# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7697 | 0 | 1.0000 | Impact of sample multiplexing on detection of bacteria and antimicrobial resistance genes in pig microbiomes using long-read sequencing. The effects of sample multiplexing on the detection sensitivity of antimicrobial resistance genes (ARGs) and pathogenic bacteria in metagenomic sequencing remain underexplored in newer sequencing technologies such as Oxford Nanopore Technologies (ONT), despite its critical importance for surveillance applications. Here, we evaluate how different multiplexing levels (four and eight samples per flowcell) on two ONT platforms, GridION and PromethION, influence the detection of ARGs, bacterial taxa and pathogens. While overall resistome and bacterial community profiles remained comparable across multiplexing levels, ARG detection was more comprehensive in the four-plex setting with low-abundance genes. Similarly, pathogen detection was more sensitive in the four-plex, identifying a broader range of low abundant bacterial taxa compared to the eight-plex. However, triplicate sequencing of the same microbiomes revealed that these differences were primarily due to sequencing variability rather than multiplexing itself, as similar inconsistencies were observed across replicates. Given that eight-plex sequencing is more cost-effective while still capturing the overall resistome and bacterial community composition, it may be the preferred option for general surveillance. Lower multiplexing levels may be advantageous for applications requiring enhanced sensitivity, such as detailed pathogen research. These findings highlight the trade-off between multiplexing efficiency, sequencing depth, and cost in metagenomic studies. | 2025 | 40611965 |
| 7700 | 1 | 0.9997 | Rapid identification of antibiotic resistance gene hosts by prescreening ARG-like reads. Effective risk assessment and control of environmental antibiotic resistance depend on comprehensive information about antibiotic resistance genes (ARGs) and their microbial hosts. Advances in sequencing technologies and bioinformatics have enabled the identification of ARG hosts using metagenome-assembled contigs and genomes. However, these approaches often suffer from information loss and require extensive computational resources. Here we introduce a bioinformatic strategy that identifies ARG hosts by prescreening ARG-like reads (ALRs) directly from total metagenomic datasets. This ALR-based method offers several advantages: (1) it enables the detection of low-abundance ARG hosts with higher accuracy in complex environments; (2) it establishes a direct relationship between the abundance of ARGs and their hosts; and (3) it reduces computation time by approximately 44-96% compared to strategies relying on assembled contigs and genomes. We applied our ALR-based strategy alongside two traditional methods to investigate a typical human-impacted environment. The results were consistent across all methods, revealing that ARGs are predominantly carried by Gammaproteobacteria and Bacilli, and their distribution patterns may indicate the impact of wastewater discharge on coastal resistome. Our strategy provides rapid and accurate identification of antibiotic-resistant bacteria, offering valuable insights for the high-throughput surveillance of environmental antibiotic resistance. This study further expands our knowledge of ARG-related risk management in future. | 2025 | 40059905 |
| 7699 | 2 | 0.9997 | Effects of different assembly strategies on gene annotation in activated sludge. Activated sludge comprises diverse bacteria, fungi, and other microorganisms, featuring a rich repertoire of genes involved in antibiotic resistance, pollutant degradation, and elemental cycling. In this regard, hybrid assembly technology can revolutionize metagenomics by detecting greater gene diversity in environmental samples. Nonetheless, the optimal utilization and comparability of genomic information between hybrid assembly and short- or long-read technology remain unclear. To address this gap, we compared the performance of the hybrid assembly, short- and long-read technologies, abundance and diversity of annotated genes, and taxonomic diversity by analysing 46, 161, and 45 activated sludge metagenomic datasets, respectively. The results revealed that hybrid assembly technology exhibited the best performance, generating the most contiguous and longest contigs but with a lower proportion of high-quality metagenome-assembled genomes than short-read technology. Compared with short- or long-read technologies, hybrid assembly technology can detect a greater diversity of microbiota and antibiotic resistance genes, as well as a wider range of potential hosts. However, this approach may yield lower gene abundance and pathogen detection. Our study revealed the specific advantages and disadvantages of hybrid assembly and short- and long-read applications in wastewater treatment plants, and our approach could serve as a blueprint to be extended to terrestrial environments. | 2024 | 38734289 |
