# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7734 | 0 | 1.0000 | Metagenomic Analysis Identifies Sex-Related Cecal Microbial Gene Functions and Bacterial Taxa in the Quail. Background: Japanese quail (Coturnix japonica) are important and widely distributed poultry in China. Researchers continue to pursue genetic selection for heavier quail. The intestinal microbiota plays a substantial role in growth promotion; however, the mechanisms involved in growth promotion remain unclear. Results: We generated 107.3 Gb of cecal microbiome data from ten Japanese quail, providing a series of quail gut microbial gene catalogs (1.25 million genes). We identified a total of 606 main microbial species from 1,033,311 annotated genes distributed among the ten quail. Seventeen microbial species from the genera Anaerobiospirillum, Alistipes, Barnesiella, and Butyricimonas differed significantly in their abundances between the female and male gut microbiotas. Most of the functional gut microbial genes were involved in metabolism, primarily in carbohydrate transport and metabolism, as well as some active carbohydrate-degrading enzymes. We also identified 308 antibiotic-resistance genes (ARGs) from the phyla Bacteroidetes, Firmicutes and Euryarchaeota. Studies of the differential gene functions between sexes indicated that abundances of the gut microbes that produce carbohydrate-active enzymes varied between female and male quail. Bacteroidetes was the predominant ARG-containing phylum in female quail; Euryarchaeota was the predominant ARG-containing phylum in male quail. Conclusion: This article provides the first description of the gene catalog of the cecal bacteria in Japanese quail as well as insights into the bacterial taxa and predictive metagenomic functions between male and female quail to provide a better understanding of the microbial genes in the quail ceca. | 2021 | 34660751 |
| 4711 | 1 | 0.9990 | Multi-omics analysis reveals interactions between host and microbes in Bama miniature pigs during weaning. INTRODUCTION: There are complex interactions between host and gut microbes during weaning, many of the mechanisms are not yet fully understood. Previous research mainly focuses on commercial pigs, whereas limited information has been known about the host and gut microbe interactions in miniature pigs. METHODS: To address the issue in Bama miniature piglets that were weaned 30 days after birth, we collected samples on days 25 and 36 for metabolomics, transcriptomics, and microgenomics analysis. RESULTS AND DISCUSSION: The average daily weight gain of piglets during weaning was only 58.1% and 40.6% of that during 0-25 days and 36-60 days. Metabolomic results identified 61 significantly different metabolites (SDMs), of which, the most significantly increased and decreased SDMs after weaning were ectoine and taurocholate, respectively, indicating the occurrence of inflammation. Metagenomic analysis identified 30 significantly different microbes before and after weaning. Bacteria related to decreasing intestinal inflammation, such as Megasphaera, Alistipes and Bifidobacterium, were enriched before weaning. While bacteria related to infection such as Chlamydia, Clostridium, Clostridioides, and Blautia were enriched after weaning. The carbohydrate enzymes CBM91, CBM13, GH51_1, and GH94 increase after weaning, which may contribute to the digestion of complex plant fibers. Furthermore, we found the composition of antibiotic resistance genes (ARGs) changed during weaning. Transcriptomic analysis identified 147 significantly differentially expressed genes (DEGs). The upregulated genes after weaning were enriched in immune response categories, whereas downregulated genes were enriched in protein degradation. Combining multi-omics data, we identified significant positive correlations between gene MZB1, genera Alistipes and metabolite stachydrine, which involve anti-inflammatory functions. The reduced abundance of bacteria Dialister after weaning had strong correlations with the decreased 2-AGPE metabolite and the downregulated expression of RHBDF1 gene. Altogether, the multi-omics study reflects dietary changes and gut inflammation during weaning, highlighting complex interactions between gut microbes, host genes and metabolites." | 2024 | 39723142 |
