. Higher CIP concentration inhibited nitrification and an average of 50% total nitrogen removal occurred under 40 mg/L of CIP pressure. The stress- and post-effects on bacterial diversity and structure were obviously distinct. Abundant genera were more sensitive to combined pollution than rare genera based on full-scale classification and conditionally rare or abundant taxa were keystone taxa in their interactions. Ammonia oxidation genes were inhibited under high CIP level, but some aerobic denitrifying bacteria (Thauera, Comamonas and Azoarcus) and key genes increased. 96 ARG subtypes were detected with complex positive relationships and their potential hosts (abundant-rare-functional genera) changed in two periods. This study highlights the different stress- and post-effects of combined pollution on activated sludge.202235217161
791640.9991Effects of combined antibiotics on nitrification, bacteria and antibiotic resistance genes in activated sludge: Insights from legacy effect of antibiotics. The effect of combined antibiotics exposure on nitrogen removal, microbial community assembly and proliferation of antibiotics resistance genes (ARGs) is a hotspot in activated sludge system. However, it is unclear that how the historical antibiotic stress affects the subsequent responses of microbes and ARGs to combined antibiotics. In this study, the effects of combined sulfamethoxazole (SMX) and trimethoprim (TMP) pollution on activated sludge under legacy of SMX or TMP stress with different doses (0.005-30 mg/L) were investigated to clarify antibiotic legacy effects. Nitrification activity was inhibited under higher level of combined exposure but a high total nitrogen removal (∼70%) occurred. Based on the full-scale classification, the legacy effect of past antibiotic stress had a marked effect on community composition of conditionally abundant taxa (CAT) and conditionally rare or abundant taxa (CRAT). Rare taxa (RT) were the keystone taxa in the microbial network, and the responses of hub genera were also affected by the legacy of antibiotic stress. Nitrifying bacteria and genes were inhibited by the antibiotics and aerobic denitrifying bacteria (Pseudomonas, Thaurea and Hydrogenophaga) were enriched under legacy of high dose, as were the key denitrifying genes (napA, nirK and norB). Furthermore, the occurrences and co-selection relationship of 94 ARGs were affected by legacy effect. While, some shared hosts (eg., Citrobacter) and hub ARGs (eg., mdtD, mdtE and acrD) were identified. Overall, antibiotic legacy could affect responses of activated sludge to combined antibiotic and the legacy effect was stronger at higher exposure levels.202337225384
805750.9991SiO(2) nanoparticles can enhance nitrogen retention and reduce copper resistance genes during aerobic composting of swine manure. SiO(2) nanoparticles (SiO(2) NPs) are low-cost, environmentally friendly materials with significant potential to remove pollutants from complex environments. In this study, SiO(2) NPs were used for the first time as an additive in aerobic composting to enhance nitrogen retention and reduce the expression of copper resistance genes. The addition of 0.5 g kg(-1) SiO(2) NPs effectively reduced nitrogen loss by 72.33 % by decreasing denitrification genes (nosZ, nirK, and napA) and increasing nitrogen fixation gene (nifH). The dominant factors affecting nitrification and denitrification genes were Firmicutes and C/N ratio. Additionally, SiO(2) NPs decreased copper resistance genes by 28.96 % - 37.52 % in compost products. Copper resistance genes decreased most in the treatment with 0.5 g kg(-1) SiO(2) NPs. In summary, 0.5 g kg(-1) SiO(2) NPs have the potential to reduce copper resistance genes and enhance nitrogen retention during aerobic composting, which may be used to improve compost quality.202439374833
808060.9991Fates of antibiotic resistance genes and bacterial/archaeal communities of activated sludge under stress of copper: Gradient increasing/decreasing exposure modes. Effect of copper (Cu) on antibiotic resistance genes (ARGs) and bacterial/archaeal community of activated sludge under gradient increasing (0.5-10 mg/L) or decreasing exposure (10-0.5 mg/L) modes was explored. Here, 29 genes were detected among 48 selected ARGs and mobile gene elements (MGEs). Two exposure modes showed dissimilar effects on ARGs and distribution was more affected by environmental concentrations of Cu, which promoted transmission of ARGs (multiple drug resistance and sulfonamide). Cellular protection was main resistance mechanism, which was less inhibited than efflux pumps. The tnpA-02, as main MGE, interacted closely with ARGs (sul2, floR, etc.). Gradient increasing exposure mode had more effects on bacterial/archaeal structure and composition. Bacteria were main hosts for specific ARGs and tnpA-02, while archaea carried multiple ARGs (cmx(A), adeA, etc.), and bacteria (24.24 %) contributed more to changes of ARGs than archaea (19.29 %). This study clarified the impacts of Cu on the proliferation and transmission of ARGs.202236096328
