Karst spring microbiome: Diversity, core taxa, and community response to pathogens and antibiotic resistance gene contamination. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
772301.0000Karst spring microbiome: Diversity, core taxa, and community response to pathogens and antibiotic resistance gene contamination. Karst aquifers are important water resources for drinking water supplies worldwide. Although they are susceptible to anthropogenic contamination due to their high permeability, there is a lack of detailed knowledge on the stable core microbiome and how contamination may affect these communities. In this study, eight karst springs (distributed across three different regions in Romania) were sampled seasonally for one year. The core microbiota was analysed by 16S rRNA gene amplicon sequencing. To identify bacteria carrying antibiotic resistance genes and mobile genetic elements, an innovative method was applied, consisting of high-throughput antibiotic resistance gene quantification performed on potential pathogen colonies cultivated on Compact Dry™ plates. A taxonomically stable bacterial community consisting of Pseudomonadota, Bacteroidota, and Actinomycetota was revealed. Core analysis reaffirmed these results and revealed primarily freshwater-dwelling, psychrophilic/psychrotolerant species affiliated to Rhodoferax, Flavobacterium, and Pseudomonas genera. Both sequencing and cultivation methods indicated that more than half of the springs were contaminated with faecal bacteria and pathogens. These samples contained high levels of sulfonamide, macrolide, lincosamide and streptogramins B, and trimethoprim resistance genes spread primarily by transposase and insertion sequences. Differential abundance analysis found Synergistota, Mycoplasmatota, and Chlamydiota as suitable candidates for pollution monitoring in karst springs. This is the first study highlighting the applicability of a combined approach based on high-throughput SmartChip™ antibiotic resistance gene quantification and Compact Dry™ pathogen cultivation for estimating microbial contaminants in karst springs and other challenging low biomass environments.202337364839
684510.9997A Comparative Analysis of Aquatic and Polyethylene-Associated Antibiotic-Resistant Microbiota in the Mediterranean Sea. In this study, we evaluated the microbiome and the resistome profile of water and fragments of polyethylene (PE) waste collected at the same time from a stream and the seawater in a coastal area of Northwestern Sicily. Although a core microbiome was determined by sequencing of the V3-V4 region of the bacterial 16S rDNA gene, quantitative differences were found among the microbial communities on PE waste and the corresponding water samples. Our findings indicated that PE waste contains a more abundant and increased core microbiome diversity than the corresponding water samples. Moreover, PCR analysis of specific antibiotic resistance genes (ARGs) showed that PE waste harbors more ARGs than the water samples. Thus, PE waste could act as a carrier of antibiotic-resistant microbiota, representing an increased danger for the marine environment and living organisms, as well.202133800749
772520.9997Inter-facility characterization of bacteria in seafood processing plants: Exploring potential reservoirs of spoilage organisms and the resistome. A study was conducted in fish processing facilities to investigate the microbial composition, microbial metabolic potential, and distribution of antibiotic resistance genes. Whole metagenomic sequencing was used to analyze microbial communities from different processing rooms, operators and fish products. Taxonomic analyses identified the genera Pseudomonas and Psychrobacter as the most prevalent bacteria. A Principal Component Analysis revealed a distinct separation between fish product and environmental samples, as well as differences between fish product samples from companies processing either Gadidae or Salmonidae fish. Some particular bacterial genera and species were associated with specific processing rooms and operators. Metabolic analysis of metagenome assembled genomes demonstrated variations in microbiota metabolic profiles of microbiota across rooms and fish products. The study also examined the presence of antibiotic-resistance genes in fish processing environments, contributing to the understanding of microbial dynamics, metabolic potential, and implications for fish spoilage.202439071556