| 7698 | 3 | 0.9997 | Detecting horizontal gene transfer with metagenomics co-barcoding sequencing. Horizontal gene transfer (HGT) is the process through which genetic information is transferred between different genomes and that played a crucial role in bacterial evolution. HGT can enable bacteria to rapidly acquire antibiotic resistance and bacteria that have acquired resistance is spreading within the microbiome. Conventional methods of characterizing HGT patterns include short-read metagenomic sequencing (short-reads mNGS), long-read sequencing, and single-cell sequencing. These approaches present several limitations, such as short-read fragments, high amounts of input DNA, and sequencing costs, respectively. Here, we attempt to circumvent present limitations to detect HGT by developing a metagenomics co-barcode sequencing workflow (MECOS) and applying it to the human and mouse gut microbiomes. In addition to that, we have over 10-fold increased contig length compared to short-reads mNGS; we also obtained exceeding 30 million paired reads with co-barcode information. Applying the novel bioinformatic pipeline, we integrated this co-barcoding information and the context information from long reads, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Specifically, we detected approximately 3,000 HGT blocks in individual samples, encompassing ~6,000 genes and ~100 taxonomic groups, including loci conferring tetracycline resistance through ribosomal protection. MECOS provides a valuable tool for investigating HGT and advance our understanding on the evolution of natural microbial communities within hosts.IMPORTANCEIn this study, to better identify horizontal gene transfer (HGT) in individual samples, we introduce a new co-barcoding sequencing system called metagenomics co-barcoding sequencing (MECOS), which has three significant improvements: (i) long DNA fragment extraction, (ii) a special transposome insertion, (iii) hybridization of DNA to barcode beads, and (4) an integrated bioinformatic pipeline. Using our approach, we have over 10-fold increased contig length compared to short-reads mNGS, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Our results indicate the presence of approximately 3,000 HGT blocks, involving roughly 6,000 genes and 100 taxonomic groups in individual samples. Notably, these HGT events are predominantly enriched in genes that confer tetracycline resistance via ribosomal protection. MECOS is a useful tool for investigating HGT and the evolution of natural microbial communities within hosts, thereby advancing our understanding of microbial ecology and evolution. | 2024 | 38315121 |
| 6597 | 4 | 0.9996 | Exploiting a targeted resistome sequencing approach in assessing antimicrobial resistance in retail foods. BACKGROUND: With the escalating risk of antimicrobial resistance (AMR), there are limited analytical options available that can comprehensively assess the burden of AMR carried by clinical/environmental samples. Food can be a potential source of AMR bacteria for humans, but its significance in driving the clinical spread of AMR remains unclear, largely due to the lack of holistic-yet-sensitive tools for surveillance and evaluation. Metagenomics is a culture-independent approach well suited for uncovering genetic determinants of defined microbial traits, such as AMR, present within unknown bacterial communities. Despite its popularity, the conventional approach of non-selectively sequencing a sample's metagenome (namely, shotgun-metagenomics) has several technical drawbacks that lead to uncertainty about its effectiveness for AMR assessment; for instance, the low discovery rate of resistance-associated genes due to their naturally small genomic footprint within the vast metagenome. Here, we describe the development of a targeted resistome sequencing method and demonstrate its application in the characterization of the AMR gene profile of bacteria associated with several retail foods. RESULT: A targeted-metagenomic sequencing workflow using a customized bait-capture system targeting over 4,000 referenced AMR genes and 263 plasmid replicon sequences was validated against both mock and sample-derived bacterial community preparations. Compared to shotgun-metagenomics, the targeted method consistently provided for improved recovery of resistance gene targets with a much-improved target detection efficiency (> 300-fold). Targeted resistome analyses conducted on 36 retail-acquired food samples (fresh sprouts, n = 10; ground meat, n = 26) and their corresponding bacterial enrichment cultures (n = 36) reveals in-depth features regarding the identity and diversity of AMR genes, most of which were otherwise undetected by the whole-metagenome shotgun sequencing method. Furthermore, our findings suggest that foodborne Gammaproteobacteria could be the major reservoir of food-associated AMR genetic determinants, and that the resistome structure of the selected high-risk food commodities are, to a large extent, dictated by microbiome composition. CONCLUSIONS: For metagenomic sequencing-based surveillance of AMR, the target-capture method presented herein represents a more sensitive and efficient approach to evaluate the resistome profile of complex food or environmental samples. This study also further implicates retail foods as carriers of diverse resistance-conferring genes indicating a potential impact on the dissemination of AMR. | 2023 | 36991496 |