| 7713 | 2 | 0.9989 | Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BACKGROUND: Concrete corrosion of wastewater collection systems is a significant cause of deterioration and premature collapse. Failure to adequately address the deteriorating infrastructure networks threatens our environment, public health, and safety. Analysis of whole-metagenome pyrosequencing data and 16S rRNA gene clone libraries was used to determine microbial composition and functional genes associated with biomass harvested from crown (top) and invert (bottom) sections of a corroded wastewater pipe. RESULTS: Taxonomic and functional analysis demonstrated that approximately 90% of the total diversity was associated with the phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. The top (TP) and bottom pipe (BP) communities were different in composition, with some of the differences attributed to the abundance of sulfide-oxidizing and sulfate-reducing bacteria. Additionally, human fecal bacteria were more abundant in the BP communities. Among the functional categories, proteins involved in sulfur and nitrogen metabolism showed the most significant differences between biofilms. There was also an enrichment of genes associated with heavy metal resistance, virulence (protein secretion systems) and stress response in the TP biofilm, while a higher number of genes related to motility and chemotaxis were identified in the BP biofilm. Both biofilms contain a high number of genes associated with resistance to antibiotics and toxic compounds subsystems. CONCLUSIONS: The function potential of wastewater biofilms was highly diverse with level of COG diversity similar to that described for soil. On the basis of the metagenomic data, some factors that may contribute to niche differentiation were pH, aerobic conditions and availability of substrate, such as nitrogen and sulfur. The results from this study will help us better understand the genetic network and functional capability of microbial members of wastewater concrete biofilms. | 2012 | 22727216 |
| 7714 | 3 | 0.9988 | Functional traits and health implications of the global household drinking-water microbiome retrieved using an integrative genome-centric approach. The biological safety of drinking water plays a crucial role in public health protection. However, research on the drinking water microbiome remains in its infancy, especially little is known about the potentially pathogenic bacteria in and functional characteristics of the microbiome in household tap water that people are directly exposed to. In this study, we used a genomic-centric approach to construct a genetic catalogue of the drinking water microbiome by analysing 116 metagenomic datasets of household tap water worldwide, spanning nine countries/regions on five continents. We reconstructed 859 high-quality metagenome-assembled genomes (MAGs) spanning 27 bacterial and 2 archaeal phyla, and found that the core MAGs belonging to the phylum Proteobacteria encoded the highest metabolic functional diversity of the 33 key complete metabolic modules. In particular, we found that two core MAGs of Brevibacillus and Methylomona encoded genes for methane metabolism, which may support the growth of heterotrophic organisms observed in the oligotrophic ecosystem. Four MAGs of complete ammonia oxidation (comammox) Nitrospira were identified and functional metabolic analysis suggested these may enable mixotrophic growth and encode genes for reactive oxygen stress defence and arsenite reduction that could aid survival in the environment of oligotrophic drinking water systems. Four MAGs were annotated as potentially pathogenic bacteria (PPB) and thus represented a possible public health concern. They belonged to the genera Acinetobacter (n = 3) and Mycobacterium (n = 1), with a total relative abundance of 1.06 % in all samples. The genomes of PPB A. junii and A. ursingii were discovered to contain antibiotic resistance genes and mobile genetic elements that could contribute to antimicrobial dissemination in drinking water. Further network analysis suggested that symbiotic microbes which support the growth of pathogenic bacteria can be targets for future surveillance and removal. | 2024 | 38183799 |
| 8656 | 4 | 0.9988 | Genome-centric metagenomics insights into functional divergence and horizontal gene transfer of denitrifying bacteria in anammox consortia. Denitrifying bacteria with high abundances in anammox communities play crucial roles in achieving stable anammox-based systems. Despite the relative constant composition of denitrifying bacteria, their functional diversity remains to be explored in anammox communities. Herein, a total of 77 high-quality metagenome-assembled genomes (MAGs) of denitrifying bacteria were recovered from the anammox community in a full-scale swine wastewater treatment plant. Among these microbes, a total of 26 MAGs were affiliated with the seven dominant denitrifying genera that have total abundances higher than 1%. A meta-analysis of these species suggested that external organics reduced the abundances of genus Ignavibacterium and species MAG.305 of UTPRO2 in anammox communities. Comparative genome analysis revealed functional divergence across different denitrifying bacteria, largely owing to their distinct capabilities for carbohydrate (including endogenous and exogenous) utilization and vitamin (e.g., pantothenate and thiamine) biosynthesis. Serval microbes in this system contained fewer genes encoding biotin, pantothenate and methionine biosynthesis compared with their related species from other habitats. In addition, the genes encoding energy production and conversion (73 genes) and inorganic ion transport (53 genes) putatively transferred from other species to denitrifying bacteria, while these denitrifying bacteria (especially genera UTPRO2 and SCN-69-89) likely donated the genes encoding nutrients (e.g., inorganic ion and amino acid) transporter (64 genes) for other members to utilize new metabolites. Collectively, these findings highlighted the functional divergence of these denitrifying bacteria and speculated that the genetic interactions within anammox communities through horizontal gene transfer may be one of the reasons for their functional divergence. | 2022 | 36116192 |