801870.9991Analysis for microbial denitrification and antibiotic resistance during anaerobic digestion of cattle manure containing antibiotic. This study investigated the effects of tylosin (0, 10, and 100 mg/kg dry weight) on the denitrification genes and microbial community during the anaerobic digestion of cattle manure. N(2) emissions were reduced and N(2)O emissions were increased by 10 mg/kg tylosin. Adding 100 mg/kg tylosin increased the emission of both N(2)O and N(2). The different responses of denitrifying bacteria and genes to tylosin may have been due to the presence of antibiotic resistance genes (ARGs). Network analysis indicated that denitrification genes and ARGs had the same potential host bacteria. intI1 was more important for the horizontal transfer of denitrification genes and ARGs during anaerobic digestion than intI2. The anaerobic digestion of manure containing tylosin may increase nitrogen losses and the associated ecological risk.201931326686
801180.9991Co-selective Pressure of Cadmium and Doxycycline on the Antibiotic and Heavy Metal Resistance Genes in Ditch Wetlands. Abuse of heavy metals and antibiotics results in the dissemination of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs). Ditch wetlands are important sinks for heavy metals and antibiotics. The relationships between bacterial communities and MRG/ARG dissemination under dual stresses of heavy metals and antibiotics remain unclear. The responses of MRGs and ARGs to the co-selective pressure of cadmium (Cd) and doxycycline (DC) in ditch wetlands were investigated after 7-day and 84-day exposures. In ecological ditches, residual rates of Cd and DC varied from 0.4 to -5.73% and 0 to -0.61%, respectively. The greatest total relative abundance of ARGs was observed in the Cd 5 mg L(-1) + DC 50 mg L(-1) group. A significant level of DC (50 mg L(-1)) significantly reduced the total relative abundances of MRGs at a concentration of 5 mg L(-1) Cd stress. Redundancy analysis indicated that Cd and DC had strong positive effects on most ARGs and MRGs after a 7-day exposure. Meanwhile, the class 1 integron gene (intI1) exhibited strong positive correlations with most ARGs and cadmium resistance genes (czcA) after an 84-day exposure. Network analysis showed that Acinetobacter and Pseudomonas were the potential dominant host genera for ARGs and MRGs, and tetracycline resistance genes (tetA), czcA, and intI1 shared the same potential host bacteria Trichococcus after an 84-day exposure.202235250936
804190.9991Insights into the microalgae-bacteria consortia treating swine wastewater: Symbiotic mechanism and resistance genes analysis. This study investigated the effects of microalgae-bacteria consortia (MBC) (Chlorella pyrenoidosa-activated sludge (AS)) treating swine wastewater with low C/N ratios. After co-culture, the removal rates of NH(4)(+)-N and PO(4)(3-)-P increased by 53.84% and 43.52%. Furthermore, the sulfamethoxazole (SMX) degradation rates in MBC were slightly higher than in the activated sludge process. Interestingly, the absolute abundance of antibiotic resistance genes (ARGs) in effluent from MBC is relatively less than in the AS process. C. pyrenoidosa has a negative zeta potential that allows bacteria to adhere to its surface. The concentrations of carbohydrates and proteins in extracellular polymeric substance (EPS) of MBC dramatically increased compared with the AS process. At the phylum level, Proteobacteria, Bacteroidota, and Cyanobacteria were the main bacteria, while Ascomycota and Basidiomycota were the primary fungi in MBC. Overall, those findings lead to a better understanding of the swine wastewater containing antibiotic treatment by MBC.202235217162