732530.9997Profiling the bacterial microbiome diversity and assessing the potential to detect antimicrobial resistance bacteria in wastewater in Kimberley, South Africa. Wastewater treatment plants (WWTPs) are hotspots for pathogens, and can facilitate horizontal gene transfer, potentially releasing harmful genetic material and antimicrobial resistance genes into the environment. Little information exists on the composition and behavior of microbes in WWTPs, especially in developing countries. This study used environmental DNA (eDNA) techniques to examine the microbiome load of wastewater from WWTPs. The DNA was isolated from wastewater samples collected from the treatment trains of three WWTPs in Kimberley, South Africa, and the microbial diversity and composition was compared through 16 S rRNA gene sequencing. The microbes detected were of the Kingdom Bacteria, and of these, 48.27% were successfully identified to genus level. The majority of reads from the combined bacterial data fall within the class Gammaproteobacteria, which is known to adversely impact ecological and human health. Arcobacteraceae constituted 19% of the bacterial reads, which is expected as this family is widespread in aquatic environments. Interestingly, the most abundant bacterial group was Bacteroides, which contain a variety of antibiotic-resistant members. Overall, various antibiotic-resistant taxa were detected in the wastewater, indicating a concerning level of antibiotic resistance within the bacterial community. Therefore, eDNA analysis can be a valuable tool in monitoring and assessing the bacterial microbiome in wastewater, thus providing important information for the optimization and improvement of wastewater treatment systems and mitigate public health risks.202439500921
737140.9997Plastisphere and the occurrence of antibiotic resistance in a 40-year-old abandoned coastal landfill site in Chile. Plastispheres are microbial communities that inhabit plastic surfaces and have been extensively studied in aquatic environments. However, little is known about their occurrence in landfills. We investigated plastisphere communities in a 40-year-old coastal abandoned landfill in Rocuant-Andalién, Chile, and aimed to characterize landfill plastisphere communities and assess their potential role as reservoirs of antibiotic resistance genes (ARGs). High-density polyethylene was the predominant plastic type (56 %). Microscopy revealed diverse bacterial morphotypes, including bacilli, cocci, and filamentous forms, forming clusters on plastic surfaces. 16S rRNA gene sequencing revealed that Actinobacteria, Firmicutes, and Proteobacteria dominated most samples, with high overall diversity and richness. Beta diversity analysis indicated significant variation in bacterial communities among sites but not among polymer types. Notably, the intI1 gene, associated with the spread of antibiotic resistance, was detected at 67 % of the sampled sites. These findings reveal that landfills act as reservoirs for a wide range of bacteria, some of which may have clinical significance, highlighting their ecological and public health impact. Furthermore, plastics are likely to transport resistance genes originating from human activities, spreading them into nearby ecosystems, such as wetlands and oceans, where they interact with wildlife.202541109620
323450.9997Global profiling of antibiotic resistomes in maize rhizospheres. The spreading of antimicrobial resistance (AMR) in crops and food products represents a global concern. In this study, we conducted a survey of resistomes in maize rhizosphere from Michigan, California, the Netherlands, and South Africa, and investigated potential associations with host bacteria and soil management practices in the crop field. For comparison, relative abundance of antibiotic resistance genes (ARGs) is normalized to the size of individual metagenomes. Michigan maize rhizosphere metagenomes showed the highest abundance and diversity of ARGs, with the detection of blaTEM-116, blaACT-4/-6, and FosA2, exhibiting high similarity (≥ 99.0%) to those in animal and human pathogens. This was probably related to the decade-long application of manure/composted manure from antibiotic-treated animals. Moreover, RbpA, vanRO, mtrA, and dfrB were prevalently found across most studied regions, implying their intrinsic origins. Further analysis revealed that RbpA, vanRO, and mtrA are mainly harbored by native Actinobacteria with low mobility since mobile genetic elements were rarely found in their flanking regions. Notably, a group of dfrB genes are adjacent to the recombination binding sites (attC), which together constitute mobile gene cassettes, promoting the transmission from soil bacteria to human pathogens. These results suggest that maize rhizosphere resistomes can be distinctive and affected by many factors, particularly those relevant to agricultural practices.202336781495