| 8662 | 5 | 0.9988 | Relationships between Phyllosphere Bacterial Communities and Leaf Functional Traits in a Temperate Forest. As a vital component of biodiversity, phyllosphere bacteria in forest canopy play a critical role in maintaining plant health and influencing the global biogeochemical cycle. There is limited research on the community structure of phyllosphere bacteria in natural forests, which creates a gap in our understanding of whether and/or how phyllosphere bacteria are connected to leaf traits of their host. In this study, we investigated the bacterial diversity and composition of the canopy leaves of six dominant tree species in deciduous broad-leaved forests in northeastern China, using high-throughput sequencing. We then compare the differences in phyllosphere bacterial community structure and functional genes of dominant tree species. Fourteen key leaf functional traits of their host trees were also measured according to standard protocols to investigate the relationships between bacterial community composition and leaf functional traits. Our result suggested that tree species with closer evolutionary distances had similar phyllosphere microbial alpha diversity. The dominant phyla of phyllosphere bacteria were Proteobacteria, Actinobacteria, and Firmicutes. For these six tree species, the functional genes of phyllosphere bacteria were mainly involved in amino acid metabolism and carbohydrate metabolism processes. The redundancy and envfit analysis results showed that the functional traits relating to plant nutrient acquisition and resistance to diseases and pests (such as leaf area, isotope carbon content, and copper content) were the main factors influencing the community structure of phyllosphere bacteria. This study highlights the key role of plant interspecific genetic relationships and plant attributes in shaping phyllosphere bacterial diversity. | 2023 | 38005751 |
| 7712 | 6 | 0.9987 | Metagenomic analysis of microbial communities and antibiotic resistance genes in spoiled household chemicals. Numerous attempts have been utilized to unveil the occurrences of antibiotic resistance genes (ARGs) in human-associated and non-human-associated samples. However, spoiled household chemicals, which are usually neglected by the public, may be also a reservoir of ARGs because of the excessive and inappropriate uses of industrial drugs. Based upon the Comprehensive Antibiotic Research Database, a metagenomic sequencing method was utilized to detect and quantify Antibiotic Resistance Ontology (AROs) in six spoiled household chemicals, including hair conditioner, dishwashing detergent, bath shampoo, hand sanitizer, and laundry detergent. Proteobacteria was found to be the dominant phylum in all the samples. Functional annotation of the unigenes obtained against the KEGG pathway, eggNOG and CAZy databases demonstrated a diversity of their functions. Moreover, 186 types of AROs that were members of 72 drug classes were identified. Multidrug resistance genes were the most dominant types, and there were 17 AROs whose resistance mechanisms were categorized into the resistance-nodulation-cell division antibiotic efflux pump among the top 20 AROs. Moreover, Proteobacteria was the dominant carrier of AROs with the primary resistance mechanism of antibiotic efflux. The maximum temperature of the months of collection significantly affected the distributions of AROs. Additionally, the isolated individual bacterium from spoiled household chemicals and artificial mixed communities of isolated bacteria demonstrated diverse resistant abilities to different biocides. This study demonstrated that there are abundant microorganisms and a broad spectrum profile of AROs in spoiled household chemicals that might induce a severe threat to public healthy securities and merit particular attention. | 2022 | 34740703 |
