# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7728 | 0 | 1.0000 | Microbiome mapping in dairy industry reveals new species and genes for probiotic and bioprotective activities. The resident microbiome in food industries may impact on food quality and safety. In particular, microbes residing on surfaces in dairy industries may actively participate in cheese fermentation and ripening and contribute to the typical flavor and texture. In this work, we carried out an extensive microbiome mapping in 73 cheese-making industries producing different types of cheeses (fresh, medium and long ripened) and located in 4 European countries. We sequenced and analyzed metagenomes from cheese samples, raw materials and environmental swabs collected from both food contact and non-food contact surfaces, as well as operators' hands and aprons. Dairy plants were shown to harbor a very complex microbiome, characterized by high prevalence of genes potentially involved in flavor development, probiotic activities, and resistance to gastro-intestinal transit, suggesting that these microbes may potentially be transferred to the human gut microbiome. More than 6100 high-quality Metagenome Assembled Genomes (MAGs) were reconstructed, including MAGs from several Lactic Acid Bacteria species and putative new species. Although microbial pathogens were not prevalent, we found several MAGs harboring genes related to antibiotic resistance, highlighting that dairy industry surfaces represent a potential hotspot for antimicrobial resistance (AR) spreading along the food chain. Finally, we identified facility-specific strains that can represent clear microbial signatures of different cheesemaking facilities, suggesting an interesting potential of microbiome tracking for the traceability of cheese origin. | 2024 | 39095404 |
| 7727 | 1 | 0.9998 | Psychrotrophic Bacteria Equipped with Virulence and Colonization Traits Populate the Ice Cream Manufacturing Environment. Several microbial taxa have been associated with food processing facilities, and they might resist by attaching on tools and equipment even after sanitation procedures, producing biofilms that adhere to the surfaces and might embed other microorganisms, including spoilers and pathogens. There is increasing evidence that these communities can be transferred to the final product. To explore the microbial contamination routes in a facility producing ice creams, we collected foods and environmental swabs from industrial surfaces of equipment and tools and performed taxonomic and functional analyses of the microbial DNA extracted from the environmental samples. Our results suggest that complex communities dominated by psychrotrophic bacteria (e.g., Pseudomonas and Acinetobacter spp.) inhabit the food processing environment, and we demonstrate that these communities might be transferred from the surfaces to the products. Functional analysis performed on environmental samples highlighted the presence of several genes linked to antimicrobial resistance and adherence on abiotic surfaces; such genes were more abundant on food contact (FC) than on other surfaces. Metagenome-assembled genomes (MAGs) of Pseudomonas stutzeri showed genes linked with biofilm formation and motility, which are surely linked to colonizing capabilities in the processing lines. The study highlights clear potential advantages of applying microbiome mapping in the food industry for source tracking of microbial contamination and for planning appropriate ad hoc sanitization strategies. IMPORTANCE Several microbial species might permanently establish in food processing facilities, thus contributing to food loss. In fact, food contact surfaces might transfer microorganisms to intermediates and products, potentially representing a hazard to human health. In this work, we provide evidence of the existence of complex microbial communities overcoming sanitation in an ice cream-producing facility. These communities harbored several genes that could potentially lead to attachment to surfaces and antimicrobial resistance. Also, prediction of routes of contamination showed that several potential spoilage taxa might end up in the final product. Importantly, in this work, we show that mapping the environmental microbiome is a high-resolution technique that might help food business operators ensure food quality and safety through detection of potentially hazardous microorganisms. | 2023 | 37432121 |
| 3875 | 2 | 0.9998 | Ecological insights into the microbiology of food using metagenomics and its potential surveillance applications. A diverse array of micro-organisms can be found on food, including those that are pathogenic or resistant to antimicrobial drugs. Metagenomics involves extracting and sequencing the DNA of all micro-organisms on a sample, and here, we used a combination of culture and culture-independent approaches to investigate the microbial ecology of food to assess the potential application of metagenomics for the microbial surveillance of food. We cultured common foodborne pathogens and other organisms including Escherichia coli, Klebsiella/Raoultella spp., Salmonella spp. and Vibrio spp. from five different food commodities and compared their genomes to the microbial communities obtained by metagenomic sequencing following host (food) DNA depletion. The microbial populations of retail food were found to be predominated by psychrotrophic