| 6595 | 5 | 0.9996 | Methodological aspects of investigating the resistome in pig farm environments. A typical One Health issue, antimicrobial resistance (AMR) development and its spread among people, animals, and the environment attracts significant research attention. The animal sector is one of the major contributors to the development and dissemination of AMR and accounts for more than 50 % of global antibiotics usage. The use of antibiotics exerts a selective pressure for resistant bacteria in the exposed microbiome, but many questions about the epidemiology of AMR in farm environments remain unanswered. This is connected to several methodological challenges and limitations, such as inconsistent sampling methods, complexity of farm environment samples and the lack of standardized protocols for sample collection, processing and bioinformatical analysis. In this project, we combined metagenomics and bioinformatics to optimise the methodology for reproducible research on the resistome in complex samples from the indoor farm environment. The work included optimizing sample collection, transportation, and storage, as well as DNA extraction, sequencing, and bioinformatic analysis, such as metagenome assembly and antibiotic resistance gene (ARG) detection. Our studies suggest that the current most optimal and cost-effective pipeline for ARG search should be based on Illumina sequencing of sock sample material at high depth (at least 25 M 250 bp PE for AMR gene families and 43 M for gene variants). We present a computational analysis utilizing MEGAHIT assembly to balance the identification of bacteria carrying ARGs with the potential loss of diversity and abundance of resistance genes. Our findings indicate that searching against multiple ARG databases is essential for detecting the highest diversity of ARGs. | 2025 | 39954816 |
| 9653 | 6 | 0.9996 | Evaluating the mobility potential of antibiotic resistance genes in environmental resistomes without metagenomics. Antibiotic resistance genes are ubiquitous in the environment. However, only a fraction of them are mobile and able to spread to pathogenic bacteria. Until now, studying the mobility of antibiotic resistance genes in environmental resistomes has been challenging due to inadequate sensitivity and difficulties in contig assembly of metagenome based methods. We developed a new cost and labor efficient method based on Inverse PCR and long read sequencing for studying mobility potential of environmental resistance genes. We applied Inverse PCR on sediment samples and identified 79 different MGE clusters associated with the studied resistance genes, including novel mobile genetic elements, co-selected resistance genes and a new putative antibiotic resistance gene. The results show that the method can be used in antibiotic resistance early warning systems. In comparison to metagenomics, Inverse PCR was markedly more sensitive and provided more data on resistance gene mobility and co-selected resistances. | 2016 | 27767072 |
| 5101 | 7 | 0.9996 | Identification of Key Features Pivotal to the Characteristics and Functions of Gut Bacteria Taxa through Machine Learning Methods. BACKGROUND: Gut bacteria critically influence digestion, facilitate the breakdown of complex food substances, aid in essential nutrient synthesis, and contribute to immune system balance. However, current knowledge regarding intestinal bacteria remains insufficient. OBJECTIVE: This study aims to discover essential differences for different intestinal bacteria. METHODS: This study was conducted by investigating a total of 1478 gut bacterial samples comprising 235 Actinobacteria, 447 Bacteroidetes, and 796 Firmicutes, by utilizing sophisticated machine learning algorithms. By building on the dataset provided by Chen et al., we engaged sophisticated machine learning techniques to further investigate and analyze the gut bacterial samples. Each sample in the dataset was described by 993 unique features associated with gut bacteria, including 342 features annotated by the Antibiotic Resistance Genes Database, Comprehensive Antibiotic Research Database, Kyoto Encyclopedia of Genes and Genomes, and Virulence Factors of Pathogenic Bacteria. We employed incremental feature selection methods within a computational framework to identify the optimal features for classification. RESULTS: Eleven feature ranking algorithms selected several key features as pivotal to the characteristics and functions of gut bacteria. These features appear to facilitate the identification of specific gut bacterial species. Additionally, we established quantitative rules for identifying Actinobacteria, Bacteroidetes, and Firmicutes. CONCLUSION: This research underscores the significant potential of machine learning in studying gut microbes and enhances our understanding of the multifaceted roles of gut bacteria. | 2025 | 40671232 |