| 7722 | 7 | 0.9987 | Genome-resolving metagenomics reveals wild western capercaillies (Tetrao urogallus) as avian hosts for antibiotic-resistance bacteria and their interactions with the gut-virome community. The gut microbiome is a critical component of avian health, influencing nutrient uptake and immune functions. While the gut microbiomes of agriculturally important birds have been studied, the microbiomes of wild birds still need to be explored. Filling this knowledge gap could have implications for the microbial rewilding of captive birds and managing avian hosts for antibiotic-resistant bacteria (ARB). Using genome-resolved metagenomics, we recovered 112 metagenome-assembled genomes (MAGs) from the faeces of wild and captive western capercaillies (Tetrao urogallus) (n = 8). Comparisons of bacterial diversity between the wild and captive capercaillies suggest that the reduced diversity in the captive individual could be due to differences in diet. This was further substantiated through the analyses of 517,657 clusters of orthologous groups (COGs), which revealed that gene functions related to amino acids and carbohydrate metabolisms were more abundant in wild capercaillies. Metagenomics mining of resistome identified 751 antibiotic resistance genes (ARGs), of which 40.7 % were specific to wild capercaillies suggesting that capercaillies could be potential reservoirs for hosting ARG-associated bacteria. Additionally, the core resistome shared between wild and captive capercaillies indicates that birds can acquire these ARG-associated bacteria naturally from the environment (43.1 % of ARGs). The association of 26 MAGs with 120 ARGs and 378 virus operational taxonomic units (vOTUs) also suggests a possible interplay between these elements, where putative phages could have roles in modulating the gut microbiota of avian hosts. These findings can have important implications for conservation and human health, such as avian gut microbiota rewilding, identifying the emerging threats or opportunities due to phage-microbe interactions, and monitoring the potential spread of ARG-associated bacteria from wild avian populations. | 2023 | 37018898 |
| 7516 | 8 | 0.9987 | Functional gene array-based analysis of microbial communities in heavy metals-contaminated lake sediments. Lake DePue (IL, USA) has been contaminated for > 80 years by an adjacent Zn-smelting facility. Previous work indicated that sulfate reduction increased and biomass declined as pore-water metal concentrations increased, while 16S rRNA gene profiles remained relatively stable. To better understand this phenomenon, the sediment microbial community structure and functional potential were investigated using a functional gene microarray (GeoChip) targeting > 10,000 functional genes. Nonmetric multidimensional scaling and clustering analyses showed that the overall community structure was similar across all sites based on the relative abundance of all detected genes, but some individual gene categories did show differences. A subset of sulfate reduction genes (dsr) and the most relevant metal resistance genes were more abundant than other categories and were highly correlated with metal contamination. The most significant correlations were between pore-water metal concentrations and dsr, with Zn, Cd, and Mn as the most predictive for the presence of dsr. These results suggest that metal contamination influences sediment microbial community structure and function by increasing the abundance of relevant metal-resistant and sulfate-reducing populations. These populations therefore appear to contribute significantly to the resistance and stability of the microbial communities throughout the gradient of metal contamination in Lake DePue. | 2013 | 23710534 |
| 7662 | 9 | 0.9987 | Toxic metals in Amazonian soil modify the bacterial community associated with Diplopoda. Toxic metal pollution in the Amazon is a serious problem that reduces the quality of water, soil, air, and consequently alters communities of fauna, flora, and microbiota, harming human health and well-being. Our aim was to determine the impact of toxic metals on the structure of the bacterial community associated with Diplopoda in the Amazon rainforest. Animals were kept in microcosms contaminated with cadmium (50 mg.kg(-1)), mercury (35 mg.kg(-1)) and no toxic metal (control). The intestinal and molting chamber microbiota were accessed by culture-dependent and culture-independent methods (16S metabarcoding). The cultivated strains were identified, and their functional traits evaluated: secretion of enzymes, growth at different pH, resistance to metals and antibiotics, and ability to reduce toxic effects of metals on plants. Our research described Brachyurodesmus albus, a new species of Diplopoda. We obtained 177 isolates distributed in 35 genera and 61 species of bacteria (Pseudomonadota, Bacillota, Bacteroidota and Actinomycetota) associated with the gut and molting chamber of B. albus. Metabarcoding data provided a more robust access to the bacterial community, resulting in 24 phyla, 561 genera and 6792 ASVs. The presence of metal Cd and Hg alters the composition and abundance of bacteria associated with B. albus (PERMANOVA p < 0.05). The microhabitat (gut and molting chamber) harbours bacterial communities that differ in composition and abundance (PERMANOVA p < 0.05). The presence of Cd and Hg alters important metabolic pathways related to the prokaryotic defense system; antimicrobial resistance genes, endocytosis and secretion system, estimated by PICRUSt. Bacteria selected with high resistance to Cd and Hg buffer the toxic effect of metals on tomato seedlings. This work describes B. albus and concludes that its diverse bacterial microbiota is altered by soil contamination by toxic metals, as well as being an important repository for prospecting strains to be applied in bioremediation programs. | 2024 | 39419211 |