741560.9997Transfer and accumulation of antibiotic resistance genes and bacterial pathogens in the mice gut due to consumption of organic foods. Over the last few decades, organic food demand has grown largely because of increasing personal health concerns. Organic farming introduces antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) into foods. However, potential effects of organic foods on the gut microbiome and ARGs have been overlooked. Using high-throughput quantitative PCR and 16S rRNA high-throughput sequencing technology, we examined 132 ARGs from major classes, eight transposase genes, universal class I integron-integrase gene (intI), clinical class I integron-integrase gene (cintI), and the bacterial community in mouse gut after 8 weeks with an either organic or inorganic lettuce and wheat diet. A total of 8 types of major ARGs and 10 mobile genetic elements (MGEs) were detected in mice gut, including tetracycline, multidrug, sulfonamide, aminoglycoside, beta-lactamase, chloramphenicol, MLSB and vancomycin resistance genes. We found that abundance and diversity of ARGs, mobile gene elements, and potential ARB in the gut increased with time after consumption of organic foods, whereas no significant changes were observed in inorganic treated groups. Moreover, MGEs, including IS613, Tp614 and tnpA_03 were found to play an important role in regulating ARG profiles in the gut microbiome following consumption of organic foods. Importantly, feeding organic food increased the relative abundance of the potentially antibiotic-resistant pathogens, Bacteroides and Streptococcus. Our results confirm that there is an increasing risk of ARGs and ARB in the gut microbiome, which highlights the importance of organic food industries taking into account the potential accumulation and transmission of ARGs as a risk factor.202438215844
323570.9997Vertical distribution of antibiotic resistance genes in an urban green facade. The phyllosphere is considered a key site for the transfer of both naturally and anthropogenically selected antimicrobial resistance genes (ARGs) to humans. Consequently, the development of green building systems may pose an, as yet, unexplored pathway for ARGs and pathogens to transfer from the environment to outdoor plants. We collected leaves from plants climbing up buildings at 1, 2, 4 and 15 m above ground level and collected associated dust samples from adjacent windowsills to determine the diversity and relative abundance of microbiota and ARGs. Overall, a total of 143 ARGs from 11 major classes and 18 mobile genetic elements (MGEs) were detected. The relative abundance of ARGs within the phyllosphere decreased with increasing height above ground level. Fast expectation-maximization microbial source tracking (FEAST) suggested that the contribution of soil and aerosols to the phyllosphere microbiome was limited. A culture-dependent method to isolate bacteria from plant tissues identified a total of 91 genera from root, stem, and leaf samples as well as endophytes isolated from leaves. Of those bacteria, 20 isolates representing 9 genera were known human pathogenic members to humans. Shared bacterial from culture-dependent and culture-independent methods suggest microorganisms may move from soil to plant, potentially through an endophytic mechanism and thus, there is a clear potential for movement of ARGs and human pathogens from the outdoor environment.202133721724
324180.9997Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Anthropogenic environments have been implicated in enrichment and exchange of antibiotic resistance genes and bacteria. Here we study the impact of confined and controlled swine farm environments on temporal changes in the gut microbiome and resistome of veterinary students with occupational exposure for 3 months. By analyzing 16S rRNA and whole metagenome shotgun sequencing data in tandem with culture-based methods, we show that farm exposure shapes the gut microbiome of students, resulting in enrichment of potentially pathogenic taxa and antimicrobial resistance genes. Comparison of students' gut microbiomes and resistomes to farm workers' and environmental samples revealed extensive sharing of resistance genes and bacteria following exposure and after three months of their visit. Notably, antibiotic resistance genes were found in similar genetic contexts in student samples and farm environmental samples. Dynamic Bayesian network modeling predicted that the observed changes partially reverse over a 4-6 month period. Our results indicate that acute changes in a human's living environment can persistently shape their gut microbiota and antibiotic resistome.202032188862
683590.9997Metagenomic profiling of antibiotic resistance genes and their associations with the bacterial community along the Kanda River, an urban river in Japan. Antibiotic resistance genes (ARGs) present in urban rivers have the potential to disseminate antibiotic-resistant bacteria into other environments, posing significant threats to both ecological and public health. Although metagenomic analyses have been widely employed to detect ARGs in rivers, our understanding of their dynamics across different seasons in diverse watersheds remains limited. In this study, we performed a comprehensive genomic analysis of the Kanda River in Japan at 11 sites from upstream to estuary throughout the year to assess the spread of ARGs and their associations with bacterial communities. Analysis of 110 water samples using the 16S rRNA gene revealed variations in bacterial composition corresponding to seasonal changes in environmental parameters along the river. Shotgun metagenomics-based profiling of ARGs in 44 water samples indicated higher ARG abundance downstream, particularly during the summer. Weighted gene co-expression