| 4296 | 8 | 0.9996 | Twenty-first century molecular methods for analyzing antimicrobial resistance in surface waters to support One Health assessments. Antimicrobial resistance (AMR) in the environment is a growing global health concern, especially the dissemination of AMR into surface waters due to human and agricultural inputs. Within recent years, research has focused on trying to understand the impact of AMR in surface waters on human, agricultural and ecological health (One Health). While surface water quality assessments and surveillance of AMR have historically utilized culture-based methods, culturing bacteria has limitations due to difficulty in isolating environmental bacteria and the need for a priori information about the bacteria for selective isolation. The use of molecular techniques to analyze AMR at the genetic level has helped to overcome the difficulties with culture-based techniques since they do not require advance knowledge of the bacterial population and can analyze uncultivable environmental bacteria. The aim of this review is to provide an overview of common contemporary molecular methods available for analyzing AMR in surface waters, which include high throughput real-time polymerase chain reaction (HT-qPCR), metagenomics, and whole genome sequencing. This review will also feature how these methods may provide information on human and animal health risks. HT-qPCR works at the nanoliter scale, requires only a small amount of DNA, and can analyze numerous gene targets simultaneously, but may lack in analytical sensitivity and the ability to optimize individual assays compared to conventional qPCR. Metagenomics offers more detailed genomic information and taxonomic resolution than PCR by sequencing all the microbial genomes within a sample. Its open format allows for the discovery of new antibiotic resistance genes; however, the quantity of DNA necessary for this technique can be a limiting factor for surface water samples that typically have low numbers of bacteria per sample volume. Whole genome sequencing provides the complete genomic profile of a single environmental isolate and can identify all genetic elements that may confer AMR. However, a main disadvantage of this technique is that it only provides information about one bacterial isolate and is challenging to utilize for community analysis. While these contemporary techniques can quickly provide a vast array of information about AMR in surface waters, one technique does not fully characterize AMR nor its potential risks to human, animal, or ecological health. Rather, a combination of techniques (including both molecular- and culture-based) are necessary to fully understand AMR in surface waters from a One Health perspective. | 2021 | 33774111 |
| 3458 | 9 | 0.9996 | MinION Nanopore Sequencing Enables Correlation between Resistome Phenotype and Genotype of Coliform Bacteria in Municipal Sewage. Wastewater treatment plants (WWTPs) functioned as the intersection between the human society and nature environment, are receiving increasingly more attention on risk assessment of the acquisition of environmental antibiotic resistance genes (ARGs) by pathogenetic populations during treatment. However, because of the general lack of robust resistome profiling methods, genotype, and resistance phenotype is still poorly correlated in human pathogens of sewage samples. Here we applied MinION sequencing to quantify the resistance genes of multiple antibiotic resistant (MAR) coliform bacteria, a common indicator for human enteric pathogens in sewage samples. Our pipeline could deliver the results within 30 h from sample collection and the resistome quantification was consistent to that based on the Illumina platform. Additionally, the long nanopore reads not only enabled a simultaneous identification of the carrier populations of ARGs detected, but also facilitated the genome reconstruction of a representative MAR strain, from which we identified an instance of chromosomal integration of environmental resistance gene obtained by plasmid exchange with a porcine pathogen. This study demonstrated the utilization of MinION sequencing in quick monitoring and simultaneous phylogenetic tracking of environmental ARGs to address potential health risk associated with them. | 2017 | 29163399 |