| 7724 | 10 | 0.9987 | Taxonomic and functional analyses reveal existence of virulence and antibiotic resistance genes in beach sand bacterial populations. Coastal sands are important natural recreational facilities that have become hotspots for tourism and economic development. However, these sands harbour diverse microbial assemblages that play a critical role in the balance between public health and ecology. In this study, targeted high-throughput sequencing analysis was used to identify sand-borne bacterial populations at four public beaches in Durban. The effect of heavy metal in shaping the distribution of bacterial metacommunities was determined using canonical correspondence analysis (CCA), while the functional gene profiles were predicted using PICRUSt2 analysis. Sequences matching those of the bacterial phylum Proteobacteria were the most abundant in all samples, followed by those of the phyla Firmicutes, Actinobacteria, Bacteroidetes, and Gemmatimonadetes. Genus-level taxonomic analysis showed the presence of 1163 bacterial genera in all samples combined. The distribution of bacterial communities was shaped by heavy metal concentrations, with the distribution of Flavobacteria, Bacteroidia, and Deltaproteobacteria influenced by Pb and Zn, while B and Cr influenced the distribution of Clostridia and Gammaproteobacteria, respectively. Identified antibiotic resistance genes included the peptidoglycan biosynthesis gene II, III, IV, and V, as well as the polymyxin resistance gene, while the virulence genes included the sitA, fimB, aerobactin synthase, and pilL gene. Our findings demonstrate that beach sand-borne bacteria are reservoirs of virulence and antibiotic resistance genes. Contamination of beach sands with heavy metals selects for both heavy metal resistance and antibiotic resistance in beach sand bacterial communities. Children and immunocompromised people engaging in recreational activities on beaches may be exposed to higher risk of infection. | 2021 | 33474608 |
| 3231 | 11 | 0.9987 | Diversity analysis and metagenomic insights into antibiotic and metal resistance among Himalayan hot spring bacteriobiome insinuating inherent environmental baseline levels of antibiotic and metal tolerance. OBJECTIVES: Mechanisms of occurrence and expression of antibiotic resistance genes (ARGs) in thermophilic bacteria are still unknown owing to limited research and data. In this research, comparative profiling of ARGs and metal tolerance genes among thermophilic bacteria has been done by functional metagenomic methods. METHODS: Shotgun metagenomic sequence data were generated using Illumina HiSeq 4000. Putative ARGs from the PROKKA predicted genes were identified with the ardbAnno V.1.0 script available from the ARDB (Antibiotic Resistance Genes Database) consortium using the non-redundant resistance genes as a reference. Putative metal resistance genes (MRGs) were identified by using BacMetScan V.1.0. The whole-genome sequencing for bacterial isolates was performed using Illumina HiSeq 4000 sequencing technology with a paired-end sequencing module. RESULTS: Metagenomic analysis showed the dominance of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes in two hot springs of Sikkim. ARG analysis through shotgun gene sequencing was found to be negative in the case of thermophilic bacteria. However, few genes were detected but they showed maximum similarity with mesophilic bacteria. Concurrently, MRGs were also detected in the metagenome sequence of isolates from hot springs. Detection of MRGs and absence of ARGs investigated by whole-genome sequencing in the reference genome sequence of thermophilic Geobacillus also conveyed the same message. CONCLUSION: The study of ARGs and MRGs (Heavy metal resistance gene) among culturable and non-culturable bacteria from the hot springs of Sikkim via metagenomics showed a preferential selection of MRGs over ARGs. The absence of ARGs also does not support the co-selection of ARGs and MRGs in these environments. This evolutionary selection of metal resistance over antibiotic genes may have been necessary to survive in the geological craters which have an abundance of different metals from earth sediments rather than antibiotics. Furthermore, the selection could be environment driven depending on the susceptibility of ARGs in a thermophilic environments as it reduces the chances of horizontal gene transfer. | 2020 | 32344121 |