bacteria, driven by the cool temperatures in which the food products are stored. Pathogens accounted for a small percentage of the food metagenome compared to the psychrotrophic bacteria, and cultured pathogens were inconsistently identified in the metagenome data. The microbial composition of food varied amongst different commodities, and metagenomics was able to classify the taxonomic origin of 59% of antimicrobial resistance genes (ARGs) found on food to the genus level, but it was unclear what percentage of ARGs were associated with mobile genetic elements and thus transferable to other bacteria. Metagenomics may be used to survey the ARG burden, composition and carriage on foods to which consumers are exposed. However, food metagenomics, even after depleting host DNA, inconsistently identifies pathogens without enrichment or further bait capture. | 2025 | 39752189 |
| 6596 | 3 | 0.9998 | Shotgun metagenomic sequencing of bulk tank milk filters reveals the role of Moraxellaceae and Enterobacteriaceae as carriers of antimicrobial resistance genes. In the present context of growing antimicrobial resistance (AMR) concern, understanding the distribution of AMR determinants in food matrices such as milk is crucial to protect consumers and maintain high food safety standards. Herein, the resistome of different dairy farms was investigated through a shotgun metagenomic sequencing approach, taking advantage of in-line milk filters as promising tools. The application of both the reads-based and the assembly-based approaches has allowed the identification of numerous AMR determinants, enabling a comprehensive resolution of the resistome. Notably most of the species harboring AMR genes were predicted to be Gram-negative genera, namely Enterobacter, Acinetobacter, Escherichia, and Pseudomonas, pointing out the role of these bacteria as reservoirs of AMR determinants. In this context, the use of de novo assembly has allowed a more holistic AMR detection strategy, while the reads-based approach has enabled the detection of AMR genes from low abundance bacteria, usually undetectable by assembly-based methods. The application of both reads-based and assembly-based approaches, despite being computationally demanding, has facilitated the comprehensive characterization of a food chain resistome, while also allowing the construction of complete metagenome assembled genomes and the investigation of mobile genetic elements. Our findings suggest that milk filters can successfully be used to investigate the resistome of bulk tank milk through the application of the shotgun metagenomic sequencing. In accordance with our results, raw milk can be considered a source of AMR bacteria and genes; this points out the importance of properly informing food business operators about the risk associated with poor hygiene practices in the dairy production environment and consumers of the potential microbial food safety risks derived from raw milk products consumption. Translating these findings as risk assessment outputs heralds the next generation of food safety controls. | 2022 | 35840264 |
| 3916 | 4 | 0.9998 | Antibiotic Resistance in Fermented Foods Chain: Evaluating the Risks of Emergence of Enterococci as an Emerging Pathogen in Raw Milk Cheese. Fermented foods, particularly fermented dairy products, offer significant health benefits but also present serious concerns. Probiotic bacteria, such as lactic acid bacteria (LAB), found in these foods have been strongly linked to the selection and dissemination of antibiotic resistance genes (ARGs). This study aims to examine the potential risks associated with fermented foods, despite their importance in human nutrition, by analyzing the entire production chain from raw material acquisition to storage. Focusing on cheese production as a key fermented food, the study will investigate various aspects, including dairy farm management, milk acquisition, milk handling, and the application of good manufacturing practices (GMP) and good hygiene practices (GHP) in cheese production. The findings of this review highlight that ARGs found in LAB are similar to those observed in hygiene indicator bacteria like E. coli and pathogens like S. aureus. The deliberate use of antibiotics in dairy farms and the incorrect use of disinfectants in cheese factories contribute to the prevalence of antibiotic-resistant bacteria in cheeses. Cheese factories, with their high frequency of horizontal gene transfer, are environments where the microbiological diversity of raw milk can enhance ARG transfer. The interaction between the raw milk microbiota and other environmental microbiotas, facilitated by cross-contamination, increases metabolic communication between bacteria, further promoting ARG transfer. Understanding these bacterial and ARG interactions is crucial to ensure food safety for consumers. | 2024 | 39749146 |