| 6596 | 10 | 0.9996 | Shotgun metagenomic sequencing of bulk tank milk filters reveals the role of Moraxellaceae and Enterobacteriaceae as carriers of antimicrobial resistance genes. In the present context of growing antimicrobial resistance (AMR) concern, understanding the distribution of AMR determinants in food matrices such as milk is crucial to protect consumers and maintain high food safety standards. Herein, the resistome of different dairy farms was investigated through a shotgun metagenomic sequencing approach, taking advantage of in-line milk filters as promising tools. The application of both the reads-based and the assembly-based approaches has allowed the identification of numerous AMR determinants, enabling a comprehensive resolution of the resistome. Notably most of the species harboring AMR genes were predicted to be Gram-negative genera, namely Enterobacter, Acinetobacter, Escherichia, and Pseudomonas, pointing out the role of these bacteria as reservoirs of AMR determinants. In this context, the use of de novo assembly has allowed a more holistic AMR detection strategy, while the reads-based approach has enabled the detection of AMR genes from low abundance bacteria, usually undetectable by assembly-based methods. The application of both reads-based and assembly-based approaches, despite being computationally demanding, has facilitated the comprehensive characterization of a food chain resistome, while also allowing the construction of complete metagenome assembled genomes and the investigation of mobile genetic elements. Our findings suggest that milk filters can successfully be used to investigate the resistome of bulk tank milk through the application of the shotgun metagenomic sequencing. In accordance with our results, raw milk can be considered a source of AMR bacteria and genes; this points out the importance of properly informing food business operators about the risk associated with poor hygiene practices in the dairy production environment and consumers of the potential microbial food safety risks derived from raw milk products consumption. Translating these findings as risk assessment outputs heralds the next generation of food safety controls. | 2022 | 35840264 |
| 7475 | 11 | 0.9996 | A Metagenomic Investigation of Spatial and Temporal Changes in Sewage Microbiomes across a University Campus. Wastewater microbial communities are not static and can vary significantly across time and space, but this variation and the factors driving the observed spatiotemporal variation often remain undetermined. We used a shotgun metagenomic approach to investigate changes in wastewater microbial communities across 17 locations in a sewer network, with samples collected from each location over a 3-week period. Fecal material-derived bacteria constituted a relatively small fraction of the taxa found in the collected samples, highlighting the importance of environmental sources to the sewage microbiome. The prokaryotic communities were highly variable in composition depending on the location within the sampling network, and this spatial variation was most strongly associated with location-specific differences in sewage pH. However, we also observed substantial temporal variation in the composition of the prokaryotic communities at individual locations. This temporal variation was asynchronous across sampling locations, emphasizing the importance of independently considering both spatial and temporal variation when assessing the wastewater microbiome. The spatiotemporal patterns in viral community composition closely tracked those of the prokaryotic communities, allowing us to putatively identify the bacterial hosts of some of the dominant viruses in these systems. Finally, we found that antibiotic resistance gene profiles also exhibit a high degree of spatiotemporal variability, with most of these genes unlikely to be derived from fecal bacteria. Together, these results emphasize the dynamic nature of the wastewater microbiome, the challenges associated with studying these systems, and the utility of metagenomic approaches for building a multifaceted understanding of these microbial communities and their functional attributes. IMPORTANCE Sewage systems harbor extensive microbial diversity, including microbes derived from both human and environmental sources. Studies of the sewage microbiome are useful for monitoring public health and the health of our infrastructure, but the sewage microbiome can be highly variable in ways that are often unresolved. We sequenced DNA recovered from wastewater samples collected over a 3-week period at 17 locations in a single sewer system to determine how these communities vary across time and space. Most of the wastewater bacteria, and the antibiotic resistance genes they harbor, were not derived from human feces, but human usage patterns did impact how the amounts and types of bacteria and bacterial genes we found in these systems varied over time. Likewise, the wastewater communities, including both bacteria and their viruses, varied depending on location within the sewage network, highlighting the challenges and opportunities in efforts to monitor and understand the sewage microbiome. | 2022 | 36121163 |