network analysis (WGCNA) linking bacterial lineages and ARGs revealed that 12 ARG subtypes co-occurred with 128 amplicon sequence variants (ASVs). WGCNA suggested potential hosts for ErmB, ErmF, ErmG, tetQ, tet (W/N/W), aadA2, and adeF, including gut-associated bacteria (e.g., Prevotella, Bacteroides, Arcobacter) and indigenous aquatic microbes (e.g., Limnohabitans and C39). In addition, Pseudarcobacter (a later synonym of Arcobater) was identified as a host for adeF, which was also confirmed by single cell genomics. This study shows that ARG distribution in urban rivers is affected by seasonal and geographical factors and demonstrates the importance of monitoring rivers using multiple types of genome sequencing, including 16S rRNA gene sequencing, metagenomics, and single cell genomics.202539488451
7363100.9997Occurrence of antibiotics and antibiotic resistance genes at various stages of different aquaculture modes surrounding Tai Lake, China. INTRODUCTION: Aquaculture is an important source of antibiotics and ARGs in environmental waters. However, the occurrence of antibiotics and ARGs under different modes and stages of aquaculture has rarely been systematically studied. METHODS: This paper uses qPCR, LC-MS, and High-Throughput sequencing across different culture modes and stages to investigate antibiotics, resistance genes, and microbial communities in the water bodies, and analyze contamination differences between these modes. RESULTS: The quinolone and chloramphenicol were the main antibiotics, and the highest absolute abundance genes were quinolone resistance genes (qnrB) and quinolone resistance genes (sul1), with the mobile genetic element (MGE) intI1, both of which exhibited a gradual seasonal increase. Microbial diversity also varies seasonally, especially with a gradual increase in the abundance of some pathogenic bacteria (Flavobacterium). Antibiotics and resistance genes were found at higher levels in fish ponds compared to shrimp and crab ponds, while they were lower in shrimp and crab ponds that utilized the ecological mode ponds than in the traditional culture mode ponds. CONCLUSION: Our study presents a comprehensive characterization of antibiotics and ARGs in aquaculture waters from various perspectives. Ecological aquaculture modes contribute to reducing antibiotic and resistance gene pollution in water bodies. These findings will support the optimization of aquaculture mode and antibiotic usage to the green and sustainable development of aquaculture finally.202539959160
6890110.9997The dynamic of the potential pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic resistance genes in the water at different growth stages of grass carp pond. Pond aquaculture has become the most important and broadest breeding model in China, and an extremely important source of aquatic products, but the potential hazard factors of potential pathogenic bacteria (PPB), antibiotic resistance bacteria (ARB), and antibiotic resistance genes (ARGs) in aquaculture environment are largely invisible. In the present study, the bacterial communities in the larvae, juvenile, rearing, and harvesting culture stages of great grass carp (Ctenopharyngodon idellus) ponds were investigated and the structure of microbial flora analysis showed that the larvae culture stage has the highest abundance and the most dominant phyla were Proteobacteria (27.8%). A total of 123 significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations and the relative abundance of nine bacterial phenotypes implied that the larvae culture stage had the most abundance of pathogenic potential and mobile elements. The correlation analyses of environmental factors showed that temperature, stocking density, pH, and transparency showed the significant impacts on both the distribution of microbiome and the PPB. More importantly, a total of 40 ARB were identified, and 16 ARGs have the detection rates of 100%, which revealed that they are widely distributed and highly enriched in the aquaculture production. Notably, this is the first robust report to analyze and understand the PPB, ARB, and ARGs characteristics and dynamic changes in the pond aquaculture.202234817812
7724120.9996Taxonomic and functional analyses reveal existence of virulence and antibiotic resistance genes in beach sand bacterial populations. Coastal sands are important natural recreational facilities that have become hotspots for tourism and economic development. However, these sands harbour diverse microbial assemblages that play a critical role in the balance between public health and ecology. In this study, targeted high-throughput sequencing analysis was used to identify sand-borne bacterial populations at four public beaches in Durban. The effect of heavy metal in shaping the distribution of bacterial metacommunities was determined using canonical correspondence analysis (CCA), while the functional gene profiles were predicted using PICRUSt2 analysis. Sequences matching those of the bacterial phylum Proteobacteria were the most abundant in all samples, followed