| 7668 | 12 | 0.9987 | Taxonomic and functional profiling of microbial community in municipal solid waste dumpsite. Understanding the microbial ecology of landfills is crucial for improving waste management strategies and utilizing the potential of these microbial communities for biotechnological applications. This study aimed to conduct a comprehensive taxonomic and functional profiling of the microbial community present in the Addis Ababa municipal solid waste dumpsite using a shotgun metagenomics sequencing approach. The taxonomic analysis of the sample revealed the significant presence of bacteria, with the Actinomycetota (56%), Pseudomonadota (23%), Bacillota (3%), and Chloroflexota (3%) phyla being particularly abundant. The most abundant KEGG categories were carbohydrates metabolism, membrane transport, signal transduction, and amino acid metabolism. The biodegradation and metabolism of xenobiotics, as well as terpenoids and polyketides, were also prevalent. Moreover, the Comprehensive Antibiotic Resistance Database (CARD) identified 52 antibiotic resistance gene (ARG) subtypes belonging to 14 different drug classes, with the highest abundances observed for glycopeptide, phosphonic acid, and multidrug resistance genes. Actinomycetota was the dominant phylum harboring ARGs, followed by Pseudomonadota and Chloroflexota. This study offers valuable insights into the taxonomic and functional diversity of the microbial community in the Addis Ababa municipal solid waste dumpsite. It sheds light on the widespread presence of metabolically versatile microbes, antibiotic resistance genes, mobile genetic elements, and pathogenic bacteria. This understanding can contribute to the creation of efficient waste management strategies and the investigation of possible biotechnological uses for these microbial communities. | 2024 | 39551884 |
| 6107 | 13 | 0.9987 | Metagenomic and genomic analysis of heavy metal-tolerant and -resistant bacteria in resource islands in a semi-arid zone of the Colombian Caribbean. Bacteria from resource islands can adapt to different extreme conditions in semi-arid regions. We aimed to determine the potential resistance and tolerance to heavy metals from the bacterial community under the canopy of three resource islands in a semi-arid zone of the Colombian Caribbean. Total DNA was extracted from soil and through a metagenomics approach, we identified genes related to heavy metal tolerance and resistance under the influence of drought and humidity conditions, as well as the presence or absence of vegetation. We characterized the genomes of bacterial isolates cultivated in the presence of four heavy metals. The abundances of genes related to heavy metal resistance and tolerance were favored by soil moisture and the presence of vegetation. We observed a high abundance of resistance genes (60.4%) for Cu, Zn, and Ni, while 39.6% represented tolerance. These genes positively correlated with clay and silt content, and negatively correlated with sand content. Resistance and tolerance were associated with detoxification mechanisms involving oxidoreductase enzymes, metalloproteases, and hydrolases, as well as transmembrane proteins involved in metal transport such as efflux pumps and ion transmembrane transporters. The Bacillus velezensis C3-3 and Cytobacillus gottheilii T106 isolates showed resistance to 5 mM of Cd, Co, Mn, and Ni through detoxification genes associated with ABC pumps, metal transport proteins, ion antiporter proteins, and import systems, among others. Overall, these findings highlight the potential of bacteria from resource islands in bioremediation processes of soils contaminated with heavy metals. | 2024 | 38127234 |
| 3233 | 14 | 0.9987 | A Metagenomic Investigation of Potential Health Risks and Element Cycling Functions of Bacteria and Viruses in Wastewater Treatment Plants. The concentration of viruses in sewage sludge is significantly higher (10-1000-fold) than that found in natural environments, posing a potential risk for human and animal health. However, the composition of these viruses and their role in the transfer of pathogenic factors, as well as their role in the carbon, nitrogen, and phosphorus cycles remain poorly understood. In this study, we employed a shotgun metagenomic approach to investigate the pathogenic bacteria and viral composition and function in two wastewater treatment plants located on a campus. Our analysis revealed the presence of 1334 amplicon sequence variants (ASVs) across six sludge samples, with 242 ASVs (41.22% of total reads) identified as pathogenic bacteria. Arcobacter was found to be the most dominant pathogen accounting for 6.79% of total reads. The virome analysis identified 613 viral genera with Aorunvirus being the most abundant genus at 41.85%. Approximately 0.66% of these viruses were associated with human and animal diseases. More than 60% of the virome consisted of lytic phages. Host prediction analysis revealed that the