| 4644 | 12 | 0.9996 | Longitudinal metatranscriptomic sequencing of Southern California wastewater representing 16 million people from August 2020-21 reveals widespread transcription of antibiotic resistance genes. Municipal wastewater provides a representative sample of human fecal waste across a catchment area and contains a wide diversity of microbes. Sequencing wastewater samples provides information about human-associated and medically-important microbial populations, and may be useful to assay disease prevalence and antimicrobial resistance (AMR). Here, we present a study in which we used untargeted metatranscriptomic sequencing on RNA extracted from 275 sewage influent samples obtained from eight wastewater treatment plants (WTPs) representing approximately 16 million people in Southern California between August 2020 - August 2021. We characterized bacterial and viral transcripts, assessed metabolic pathway activity, and identified over 2,000 AMR genes/variants across all samples. Because we did not deplete ribosomal RNA, we have a unique window into AMR carried as ribosomal mutants. We show that AMR diversity varied between WTPs and that the relative abundance of many individual AMR genes/variants increased over time and may be connected to antibiotic use during the COVID-19 pandemic. Similarly, we detected transcripts mapping to human pathogenic bacteria and viruses suggesting RNA sequencing is a powerful tool for wastewater-based epidemiology and that there are geographical signatures to microbial transcription. We captured the transcription of gene pathways common to bacterial cell processes, including central carbon metabolism, nucleotide synthesis/salvage, and amino acid biosynthesis. We also posit that due to the ubiquity of many viruses and bacteria in wastewater, new biological targets for microbial water quality assessment can be developed. To the best of our knowledge, our study provides the most complete longitudinal metatranscriptomic analysis of a large population's wastewater to date and demonstrates our ability to monitor the presence and activity of microbes in complex samples. By sequencing RNA, we can track the relative abundance of expressed AMR genes/variants and metabolic pathways, increasing our understanding of AMR activity across large human populations and sewer sheds. | 2022 | 35982656 |
| 3460 | 13 | 0.9996 | Bioprospecting for β-lactam resistance genes using a metagenomics-guided strategy. Emergence of new antibiotic resistance bacteria poses a serious threat to human health, which is largely attributed to the evolution and spread of antibiotic resistance genes (ARGs). In this work, a metagenomics-guided strategy consisting of metagenomic analysis and function validation was proposed for rapidly identifying novel ARGs from hot spots of ARG dissemination, such as wastewater treatment plants (WWTPs) and animal feces. We used an antibiotic resistance gene database to annotate 76 putative β-lactam resistance genes from the metagenomes of sludge and chicken feces. Among these 76 candidate genes, 25 target genes that shared 40~70% amino acid identity to known β-lactamases were cloned by PCR from the metagenomes. Their resistances to four β-lactam antibiotics were further demonstrated. Furthermore, the validated ARGs were used as the reference sequences to identify novel ARGs in eight environmental samples, suggesting the necessity of re-examining the profiles of ARGs in environmental samples using the validated novel ARG sequences. This metagenomics-guided pipeline does not rely on the activity of ARGs during the initial screening process and may specifically select novel ARG sequences for function validation, which make it suitable for the high-throughput screening of novel ARGs from environmental metagenomes. | 2017 | 28584911 |
| 7696 | 14 | 0.9996 | Noise reduction strategies in metagenomic chromosome confirmation capture to link antibiotic resistance genes to microbial hosts. The gut microbiota is a reservoir for antimicrobial resistance genes (ARGs). With current sequencing methods, it is difficult to assign ARGs to their microbial hosts, particularly if these ARGs are located on plasmids. Metagenomic chromosome conformation capture approaches (meta3C and Hi-C) have recently been developed to link bacterial genes to phylogenetic markers, thus potentially allowing the assignment of ARGs to their hosts on a microbiome-wide scale. Here, we generated a meta3C dataset of a human stool sample and used previously published meta3C and Hi-C datasets to investigate bacterial hosts of ARGs in the human gut microbiome. Sequence reads mapping to repetitive elements were found to cause problematic noise in, and may importantly skew interpretation of, meta3C and Hi-C data. We provide a strategy to improve the signal-to-noise ratio by discarding reads that map to insertion sequence elements and to the end of contigs. We also show the importance of using spike-in controls to quantify whether the cross-linking step in meta3C and Hi-C protocols has been successful. After filtering to remove artefactual links, 87 ARGs were assigned to their bacterial hosts across all datasets, including 27 ARGs in the meta3C dataset we generated. We show that commensal gut bacteria are an important reservoir for ARGs, with genes coding for aminoglycoside and tetracycline resistance being widespread in anaerobic commensals of the human gut. | 2023 | 37272920 |