by those of the phyla Firmicutes, Actinobacteria, Bacteroidetes, and Gemmatimonadetes. Genus-level taxonomic analysis showed the presence of 1163 bacterial genera in all samples combined. The distribution of bacterial communities was shaped by heavy metal concentrations, with the distribution of Flavobacteria, Bacteroidia, and Deltaproteobacteria influenced by Pb and Zn, while B and Cr influenced the distribution of Clostridia and Gammaproteobacteria, respectively. Identified antibiotic resistance genes included the peptidoglycan biosynthesis gene II, III, IV, and V, as well as the polymyxin resistance gene, while the virulence genes included the sitA, fimB, aerobactin synthase, and pilL gene. Our findings demonstrate that beach sand-borne bacteria are reservoirs of virulence and antibiotic resistance genes. Contamination of beach sands with heavy metals selects for both heavy metal resistance and antibiotic resistance in beach sand bacterial communities. Children and immunocompromised people engaging in recreational activities on beaches may be exposed to higher risk of infection.202133474608
7365130.9996A case study on the distribution of the environmental resistome in Korean shrimp farms. Hundreds of tons of antibiotics are widely used in aquaculture to prevent microbial infections and promote fish growth. However, the overuse of antibiotics and chemical products can lead to the selection and spreading of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), which are of great concern considering the threat to public health worldwide. Here, in-depth metagenome sequencing was performed to explore the environmental resistome and ARB distribution across farming stages in shrimp farms and examine anthropogenic effects in nearby coastal waters. A genome-centric analysis using a metagenome binning approach allowed us to accurately investigate the distribution of pathogens and ARG hosts in shrimp farms. The diversity of resistomes was higher in shrimp farms than in coastal waters, and the distribution of resistomes was dependent on the farming stage. In particular, the tetracycline resistance gene was found mainly at the early post-larval stage regardless of the farm. The metagenome-assembled genomes of Vibrio spp. were dominant at this stage and harbored tet34, which is known to confer resistance to oxytetracycline. In addition, opportunistic pathogens such as Francisella, Mycoplasma, Photobacterium, and Vibrio were found in abundance in shrimp farms, which had multiple virulence factors. This study highlights the increased resistance diversity and environmental selection of pathogens in shrimp farms. The use of environmental pollutants on farms may cause an increase in resistome diversity/abundance and the transmission of pathogens to the surrounding environment, which may pose future risks to public health and aquatic organisms.202134653940
3102140.9996Multidrug resistance phenotypes are widespread over different bacterial taxonomic groups thriving in surface water. The environment is the original and most ancient source of the antibiotic resistance determinants that threat the human health nowadays. In the environment, water is a privileged habitat and mode of dissemination of bacteria of different origins. Freshwater bodies that cross urban areas are supposed to hold a complex mixture of both human/animal origin and strictly environmental bacteria. In this study, we were interested in unveiling the bacterial diversity in urban river transects and, simultaneously, investigate the occurrence of antibiotic resistant bacteria, in particular the multidrug resistant (MDR). With this aim, water and sediments of two rivers were sampled from an urban transect and the bacterial diversity was assessed based on 16S rRNA gene-based community analysis and, simultaneously, total heterotrophic bacteria were isolated in the presence and in the absence of antibiotics. The three predominant phyla were Proteobacteria, Bacteroidetes and Actinobacteria, in water, or Acidobacteria, in sediments. MDR bacteria were observed to belong to the predominant phyla observed in water, mostly of the classes Gamma- and Betaproteobacteria (Proteobacteria) and Sphingobacteriia and Flavobacteriia (Bacteroidetes) and belonged to genera of ubiquitous (Pseudomonas, Acinetobacter, Stenotrophomonas) or mainly environmental (Chitinophaga, Chryseobacterium) bacteria. The observation that MDR bacteria are widespread in the environment and over distinct phylogenetic lineages has two relevant implications: i) the potential of environmental bacteria as source or facilitators for antibiotic resistance acquisition; ii) the need to complement culture-independent methods with culture-based approaches in order to identify major sources of MDR profiles.201627131885