| 3243 | 5 | 0.9998 | Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach. The bovine fecal microbiota impacts human food safety as well as animal health. Although the bacteria of cattle feces have been well characterized using culture-based and culture-independent methods, techniques have been lacking to correlate total community composition with community function. We used high throughput sequencing of total DNA extracted from fecal material to characterize general community composition and examine the repertoire of microbial genes present in beef cattle feces, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that traditional 16S sequencing using "universal" primers to generate full-length sequence may under represent Acitinobacteria and Proteobacteria. Over eight percent (8.4%) of the sequences from our beef cattle fecal pool sample could be categorized as virulence genes, including a suite of genes associated with resistance to antibiotic and toxic compounds (RATC). This is a higher proportion of virulence genes found in Sargasso sea, chicken cecum, and cow rumen samples, but comparable to the proportion found in Antarctic marine derived lake, human fecal, and farm soil samples. The quantitative nature of metagenomic data, combined with the large number of RATC classes represented in samples from widely different habitats indicates that metagenomic data can be used to track relative amounts of antibiotic resistance genes in individual animals over time. Consequently, these data can be used to generate sample-specific and temporal antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats. | 2011 | 21167876 |
| 7725 | 6 | 0.9997 | Inter-facility characterization of bacteria in seafood processing plants: Exploring potential reservoirs of spoilage organisms and the resistome. A study was conducted in fish processing facilities to investigate the microbial composition, microbial metabolic potential, and distribution of antibiotic resistance genes. Whole metagenomic sequencing was used to analyze microbial communities from different processing rooms, operators and fish products. Taxonomic analyses identified the genera Pseudomonas and Psychrobacter as the most prevalent bacteria. A Principal Component Analysis revealed a distinct separation between fish product and environmental samples, as well as differences between fish product samples from companies processing either Gadidae or Salmonidae fish. Some particular bacterial genera and species were associated with specific processing rooms and operators. Metabolic analysis of metagenome assembled genomes demonstrated variations in microbiota metabolic profiles of microbiota across rooms and fish products. The study also examined the presence of antibiotic-resistance genes in fish processing environments, contributing to the understanding of microbial dynamics, metabolic potential, and implications for fish spoilage. | 2024 | 39071556 |
| 3931 | 7 | 0.9997 | Commercial farmed swine harbour a variety of pathogenic bacteria and antimicrobial resistance genes. Introduction. The northern region of Thailand serves as a crucial area for swine production, contributing to the Thai community food supply. Previous studies have highlighted the presence of foodborne bacterial pathogens originating from swine farms in this region, posing a threat to both human and animal health.Gap statement. Multiple swine bacterial pathogens have been studied at a species level, but the distribution and co-occurrence of bacterial pathogens in agricultural swine has not been well established.Aim. Our study employed the intestinal scraping technique to directly examine the bacterial micro-organisms interacting with the swine host.Methodology. We used shotgun metagenomic sequencing to analyse the bacterial pathogens inhabiting the caecal microbiome of swine from five commercial farms in northern Thailand.Results. A variety of pathogenic and opportunistic bacteria were identified, including Escherichia coli, Clostridium botulinum, Staphylococcus aureus and the Corynebacterium genus. From a One Health perspective, these species are important foodborne and opportunistic pathogens in both humans and agricultural animals, making swine a critical pathogen reservoir that can cause illness in humans, especially farm workers. Additionally, the swine caecal microbiome contains commensal bacteria such as Bifidobacterium, Lactobacillus and Faecalibacterium, which are associated with normal physiology and feed utilization in healthy swine. Antimicrobial resistance genes were also detected in all samples, specifically conferring resistance to tetracycline and aminoglycosides, which have historically been used extensively in swine farming.Conclusion. The findings further support the need for improved sanitation standards in swine farms, and additional monitoring of agricultural animals and farm workers to reduce contamination and improved produce safety for human consumption. | 2024 | 38230911 |
| 3155 | 8 | 0.9997 | In silico mapping of microbial communities and stress responses in a porcine slaughterhouse and pork products through its production chain, and the efficacy of HLE disinfectant. The use of shotgun metagenomic sequencing to understand ecological-level spread of microbes and their genes has provided new insights for the prevention, surveillance and control of microbial contaminants in the slaughterhouse environment. Here, microbial samples were collected from products and surrounding areas though a porcine slaughter process; shotgun metagenomic DNA-sequencing of these samples revealed a high community diversity within the porcine slaughterhouse and pork products, in zones originating from animal arrival through to the sale zones. Bacteria were more prevalent in the first zones, such as arrival- and anesthesia-zones, and DNA viruses were prevalent in the scorching-and-whip zone, animal products and sale zone. Data revealed the dominance of Firmicutes