| 6544 | 15 | 0.9996 | A rapid approach with machine learning for quantifying the relative burden of antimicrobial resistance in natural aquatic environments. The massive use and discharge of antibiotics have led to increasing concerns about antimicrobial resistance (AMR) in natural aquatic environments. Since the dose-response mechanisms of pathogens with AMR have not yet been fully understood, and the antibiotic resistance genes and bacteria-related data collection via field sampling and laboratory testing is time-consuming and expensive, designing a rapid approach to quantify the burden of AMR in the natural aquatic environment has become a challenge. To cope with such a challenge, a new approach involving an integrated machine-learning framework was developed by investigating the associations between the relative burden of AMR and easily accessible variables (i.e., relevant environmental variables and adjacent land-use patterns). The results, based on a real-world case analysis, demonstrate that the quantification speed has been reduced from 3-7 days, which is typical for traditional measurement procedures with field sampling and laboratory testing, to approximately 0.5 hours using the new approach. Moreover, all five metrics for AMR relative burden quantification exceed the threshold level of 85%, with F1-score surpassing 0.92. Compared to logistic regression, decision trees, and basic random forest, the adaptive random forest model within the framework significantly improves quantification accuracy without sacrificing model interpretability. Two environmental variables, dissolved oxygen and resistivity, along with the proportion of green areas were identified as three key feature variables for the rapid quantification. This study contributes to the enrichment of burden analyses and management practices for rapid quantification of the relative burden of AMR without dose-response information. | 2024 | 39047454 |
| 9657 | 16 | 0.9996 | Machine Learning Leveraging Genomes from Metagenomes Identifies Influential Antibiotic Resistance Genes in the Infant Gut Microbiome. Antibiotic resistance in pathogens is extensively studied, and yet little is known about how antibiotic resistance genes of typical gut bacteria influence microbiome dynamics. Here, we leveraged genomes from metagenomes to investigate how genes of the premature infant gut resistome correspond to the ability of bacteria to survive under certain environmental and clinical conditions. We found that formula feeding impacts the resistome. Random forest models corroborated by statistical tests revealed that the gut resistome of formula-fed infants is enriched in class D beta-lactamase genes. Interestingly, Clostridium difficile strains harboring this gene are at higher abundance in formula-fed infants than C. difficile strains lacking this gene. Organisms with genes for major facilitator superfamily drug efflux pumps have higher replication rates under all conditions, even in the absence of antibiotic therapy. Using a machine learning approach, we identified genes that are predictive of an organism's direction of change in relative abundance after administration of vancomycin and cephalosporin antibiotics. The most accurate results were obtained by reducing annotated genomic data to five principal components classified by boosted decision trees. Among the genes involved in predicting whether an organism increased in relative abundance after treatment are those that encode subclass B2 beta-lactamases and transcriptional regulators of vancomycin resistance. This demonstrates that machine learning applied to genome-resolved metagenomics data can identify key genes for survival after antibiotics treatment and predict how organisms in the gut microbiome will respond to antibiotic administration. IMPORTANCE The process of reconstructing genomes from environmental sequence data (genome-resolved metagenomics) allows unique insight into microbial systems. We apply this technique to investigate how the antibiotic resistance genes of bacteria affect their ability to flourish in the gut under various conditions. Our analysis reveals that strain-level selection in formula-fed infants drives enrichment of beta-lactamase genes in the gut resistome. Using genomes from metagenomes, we built a machine learning model to predict how organisms in the gut microbial community respond to perturbation by antibiotics. This may eventually have clinical applications. | 2018 | 29359195 |