phages primarily infected Lactobacillus (37.11%), Streptococcus (21.11%), and Staphylococcus (7.11%). Furthermore, our investigation revealed an abundance of auxiliary metabolic genes (AMGs) involved in carbon, nitrogen, and phosphorus cycling within the virome. We also detected a total of 113 antibiotic resistance genes (ARGs), covering major classes of antibiotics across all samples analyzed. Additionally, our findings indicated the presence of virulence factors including the clpP gene accounting for approximately 4.78%, along with toxin genes such as the RecT gene representing approximately 73.48% of all detected virulence factors and toxin genes among all samples analyzed. This study expands our understanding regarding both pathogenic bacteria and viruses present within sewage sludge while providing valuable insights into their ecological functions. | 2024 | 38675877 |
| 7518 | 15 | 0.9987 | Deciphering the toxic effects of metals in gold mining area: Microbial community tolerance mechanism and change of antibiotic resistance genes. Mine tailing dumps represent significant threats to ecological environments due to the presence of toxic substances. The present work investigated the relationship among microbial activity, the community, antibiotic resistance genes (ARGs) and trace metals in soil surrounding gold mine tailings. Using microbial metabolic activity and high-throughput sequencing analysis, we found the trace metals Cd and Hg could be main factors influencing the microbial community. According to bacterial co-occurrence pattern analysis, the effects of total cadmium and total mercury on bacterial diversity are potentially mediated by influencing bacteria community in the keystone module II. Additionally, most of metal-resistant bacteria belong to Actinobacteria and Proteobacteria, and the metal tolerance suggested to be linked with various functions including replication, recombination and repair, as well as inorganic ion transport and metabolism based on PICRUSt2 analysis. We also found that metals generated by mining activity may trigger the co-selection of antibiotic resistance in the phyla Actinobacteria and Proteobacteria due to co-resistance or cross resistance. Additionally, PLS-PM analysis revealed that metals could indirectly affect ARGs by influencing bacterial diversity in gold mining areas. | 2020 | 32678731 |
| 7707 | 16 | 0.9986 | Exploring the dynamics of gut microbiota, antibiotic resistance, and chemotherapy impact in acute leukemia patients: A comprehensive metagenomic analysis. Leukemia poses significant challenges to its treatment, and understanding its complex pathogenesis is crucial. This study used metagenomic sequencing to investigate the interplay between chemotherapy, gut microbiota, and antibiotic resistance in patients with acute leukemia (AL). Pre- and post-chemotherapy stool samples from patients revealed alterations in microbial richness, taxa, and antibiotic resistance genes (ARGs). The analysis revealed a decreased alpha diversity, increased dispersion in post-chemotherapy samples, and changes in the abundance of specific bacteria. Key bacteria such as Enterococcus, Klebsiella, and Escherichia coli have been identified as prevalent ARG carriers. Correlation analysis between gut microbiota and blood indicators revealed potential links between microbial species and inflammatory biomarkers, including C-reactive protein (CRP) and adenosine deaminase (ADA). This study investigated the impact of antibiotic dosage on microbiota and ARGs, revealing networks connecting co-occurring ARGs with microbial species (179 nodes, 206 edges), and networks associated with ARGs and antibiotic dosages (50 nodes, 50 edges). Antibiotics such as cephamycin and sulfonamide led to multidrug-resistant Klebsiella colonization. Our analyses revealed distinct microbial profiles with Salmonella enterica elevated post-chemotherapy in NF patients and Akkermansia muciniphila elevated pre-chemotherapy. These microbial signatures could inform strategies to modulate the gut microbiome, potentially mitigating the risk of neutropenic fever in patients undergoing chemotherapy. Finally, a comprehensive analysis of KEGG modules shed light on disrupted metabolic pathways after chemotherapy, providing insights into potential targets for managing side effects. Overall, this study revealed intricate relationships between gut microbiota, chemotherapy, and antibiotic resistance, providing new insights into improving therapy and enhancing patient outcomes. | 2024 | 39620486 |