and Proteobacteria phyla followed by Actinobacteria, with a clear shift in the relative abundance of lactic acid bacteria (mainly Lactobacillus sp.) from early slaughtering steps to Proteobacteria and then to viruses suggesting site-specific community compositions occur in the slaughterhouse. Porcine-type-C oncovirus was the main virus found in slaughterhouse, which causes malignant diseases in animals and humans. As such, to guarantee food safety in a slaughterhouse, a better decipher of ecology and adaptation strategies of microbes becomes crucial. Analysis of functional genes further revealed high abundance of diverse genes associated with stress, especially in early zones (animal and environmental surfaces of arrival zone with 57,710 and 40,806 genes, respectively); SOS responsive genes represented the most prevalent, possibly associated with genomic changes responsible of biofilm formation, stringent response, heat shock, antimicrobial production and antibiotic response. The presence of several antibiotic resistance genes suggests horizontal gene transfer, thus increasing the likelihood for resistance selection in human pathogens. These findings are of great concern, with the suggestion to focus control measures and establish good disinfection strategies to avoid gene spread and microbial contaminants (bacteria and viruses) from the animal surface into the food chain and environment, which was achieved by applying HLE disinfectant after washing with detergent. | 2020 | 32846568 |
| 3705 | 9 | 0.9997 | Widespread occurrence of bacterial human virulence determinants in soil and freshwater environments. The occurrence of 22 bacterial human virulence genes (encoding toxins, adhesins, secretion systems, regulators of virulence, inflammatory mediators, and bacterial resistance) in beech wood soil, roadside soil, organic agricultural soil, and freshwater biofilm was investigated by nested PCR. The presence of clinically relevant bacterial groups known to possess virulence genes was tested by PCR of 16S and 23S rRNA genes. For each of the virulence genes detected in the environments, sequencing and NCBI BLAST analysis confirmed the identity of the PCR products. The virulence genes showed widespread environmental occurrence, as 17 different genes were observed. Sixteen genes were detected in beech wood soil, and 14 were detected in roadside and organic agricultural soils, while 11 were detected in the freshwater biofilm. All types of virulence traits were represented in all environments; however, the frequency at which they were detected was variable. A principal-component analysis suggested that several factors influenced the presence of the virulence genes; however, their distribution was most likely related to the level of contamination by polycyclic aromatic hydrocarbons and pH. The occurrence of the virulence genes in the environments generally did not appear to be the result of the presence of clinically relevant bacteria, indicating an environmental origin of the virulence genes. The widespread occurrence of the virulence traits and the high degree of sequence conservation between the environmental and clinical sequences suggest that soil and freshwater environments may constitute reservoirs of virulence determinants normally associated with human disease. | 2013 | 23835169 |
| 3244 | 10 | 0.9997 | Metagenomic analysis of virulence-associated and antibiotic resistance genes of microbes in rumen of Indian buffalo (Bubalus bubalis). A major research goal in rumen microbial ecology is to understand the relationship between community composition and its function, particularly involved in fermentation process is of a potential interest. The buffalo rumen microbiota impacts human food safety as well as animal health. Although the bacteria of bovine rumen have been well characterized, techniques have been lacking to correlate total community structure with gene function. We applied 454 next generations sequencing technology to characterize general microbial diversity present in buffalo rumen metagenome and also identified the repertoire of microbial genes present, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that over six percent (6.44%) of the sequences from our buffalo rumen pool sample could be categorized as virulence genes and genes associated with resistance to antibiotic and toxic compounds (RATC), which is a higher proportion of virulence genes reported from metagenome samples of chicken cecum (5.39%), cow rumen (4.43%) and Sargasso sea (2.95%). However, it was lower than the proportion found in cow milk (11.33%) cattle faeces (8.4%), Antarctic marine derived lake (8.45%), human fecal (7.7%) and farm soil (7.79%). The dynamic nature of metagenomic data, together with the large number of RATC classes observed in samples from widely different ecologies indicates that metagenomic data can be used to track potential targets and relative amounts of antibiotic resistance genes in individual animals. In addition, these data can be also used to generate antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats. | 2012 | 22850272 |