7584100.9990Responses of microbial community and antibiotic resistance genes to co-existence of chloramphenicol and salinity. In recent years, the risk from environmental pollution caused by chloramphenicol (CAP) has emerged as a serious concern worldwide, especially for the co-selection of antibiotic resistance microorganisms simultaneously exposed to CAP and salts. In this study, the multistage contact oxidation reactor (MCOR) was employed for the first time to treat the CAP wastewater under the co-existence of CAP (10-80 mg/L) and salinity (0-30 g/L NaCl). The CAP removal efficiency reached 91.7% under the co-existence of 30 mg/L CAP and 10 g/L NaCl in the influent, but it fluctuated around 60% with the increase of CAP concentration and salinity. Trichococcus and Lactococcus were the major contributors to the CAP and salinity shock loads. Furthermore, the elevated CAP and salinity selection pressures inhibited the spread of CAP efflux pump genes, including cmlA, tetC, and floR, and significantly affected the composition and abundance of antibiotic resistance genes (ARGs). As the potential hosts of CAP resistance genes, Acinetobacter, Enterococcus, and unclassified_d_Bacteria developed resistance against high osmotic pressure and antibiotic environment using the efflux pump mechanism. The results also revealed that shifting of potential host bacteria significantly contributed to the change in ARGs. Overall, the co-existence of CAP and salinity promoted the enrichment of core genera Trichococcus and Lactococcus; however, they inhibited the proliferation of ARGs. KEY POINTS: • Trichococcus and Lactococcus were the core bacteria related to CAP biodegradation • Co-existence of CAP and salinity inhibited proliferation of cmlA, tetC, and floR • The microorganism resisted the CAP using the efflux pump mechanism.202236205764
8084110.9990Metagenomic insights into effects of carbon/nitrogen ratio on microbial community and antibiotic resistance in moving bed biofilm reactor. This study investigated the effects of carbon/nitrogen (C/N) ratio on microbial community in moving bed biofilm reactor (MBBR) using metagenomic analysis, and the dynamic changes of relevant antibiotic resistance genes (ARGs) were also analyzed. The results showed that under low C/N ratio, MBBR exhibited average removal rates of 98.41 % for ammonia nitrogen and 75.79 % for total nitrogen. Metagenomic analysis showed low C/N ratio altered the structure of biofilm and water microbiota, resulting in the detachment of bacteria such as Actinobacteria from biofilm into water. Furthermore, sulfamethazine (SMZ)-resistant bacteria and related ARGs were released into water under low C/N ratio, which lead to the increase of SMZ resistance rate to 90%. Moreover, most dominant genera are potential hosts for both nitrogen cycle related genes and ARGs. Specifically, Nitrosomonas that carried gene sul2 might be released from biofilm into water. These findings implied the risks of antibiotic resistance dissemination in MBBR under low C/N ratio.202438901747
8075120.9990Exploring the impact of biochar on antibiotics and antibiotics resistance genes in pig manure aerobic composting through untargeted metabolomics and metagenomics. This study investigated the effect of biochar on antibiotics and antibiotic resistance genes (ARGs) during aerobic composting of pig manure. First, the composition and content of antibiotics in the manure were determined qualitatively and quantitatively. Biochar promoted the degradation of these antibiotics (oxytetracycline, chlortetracycline, and tetracycline). The relative abundance (RA) of antibiotic-resistant bacteria carrying ARGs accounted for about 29.32% of the total bacteria. Firmicutes and Actinomycetes were dominant phylum-level bacteria at the early and late stages of composting, respectively. Biochar decreased the total RA of ARGs by 16.83%±4.10%. tetW and tetL, closely related to tetracycline resistance, were significantly diminished during aerobic composting, and biochar was able to promote this removal. Biochar enhanced RAs of Mycobacterium tuberculosis kasA mutant. RAs of ARGs related to antibiotic efflux pumps, such as baeS and arlS, remained at a high level. Conclusively, biochar promotes degradation of antibiotics and removal of ARGs.202235398213
7563130.9990Polystyrene microplastics alleviate the effects of sulfamethazine on soil microbial communities at different CO(2) concentrations. Microplastics were reported to adsorb antibiotics and may modify their effects on soil systems. But there has been little research investigating how microplastics may affect the toxicities of antibiotics to microbes under future climate conditions. Here, we used a free-air CO(2) enrichment system to investigate the responses of soil microbes to sulfamethazine (SMZ, 1 mg kg(-1)) in the presence of polystyrene microplastics (PS, 5 mg kg(-1)) at different CO(2) concentrations (ambient at 380 ppm and elevated at 580 ppm). SMZ alone decreased bacterial diversity, negatively affected the bacterial structure and inter-relationships, and enriched the sulfonamide-resistance genes (sul1 and sul2) and class 1 integron (intl1). PS, at both CO(2) conditions, showed little effect on soil bacteria but markedly alleviated SMZ's adverse effects on bacterial diversity, composition and structure, and inhibited sul1 transmission by decreasing the intl1 abundance. Elevated CO(2) had limited modification in SMZ's disadvantages to microbial communities but markedly decreased the sul1 and sul2 abundance. Results indicated that increasing CO(2) concentration or the presence of PS affected the responses of soil microbes to SMZ, providing new insights into the risk prediction of antibiotics under future climate conditions.202133592488