6836150.9996Microbiome and antibiotic resistome in household dust from Beijing, China. We spend ever-increasing time indoors along with urbanization; however, the geographical distribution patterns of microbiome and antibiotic resistome, and their driving forces in household environment remains poorly characterized. Here, we surveyed the bacterial and fungal communities, and the resistome in settled dust gathered from 82 homes located across Beijing, China, employing Illumina sequencing and high-throughput quantitative PCR techniques. There was no clear geographical distribution pattern in dust-related bacterial communities although a slight but significant (P < 0.05) distance-decay relationship occurred in its community similarity; by contrast, a relatively distinct geographical clustering and a stronger distance-decay relationship were observed in fungal communities at the local scale. The cross-domain (bacteria versus fungi) relationships in the microbiome of the dust samples were mostly observed as robust co-occurrence correlations. The bacterial communities were dominated by Proteobacteria and Actinobacteria phyla, with human skin, soil and plants being potential major sources. The fungal communities largely comprised potential allergens (a median 61% of the fungal sequences), with Alternaria genus within Ascomycota phylum being the most predominant taxa. The profile of dust-related bacterial communities was mainly affected by housing factors related to occupants and houseplants, while that of fungal communities was determined by georeferenced environmental factors, particularly vascular plant diversity. Additionally, a great diversity (1.96 on average for Shannon index) and normalized abundance (2.22 copies per bacterial cell on average) of antibiotic resistance genes were detected across the dust samples, with the dominance of genes resistant to vancomycin and Macrolide-Lincosamide-Streptogramin B. The resistome profile exhibited no distinct geographical pattern, and was primarily driven by certain bacterial phyla and occupancy-related factors. Overall, we underline the significance of anthropogenic impacts and house location in structuring bacterial and fungal communities inside homes, respectively, and suggest that household dust is an overlooked reservoir for antibiotic resistance.202032248025
3136160.9996Diverse antibiotic resistance genes and potential pathogens inhabit in the phyllosphere of fresh vegetables. Fresh vegetables are considered as a reservoir of pathogenic bacteria and antibiotic resistance genes (ARGs), which are the emerging environmental contaminants, posing increasing concerned risk to human health. However, the prevalence of pathogens in phyllosphere of fresh vegetables, as well as the association of ARGs with pathogenic bacteria, have not been well elaborated. In this study, we explored the structure of microbial communities and ARGs through high-throughput quantitative PCR and 16S rRNA gene Illumina sequencing, and characterized the microorganisms resisting to antibiotics by pure culture. From phyllosphere of six different kinds of vegetables, 205 ARGs were detected and genes for multidrug resistance was the most abundant. The predominant potential pathogens were classified to Pseudomonas, Klebsiella, and Acinetobacter genera, which carried various ARGs such as multidrug and beta-lactam resistance genes presumedly. Among six kinds of vegetables, Lactuca sativa var. asparagina carried the highest abundance of potential pathogens and ARGs, while Allium sativum L harbored the lowest abundance of pathogens and ARGs. In addition, various culturable bacteria resisting to colistin or meropenem could be isolated from all vegetables, remarkably, all the isolates resistant to both antibiotics are potential pathogens. Our study highlighted the risks of pathogens and ARGs from raw vegetables to consumers, characterized their structure patterns among different vegetables, and analyzed the potential mechanisms regulating phyllosphere pathogens and resistome of fresh vegetables, which would be helpful for reducing the microbial risk from vegetable ingestion.202234990692
7285170.9996Human Activity Determines the Presence of Integron-Associated and Antibiotic Resistance Genes in Southwestern British Columbia. The dissemination of antibiotic resistant bacteria from anthropogenic sources into the environment poses an emerging public health threat. Antibiotic resistance genes (ARGs) and gene-capturing systems such as integron-associated integrase genes (intI) play a key role in alterations of microbial communities and the spread of antibiotic resistant bacteria into the environment. In order to assess the effect of anthropogenic activities on watersheds in southwestern British Columbia, the presence of putative antibiotic resistance and integrase genes was analyzed in the microbiome of agricultural, urban influenced, and protected watersheds. A metagenomics approach and high-throughput quantitative PCR (HT qPCR) were used to screen for elements of resistance including ARGs and intI. Metagenomic sequencing of bacterial genomic DNA was used to characterize the resistome of microbial communities present in watersheds over a 1-year period. There was a low prevalence of ARGs relative to the microbial population (<1%). Analysis of the metagenomic sequences