| 6725 | 17 | 0.9986 | Honeybee (Apis mellifera) resistance to deltamethrin exposure by Modulating the gut microbiota and improving immunity. Honeybees (Apis mellifera) are important economic insects and play important roles in pollination and maintenance of ecological balance. However, the use of pesticides has posed a substantial threat to bees in recent years, with the more widely used deltamethrin being the most harmful. In this study, we found that deltamethrin exposure significantly reduced bee survival in a dose-dependent manner (p = 0.025). In addition, metagenomic sequencing further revealed that DM exposure significantly reduced the diversity of the bee gut microbiota (Chao1, p < 0.0001; Shannon, p < 0.0001; Simpson, p < 0.0001) and decreased the relative abundance of core species of the gut microbiota. Importantly, in studies of GF-bees, we found that the colonization of important gut bacteria such as Gilliamella apicola and Lactobacillus kunkeei significantly increased bee resistance to DM (survival rate increased from 16.7 to 66.7%). Interestingly, we found that the immunity-genes Defensin-2 and Toll were significantly upregulated in bees after the colonization of gut bacteria. These results suggest that gut bacteria may protect against DM stress by improving host immunity. Our findings provide an important rationale for protecting honeybees from pollutants from the perspective of gut microbes. | 2022 | 36208825 |
| 8664 | 18 | 0.9986 | Genome-centric metagenomics reveals the host-driven dynamics and ecological role of CPR bacteria in an activated sludge system. BACKGROUND: Candidate phyla radiation (CPR) constitutes highly diverse bacteria with small cell sizes and are likely obligate intracellular symbionts. Given their distribution and complex associations with bacterial hosts, genetic and biological features of CPR bacteria in low-nutrient environments have received increasing attention. However, CPR bacteria in wastewater treatment systems remain poorly understood. We utilized genome-centric metagenomics to answer how CPR communities shift over 11 years and what kind of ecological roles they act in an activated sludge system. RESULTS: We found that approximately 9% (135) of the 1,526 non-redundant bacterial and archaeal metagenome-assembled genomes were affiliated with CPR. CPR bacteria were consistently abundant with a relative abundance of up to 7.5% in the studied activated sludge system. The observed striking fluctuations in CPR community compositions and the limited metabolic and biosynthetic capabilities in CPR bacteria collectively revealed the nature that CPR dynamics may be directly determined by the available hosts. Similarity-based network analysis further confirmed the broad bacterial hosts of CPR lineages. The proteome contents of activated sludge-associated CPR had a higher similarity to those of environmental-associated CPR than to those of human-associated ones. Comparative genomic analysis observed significant enrichment of genes for oxygen stress resistance in activated sludge-associated CPR bacteria. Furthermore, genes for carbon cycling and horizontal gene transfer were extensively identified in activated sludge-associated CPR genomes. CONCLUSIONS: These findings highlight the presence of specific host interactions among CPR lineages in activated sludge systems. Despite the lack of key metabolic pathways, these small, yet abundant bacteria may have significant involvements in biogeochemical cycling and bacterial evolution in activated sludge systems. Video Abstract. | 2023 | 36945052 |
| 7721 | 19 | 0.9986 | Unveiling plasmid diversity and functionality in pristine groundwater. BACKGROUND: Plasmids are key in creating a dynamic reservoir of genetic diversity, yet their impact on Earth's continental subsurface-an important microbial reservoir-remains unresolved. We analyzed 32 metagenomic samples from six groundwater wells within a hillslope aquifer system to assess the genetic and functional diversity of plasmids and to evaluate the role of these plasmids in horizontal gene transfer (HGT). RESULTS: Our results revealed 4,609 non-redundant mobile genetic elements (MGEs), with 14% (664) confidently classified as plasmids. These plasmids displayed well-specific populations, with fewer than 15% shared across wells. Plasmids were linked to diverse microbial phyla, including Pseudomonadota (42.17%), Nitrospirota (3.31%), Candidate Phyla Radiation (CPR) bacteria (2.56%), and Omnitrophota (2.11%). The presence of plasmids in the dominant CPR bacteria is significant, as this group remains underexplored in this context. Plasmid composition strongly correlated with well-specific microbial communities, suggesting local selection pressures. Functional analyses highlighted that conjugative plasmids carry genes crucial for metabolic processes, such as cobalamin biosynthesis and hydrocarbon degradation. Importantly, we found no evidence of high confidence emerging antibiotic resistance genes, contrasting with findings from sewage and polluted groundwater. CONCLUSIONS: Overall, our study emphasizes the diversity, composition, and eco-evolutionary role of plasmids in the groundwater microbiome. The absence of known antibiotic resistance genes highlights the need to preserve groundwater in its pristine state to safeguard its unique genetic and functional landscape. | 2025 | 40275408 |