7597140.9990Metagenomic analysis reveals the effects of long-term antibiotic pressure on sludge anaerobic digestion and antimicrobial resistance risk. Continuous stirred-tank digesters with tetracyclines and sulfonamides were operated to investigate the impacts of antibiotic pressure on sludge anaerobic digestion. The versatile methanogen Methanosarcinales and strictly hydrogenotrophic methanogen Methanobacteriales increased and decreased by 21.1% and 10.9% under antibiotic pressure, respectively. KEGG analysis revealed that hydrogenotrophic and acetoclastic methanogenesis pathways were all affected. The decrease in abundance of function genes involved in lipid metabolism, carbohydrate metabolism, and fatty acid degradation, would lead to a reduction in methane production by 25%. Network analysis indicated positive associations among tetracycline residuals, abundance of resistance genes (ARGs), and specific member of potential hosts. Over 1000 ARG subtypes were widely detected in sludge, including macrolide (28%), tetracycline (24%), fluoroquinolone (20%), and peptide (20%) resistance genes. AD process exposed to long-term antibiotic would increase the diversity and abundance of ARG, enhance the association of ARG with specific microbes, and select bacteria able to perform chemotaxis mechanism.201930861447
8019150.9990In-feed antibiotic use changed the behaviors of oxytetracycline, sulfamerazine, and ciprofloxacin and related antibiotic resistance genes during swine manure composting. The dynamics of oxytetracycline (OTC), sulfamerazine (SM1), ciprofloxacin (CIP) and related antibiotic resistance genes (ARGs) during swine manure composting were compared between manure collected from swine fed a diet containing these three antibiotics (T(D)) and manure directly spiked with these drugs (T(S)). The composting removal efficiency of OTC (94.9 %) and CIP (87.8 %) in the T(D) treatment was significantly higher than that of OTC (83.8 %, P <  0.01) and CIP (83.9 %, P <  0.05) in the T(S) treatment, while SM1 exhibited no significant difference (P >  0.05) between the two treatments. Composting effectively reduced the majority of ARGs in both T(D) and T(S) types of manure, especially tetracycline resistance genes (TRGs). Compared with the T(S) treatment, the abundance of some ARGs, such as tetG, qepA, sul1 and sul2, increased dramatically up to 309-fold in the T(D) treatment. The microbial composition of the composting system changed significantly during composting due to antibiotic feeding. Redundancy analysis suggested that the abundance of ARGs had a considerable impact on alterations in the physicochemical parameters (C/N, pH and temperature) and bacterial communities (Actinobacteria, Proteobacteria and Firmicutes) during the composting of swine manure.202133254754
8078160.9990Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment. In present study, copper (Cu), zinc (Zn), tetracycline (TC) and ampicillin (AMP) were selected to study the individual and synergistic effects of antibiotics and heavy metals on the microbial communities and resistance genes on polyvinyl chloride microplastics (PVC MPs) and surrounding sewage after 28 and 84 days. The results indicated that PVC MPs enriched many microorganisms from surrounding sewage, especially pathogenic bacteria such as Mycobacterium and Aquabacterium. The resistance gene with the highest abundance enriched on PVC MPs was tnpA (average abundance of 1.0 × 10(7) copies/mL sewage). The single presence of Zn, TC and AMP inhibited these enrichments for a short period of time (28 days). But the single presence of Cu and the co-existence of antibiotics and heavy metals inhibited these enrichments for a long period of time (84 days), resulting in relatively low microbial diversities and resistance genes abundances. Transpose tnpA had significantly positive correlations (p < 0.05) with all other genes. Pathogenic bacteria Mycobacterium and Legionella were potential hosts harboring 5 and 1 resistance genes, respectively. Overall, PVC MPs played important roles in the distribution and transfer of pathogenic bacteria and resistance genes in sewage with the presence of antibiotics or (and) heavy metals.202133254740