detected a total of 60 elements of resistance including 46 ARGs, intI1, and groEL/intI1 genes and 12 quaternary ammonium compounds (qac) resistance genes across all watershed locations. The relative abundance and richness of ARGs was found to be highest in agriculture impacted watersheds compared to urban and protected watersheds. A downstream transport pattern was observed in the impacted watersheds (urban and agricultural) during dry months. Similar to other reports, this study found a strong association between intI1 and ARGs (e.g., sul1), an association which may be used as a proxy for anthropogenic activities. Chemical analysis of water samples for three major groups of antibiotics was below the detection limit. However, the high richness and gene copy numbers (GCNs) of ARGs in impacted sites suggest that the effects of effluents on microbial communities are occurring even at low concentrations of antimicrobials in the water column. Antibiotic resistance and integrase genes in a year-long metagenomic study showed that ARGs were driven mainly by environmental factors from anthropogenized sites in agriculture and urban watersheds. Environmental factors such as land-use and water quality parameters accounted for 45% of the variability observed in watershed locations.201829765365
6891180.9996Feedstock-dependent antibiotic resistance gene patterns and expression profiles in industrial scale biogas plants revealed by meta-omics technology. This study investigated antimicrobial resistance in the anaerobic digesters of two industrial-scale biogas plants processing agricultural biomass and municipal wastewater sludge. A combination of deep sequencing and genome-centric workflow was implemented for metagenomic and metatranscriptomics data analysis to comprehensively examine potential antimicrobial resistance in microbial communities. Anaerobic microbes were found to harbour numerous antibiotic resistance genes (ARGs), with 58.85% of the metagenome-assembled genomes (MAGs) harbouring antibiotic resistance. A moderately positive correlation was observed between the abundance and expression of ARGs. ARGs were located primarily on bacterial chromosomes. A higher expression of resistance genes was observed on plasmids than on chromosomes. Risk index assessment suggests that most ARGs identified posed a significant risk to human health. However, potentially pathogenic bacteria showed lower ARG expression than non-pathogenic ones, indicating that anaerobic treatment is effective against pathogenic microbes. Resistomes at the gene category level were associated with various antibiotic resistance categories, including multidrug resistance, beta-lactams, glycopeptides, peptides, and macrolide-lincosamide-streptogramin (MLS). Differential expression analysis revealed specific genes associated with potential pathogenicity, emphasizing the importance of active gene expression in assessing the risks associated with ARGs.202539461216
3215190.9996Prevalence of antibiotic resistance genes its association with microbiota in raw milk of northwest Xinjiang. The issue of antibiotic resistance caused by antibiotic resistance genes (ARGs) has become a significant concern in environmental research in recent years, while raw milk is an important link in the food chain and has become one of the carriers and reservoirs of ARGs, which has not been taken seriously. This research employed high-throughput quantitative PCR and Illumina sequencing techniques targeting the 16S rRNA gene. These methods were used to examine the bacterial community composition and genes associated with antibiotic resistance in raw milk samples collected from the northwestern area of Xinjiang. An aggregate of 31 distinct resistance alleles were identified, with their abundance reaching as high as 3.70 × 10(5) copies per gram in the analyzed raw milk samples. Microorganisms harboring ARGs that confer resistance to beta-lactams, tetracyclines, aminoglycosides, and chloramphenicol derivatives were prevalent in raw milk. Procrustes analysis revealed a certain degree of correlation between the microbial community and the antibiotic resistance gene (ARG) profiles. Furthermore, network analysis demonstrated that Actinobacteria and Firmicutes were the predominant phyla exhibiting co-occurrence relationships with specific ARGs. Combining the findings from Variance Partitioning Analysis (VPA), the distribution of ARGs was mainly driven by three factors: the combined effect of physicochemical properties and mobile genetic elements (MGEs) (33.5%), the interplay between physicochemical parameters and microbial communities (31.8%), and the independent contribution of physicochemical factors (20.7%). The study demonstrates that the overall abundance of ARGs correlates with physicochemical parameters, bacterial community composition, and the presence of MGEs. Furthermore, understanding these associations facilitates the evaluation of antibiotic resistance risks, thereby contributing to enhanced farm management practices and the assurance of food safety.202540718809