| 4639 | 11 | 0.9997 | Genomic and Phenotypic Characterization of Mastitis-Causing Staphylococci and Probiotic Lactic Acid Bacteria Isolated from Raw Sheep's Milk. Dairy products play a crucial role in human nutrition as they provide essential nutrients. However, the presence of diverse microorganisms in these products can pose challenges to food safety and quality. Here, we provide a comprehensive molecular characterization of a diverse collection of lactic acid bacteria (LAB) and staphylococci isolated from raw sheep's milk. Whole-genome sequencing, phenotypic characterization, and bioinformatics were employed to gain insight into the genetic composition and functional attributes of these bacteria. Bioinformatics analysis revealed the presence of various genetic elements. Important toxin-related genes in staphylococci that contribute to their pathogenic potential were identified and confirmed using phenotypic assays, while adherence-related genes, which are essential for attachment to host tissues, surfaces in the dairy environment, and the creation of biofilms, were also present. Interestingly, the Staphylococcus aureus isolates belonged to sequence type 5, which largely consists of methicillin-susceptible isolates that have been involved in severe nosocomial infections. Although genes encoding methicillin resistance were not identified, multiple resistance genes (RGs) conferring resistance to aminoglycosides, macrolides, and fluroquinolones were found. In contrast, LAB had few inherently present RGs and no virulence genes, suggesting their likely safe status as food additives in dairy products. LAB were also richer in bacteriocins and carbohydrate-active enzymes, indicating their potential to suppress pathogens and effectively utilize carbohydrate substrates, respectively. Additionally, mobile genetic elements, present in both LAB and staphylococci, may facilitate the acquisition and dissemination of genetic traits, including RGs, virulence genes, and metabolic factors, with implications for food quality and public health. The molecular and phenotypic characterization presented herein contributes to the effort to mitigate risks and infections (e.g., mastitis) and enhance the safety and quality of milk and products thereof. | 2023 | 37762186 |
| 3924 | 12 | 0.9997 | Antimicrobial resistance determinants in silage. Animal products may play a role in developing and spreading antimicrobial resistance in several ways. On the one hand, residues of antibiotics not adequately used in animal farming can enter the human body via food. However, resistant bacteria may also be present in animal products, which can transfer the antimicrobial resistance genes (ARG) to the bacteria in the consumer's body by horizontal gene transfer. As previous studies have shown that fermented foods have a meaningful ARG content, it is indicated that such genes may also be present in silage used as mass feed in the cattle sector. In our study, we aspired to answer what ARGs occur in silage and what mobility characteristics they have? For this purpose, we have analyzed bioinformatically 52 freely available deep sequenced silage samples from shotgun metagenome next-generation sequencing. A total of 16 perfect matched ARGs occurred 54 times in the samples. More than half of these ARGs are mobile because they can be linked to integrative mobile genetic elements, prophages or plasmids. Our results point to a neglected but substantial ARG source in the food chain. | 2022 | 35347213 |
| 3884 | 13 | 0.9997 | Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes. There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals compare to antibiotic resistance genes in other ecosystems. Here we report the distribution of antibiotic resistant genes in publicly available agricultural and non-agricultural metagenomic samples and identify which bacteria are likely to be carrying those genes. Antibiotic resistance, as coded for in the genes used in this study, is a process that was associated with all natural, agricultural, and human-impacted ecosystems examined, with between 0.7 to 4.4% of all classified genes in each habitat coding for resistance to antibiotic and toxic compounds (RATC). Agricultural, human, and coastal-marine metagenomes have characteristic distributions of antibiotic resistance genes, and different bacteria that carry the genes. There is a larger percentage of the total genome associated with antibiotic resistance in gastrointestinal-associated and agricultural metagenomes compared to marine and Antarctic samples. Since antibiotic resistance genes are a natural part of both human-impacted and pristine habitats, presence of these resistance genes in any specific habitat is therefore not sufficient to indicate or determine impact of anthropogenic antibiotic use. We recommend that baseline studies and control samples be taken in order to determine natural background levels of antibiotic resistant bacteria and/or antibiotic resistance genes when investigating the impacts of veterinary use of antibiotics on human health. We raise questions regarding whether the underlying biology of each type of bacteria contributes to the likelihood of transfer via the food chain. | 2012 | 23133629 |
| 3918 | 14 | 0.9997 | Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Lactobacilli represent a major Lactic Acid Bacteria (LAB) component within the complex microbiota of fermented foods obtained from meat, dairy, and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented foods. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described, lactobacilli and lactococci are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR) strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, highlighting the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health. | 2013 | 24115946 |