8082170.9990Deciphering the toxic effects of antibiotics on denitrification: Process performance, microbial community and antibiotic resistance genes. The extensive application of antibiotics, and the occurrence and spread of antibiotic resistance genes (ARGs) shade health risks to human and animal. The long-term effects of sulfamethoxazole (SMX) and tetracycline (TC) on denitrification process were evaluated in this study, with the focus on nitrogen removal performance, microbial community and ARGs. Results showed that low-concentration SMX and TC (<0.2 mg L(-1)) initially caused a deterioration in nitrogen removal performance, while higher concentrations (0.4-20 mg L(-1)) of both antibiotics had no further inhibitory influences. The abundances of ARGs in both systems generally increased during the whole period, and most of them had significant correlations with intI1, especially efflux-pump genes. Castellaniella, which was the dominant genus under antibiotic pressure, might be potential resistant bacteria. These findings provide an insight into the toxic effects of different antibiotics on denitrification process, and guides future efforts to control antibiotics pollution in ecosystems.202032250829
7585180.9990Impacts of engineered nanoparticles and antibiotics on denitrification: Element cycling functional genes and antibiotic resistance genes. The wide presence of antibiotics and minerals warrants their combined effects on the denitrification in natural aquatic environment. Herein, we investigated the effects of two antibiotics, sulfamethazine (SMZ) and chlortetracycline (CTC), on the reduction of NO(3)(-)-N and accumulation of NO(2)(-)-N in the absence and presence of engineered nanoparticles (NPs) (Al(2)O(3), SiO(2), and geothite) using 16 S rRNA sequencing and high-throughput quantitative PCR. The results showed that the addition of antibiotics inhibited the reduction of NO(3)(-)-N by changing the bacterial community structure and reducing the abundance of denitrification genes, while engineered NPs promoted the denitrification by increasing the abundance of denitrification genes. In the binary systems, engineered NPs alleviated the inhibitory effect of antibiotics through enriching the denitrification genes and adsorbing antibiotics. Antibiotics and its combination with engineered NPs changed the composition of functional genes related to C, N, P, S metabolisms (p < 0.01). The addition of antibiotics and/or engineered NPs altered the bacterial community structure, which is dominated by the genera of Enterobacter (40.7-90.5%), Bacillus (4.9-58.5%), and Pseudomonas (0.21-12.7%). The significant relationship between denitrification, carbon metabolism genes, and antibiotic resistance genes revealed that the heterotrophic denitrifying bacteria may host the antibiotic resistance genes and denitrification genes simultaneously. The findings underscore the significance of engineered NPs in the toxicity assessment of pollutants, and provide a more realistic insight into the toxicity of antibiotics in the natural aquatic environment.202235738104
8027190.9990Behavior of tetracycline and sulfamethoxazole and their corresponding resistance genes in three-dimensional biofilm-electrode reactors with low current. Antibiotics and antibiotic resistance genes (ARGs) have become major health concerns. In this study, three-dimensional biofilm-electrode reactors (3D-BERs) under low current were designed to assess their performance in removing tetracycline (TC) and sulfamethoxazole (SMX) from synthetic wastewater. In addition, the fates of the corresponding ARGs in microbial communities were investigated. The mass removal ratios of TC and SMX by the 3D-BERs were 82.6-97.3% and 72.2-93.2%, respectively. There were obvious increases in the relative abundances of all target genes after ∼2 months. The tet and sul genes were significantly upregulated by high concentrations of antibiotics in the cathode layer, and higher ARG levels were evident in the cathodes than in the anodes. High-throughput sequencing identified Methylotenera, Candidatus Accumulibacter, Limnohabitans, Dechloromonas, Crenothrix, and Caldilinea as the dominant genera in the samples at the end of the experiment, after ∼8 months, and these bacteria potentially exhibited antibiotic resistance. The relative abundances and compositions of the dominant microbial populations changed throughout the course of antibiotic removal in the 3D-BERs.201727925498