| 9554 | 17 | 0.9996 | A multi-label learning framework for predicting antibiotic resistance genes via dual-view modeling. The increasing prevalence of antibiotic resistance has become a global health crisis. For the purpose of safety regulation, it is of high importance to identify antibiotic resistance genes (ARGs) in bacteria. Although culture-based methods can identify ARGs relatively more accurately, the identifying process is time-consuming and specialized knowledge is required. With the rapid development of whole genome sequencing technology, researchers attempt to identify ARGs by computing sequence similarity from public databases. However, these computational methods might fail to detect ARGs due to the low sequence identity to known ARGs. Moreover, existing methods cannot effectively address the issue of multidrug resistance prediction for ARGs, which is a great challenge to clinical treatments. To address the challenges, we propose an end-to-end multi-label learning framework for predicting ARGs. More specifically, the task of ARGs prediction is modeled as a problem of multi-label learning, and a deep neural network-based end-to-end framework is proposed, in which a specific loss function is introduced to employ the advantage of multi-label learning for ARGs prediction. In addition, a dual-view modeling mechanism is employed to make full use of the semantic associations among two views of ARGs, i.e. sequence-based information and structure-based information. Extensive experiments are conducted on publicly available data, and experimental results demonstrate the effectiveness of the proposed framework on the task of ARGs prediction. | 2022 | 35272349 |
| 6600 | 18 | 0.9996 | Metagenomic approaches for the quantification of antibiotic resistance genes in swine wastewater treatment system: a systematic review. This systematic review aims to identify the metagenomic methodological approaches employed for the detection of antimicrobial resistance genes (ARGs) in swine wastewater treatment systems. The search terms used were metagenome AND bacteria AND ("antimicrobial resistance gene" OR resistome OR ARG) AND wastewater AND (swine OR pig), and the search was conducted across the following electronic databases: PubMed, Scopus, ScienceDirect, Web of Science, Embase, and Cochrane Library. The search was limited to studies published between 2020 and 2024. Of the 220 studies retrieved, eight met the eligibility criteria for full-text analysis. The number of publications in this research area has increased in recent years, with China contributing the highest number of studies. ARGs are typically identified using bioinformatics pipelines that include steps such as quality trimming, assembly, metagenome-assembled genome (MAG) reconstruction, open reading frame (ORF) prediction, and ARG annotation. However, comparing ARGs quantification across studies remains challenging due to methodological differences and variability in quantification approaches. Therefore, this systematic review highlights the need for methodological standardization to facilitate comparison and enhance our understanding of antimicrobial resistance in swine wastewater treatment systems through metagenomic approaches. | 2025 | 40788461 |
| 7707 | 19 | 0.9996 | Exploring the dynamics of gut microbiota, antibiotic resistance, and chemotherapy impact in acute leukemia patients: A comprehensive metagenomic analysis. Leukemia poses significant challenges to its treatment, and understanding its complex pathogenesis is crucial. This study used metagenomic sequencing to investigate the interplay between chemotherapy, gut microbiota, and antibiotic resistance in patients with acute leukemia (AL). Pre- and post-chemotherapy stool samples from patients revealed alterations in microbial richness, taxa, and antibiotic resistance genes (ARGs). The analysis revealed a decreased alpha diversity, increased dispersion in post-chemotherapy samples, and changes in the abundance of specific bacteria. Key bacteria such as Enterococcus, Klebsiella, and Escherichia coli have been identified as prevalent ARG carriers. Correlation analysis between gut microbiota and blood indicators revealed potential links between microbial species and inflammatory biomarkers, including C-reactive protein (CRP) and adenosine deaminase (ADA). This study investigated the impact of antibiotic dosage on microbiota and ARGs, revealing networks connecting co-occurring ARGs with microbial species (179 nodes, 206 edges), and networks associated with ARGs and antibiotic dosages (50 nodes, 50 edges). Antibiotics such as cephamycin and sulfonamide led to multidrug-resistant Klebsiella colonization. Our analyses revealed distinct microbial profiles with Salmonella enterica elevated post-chemotherapy in NF patients and Akkermansia muciniphila elevated pre-chemotherapy. These microbial signatures could inform strategies to modulate the gut microbiome, potentially mitigating the risk of neutropenic fever in patients undergoing chemotherapy. Finally, a comprehensive analysis of KEGG modules shed light on disrupted metabolic pathways after chemotherapy, providing insights into potential targets for managing side effects. Overall, this study revealed intricate relationships between gut microbiota, chemotherapy, and antibiotic resistance, providing new insights into improving therapy and enhancing patient outcomes. | 2024 | 39620486 |