| 3222 | 15 | 0.9997 | Differences in gut metagenomes between dairy workers and community controls: a cross-sectional study. BACKGROUND: As a nexus of routine antibiotic use and zoonotic pathogen presence, the livestock farming environment is a potential hotspot for the emergence of zoonotic diseases and antibiotic resistant bacteria. Livestock can further facilitate disease transmission by serving as intermediary hosts for pathogens as they undergo evolution prior to a spillover event. In light of this, we are interested in characterizing the microbiome and resistome of dairy workers, whose exposure to the livestock farming environment places them at risk for facilitating community transmission of antibiotic resistant genes and emerging zoonotic diseases. RESULTS: Using shotgun sequencing, we investigated differences in the taxonomy, diversity and gene presence of the human gut microbiome of 10 dairy farm workers and 6 community controls, supplementing these samples with additional publicly available gut metagenomes. We observed greater abundance of tetracycline resistance genes and prevalence of cephamycin resistance genes in dairy workers' metagenomes, and lower average gene diversity. We also found evidence of commensal organism association with plasmid-mediated tetracycline resistance genes in both dairy workers and community controls (including Faecalibacterium prausnitzii, Ligilactobacillus animalis, and Simiaoa sunii). However, we did not find significant differences in the prevalence of resistance genes or virulence factors overall, nor differences in the taxonomic composition of dairy worker and community control metagenomes. CONCLUSIONS: This study presents the first metagenomics analysis of United States dairy workers, providing insights into potential risks of exposure to antibiotics and pathogens in animal farming environments. Previous metagenomic studies of livestock workers in China and Europe have reported increased abundance and carriage of antibiotic resistance genes in livestock workers. While our investigation found no strong evidence for differences in the abundance or carriage of antibiotic resistance genes and virulence factors between dairy worker and community control gut metagenomes, we did observe patterns in the abundance of tetracycline resistance genes and the prevalence of cephamycin resistance genes that is consistent with previous work. | 2023 | 37215025 |
| 3239 | 16 | 0.9997 | Antibiotic resistomes of healthy pig faecal metagenomes. Antibiotic resistance reservoirs within food-producing animals are thought to be a risk to animal and human health. This study describes the minimum natural resistome of pig faeces as the bacteria are under no direct antibiotic selective pressure. The faecal resistome of 257 different genes comprised 56 core and 201 accessory resistance genes. The genes present at the highest relative abundances across all samples were tetW, tetQ, tet44, tet37, tet40, mefA, aadE, ant(9)-1, ermB and cfxA2. This study characterized the baseline resistome, the microbiome composition and the metabolic components described by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in healthy pig faeces, without antibiotic selective pressures. The microbiome hierarchical analysis resulted in a cluster tree with a highly similar pattern to that of the accessory resistome cluster tree. Functional capacity profiling identified genes associated with horizontal gene transfer. We identified a statistically significant positive correlation between the total antibiotic resistome and suggested indicator genes, which agree with using these genes as indicators of the total resistomes. The correlation between total resistome and total microbiome in this study was positive and statistically significant. Therefore, the microbiome composition influenced the resistome composition. This study identified a core and accessory resistome present in a cohort of healthy pigs, in the same conditions without antibiotics. It highlights the presence of antibiotic resistance in the absence of antibiotic selective pressure and the variability between animals even under the same housing, food and living conditions. Antibiotic resistance will remain in the healthy pig gut even when antibiotics are not used. Therefore, the risk of antibiotic resistance transfer from animal faeces to human pathogens or the environment will remain in the absence of antibiotics. | 2019 | 31091181 |
| 3241 | 17 | 0.9997 | Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Anthropogenic environments have been implicated in enrichment and exchange of antibiotic resistance genes and bacteria. Here we study the impact of confined and controlled swine farm environments on temporal changes in the gut microbiome and resistome of veterinary students with occupational exposure for 3 months. By analyzing 16S rRNA and whole metagenome shotgun sequencing data in tandem with culture-based methods, we show that farm exposure shapes the gut microbiome of students, resulting in enrichment of potentially pathogenic taxa and antimicrobial resistance genes. Comparison of students' gut microbiomes and resistomes to farm workers' and environmental samples revealed extensive sharing of resistance genes and bacteria following exposure and after three months of their visit. Notably, antibiotic resistance genes were found in similar genetic contexts in student samples and farm environmental samples. Dynamic Bayesian network modeling predicted that the observed changes partially reverse over a 4-6 month period. Our results indicate that acute changes in a human's living environment can persistently shape their gut microbiota and antibiotic resistome. | 2020 | 32188862 |
| 3874 | 18 | 0.9997 | Culture-enriched human gut microbiomes reveal core and accessory resistance genes. BACKGROUND: Low-abundance microorganisms of the gut microbiome are often referred to as a reservoir for antibiotic resistance genes. Unfortunately, these less-abundant bacteria can be overlooked by deep shotgun sequencing. In addition, it is a challenge to associate the presence of resistance genes with their risk of acquisition by pathogens. In this study, we used liquid culture enrichment of stools to assemble the genome of lower-abundance bacteria from fecal samples. We then investigated the gene content recovered from these culture-enriched and culture-independent metagenomes in relation with their taxonomic origin, specifically antibiotic resistance genes. We finally used a pangenome approach to associate resistance genes with the core or accessory genome of Enterobacteriaceae and inferred their propensity to horizontal gene transfer. RESULTS: Using culture-enrichment approaches with stools allowed assembly of 187 bacterial species with an assembly size greater than 1 million nucleotides. Of these, 67 were found only in culture-enriched conditions, and 22 only in culture-independent microbiomes. These assembled metagenomes allowed the evaluation of the gene content of specific subcommunities of the gut microbiome. We observed that differentially distributed metabolic enzymes were associated with specific culture conditions and, for the most part, with specific taxa. Gene content differences between microbiomes, for example, antibiotic resistance, were for the most part not associated with metabolic enzymes, but with other functions. We used a pangenome approach to determine if the resistance genes found in Enterobacteriaceae, specifically E. cloacae or E. coli, were part of the core genome or of the accessory genome of this species. In our healthy volunteer cohort, we found that E. cloacae contigs harbored resistance genes that were part of the core genome of the species, while E. coli had a large accessory resistome proximal to mobile elements. CONCLUSION: Liquid culture of stools contributed to an improved functional and comparative genomics study of less-abundant gut bacteria, specifically those associated with antibiotic resistance. Defining whether a gene is part of the core genome of a species helped in interpreting the genomes recovered from culture-independent or culture-enriched microbiomes. | 2019 | 30953542 |
| 3223 | 19 | 0.9997 | A cross-sectional comparison of gut metagenomes between dairy workers and community controls. BACKGROUND: As a nexus of routine antibiotic use and zoonotic pathogen presence, the livestock farming environment is a potential hotspot for the emergence of zoonotic diseases and antibiotic resistant bacteria. Livestock can further facilitate disease transmission by serving as intermediary hosts for pathogens before a spillover event. In light of this, we aimed to characterize the microbiomes and resistomes of dairy workers, whose exposure to the livestock farming environment places them at risk for facilitating community transmission of antibiotic resistant genes and emerging zoonotic diseases. RESULTS: Using shotgun sequencing, we investigated differences in the taxonomy, diversity and gene presence of 10 dairy farm workers and 6 community controls' gut metagenomes, contextualizing these samples with additional publicly available gut metagenomes. We found no significant differences in the prevalence of resistance genes, virulence factors, or taxonomic composition between the two groups. The lack of statistical significance may be attributed, in part, to the limited sample size of our study or the potential similarities in exposures between the dairy workers and community controls. We did, however, observe patterns warranting further investigation including greater abundance of tetracycline resistance genes and prevalence of cephamycin resistance genes as well as lower average gene diversity (even after accounting for differential sequencing depth) in dairy workers' metagenomes. We also found evidence of commensal organism association with tetracycline resistance genes in both groups (including Faecalibacterium prausnitzii, Ligilactobacillus animalis, and Simiaoa sunii). CONCLUSIONS: This study highlights the utility of shotgun metagenomics in examining the microbiomes and resistomes of livestock workers, focusing on a cohort of dairy workers in the United States. While our study revealed no statistically significant differences between groups in taxonomy, diversity and gene presence, we observed patterns in antibiotic resistance gene abundance and prevalence that align with findings from previous studies of livestock workers in China and Europe. Our results lay the groundwork for future research involving larger cohorts of dairy and non-dairy workers to better understand the impact of occupational exposure to livestock farming on the microbiomes and resistomes of workers. | 2024 | 39033279 |