Novel Antibiotic Resistance Determinants from Agricultural Soil Exposed to Antibiotics Widely Used in Human Medicine and Animal Farming. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
769001.0000Novel Antibiotic Resistance Determinants from Agricultural Soil Exposed to Antibiotics Widely Used in Human Medicine and Animal Farming. Antibiotic resistance has emerged globally as one of the biggest threats to human and animal health. Although the excessive use of antibiotics is recognized as accelerating the selection for resistance, there is a growing body of evidence suggesting that natural environments are "hot spots" for the development of both ancient and contemporary resistance mechanisms. Given that pharmaceuticals can be entrained onto agricultural land through anthropogenic activities, this could be a potential driver for the emergence and dissemination of resistance in soil bacteria. Using functional metagenomics, we interrogated the "resistome" of bacterial communities found in a collection of Canadian agricultural soil, some of which had been receiving antibiotics widely used in human medicine (macrolides) or food animal production (sulfamethazine, chlortetracycline, and tylosin) for up to 16 years. Of the 34 new antibiotic resistance genes (ARGs) recovered, the majority were predicted to encode (multi)drug efflux systems, while a few share little to no homology with established resistance determinants. We characterized several novel gene products, including putative enzymes that can confer high-level resistance against aminoglycosides, sulfonamides, and broad range of beta-lactams, with respect to their resistance mechanisms and clinical significance. By coupling high-resolution proteomics analysis with functional metagenomics, we discovered an unusual peptide, PPP(AZI 4), encoded within an alternative open reading frame not predicted by bioinformatics tools. Expression of the proline-rich PPP(AZI 4) can promote resistance against different macrolides but not other ribosome-targeting antibiotics, implicating a new macrolide-specific resistance mechanism that could be fundamentally linked to the evolutionary design of this peptide.IMPORTANCE Antibiotic resistance is a clinical phenomenon with an evolutionary link to the microbial pangenome. Genes and protogenes encoding specialized and potential resistance mechanisms are abundant in natural environments, but understanding of their identity and genomic context remains limited. Our discovery of several previously unknown antibiotic resistance genes from uncultured soil microorganisms indicates that soil is a significant reservoir of resistance determinants, which, once acquired and "repurposed" by pathogenic bacteria, can have serious impacts on therapeutic outcomes. This study provides valuable insights into the diversity and identity of resistance within the soil microbiome. The finding of a novel peptide-mediated resistance mechanism involving an unpredicted gene product also highlights the usefulness of integrating proteomics analysis into metagenomics-driven gene discovery.201728625995
389410.9999Novel Soil-Derived Beta-Lactam, Chloramphenicol, Fosfomycin and Trimethoprim Resistance Genes Revealed by Functional Metagenomics. Antibiotic resistance genes (ARGs) in soil are considered to represent one of the largest environmental resistomes on our planet. As these genes can potentially be disseminated among microorganisms via horizontal gene transfer (HGT) and in some cases are acquired by clinical pathogens, knowledge about their diversity, mobility and encoded resistance spectra gained increasing public attention. This knowledge offers opportunities with respect to improved risk prediction and development of strategies to tackle antibiotic resistance, and might help to direct the design of novel antibiotics, before further resistances reach hospital settings or the animal sector. Here, metagenomic libraries, which comprise genes of cultivated microorganisms, but, importantly, also those carried by the uncultured microbial majority, were screened for novel ARGs from forest and grassland soils. We detected three new beta-lactam, a so far unknown chloramphenicol, a novel fosfomycin, as well as three previously undiscovered trimethoprim resistance genes. These ARGs were derived from phylogenetically diverse soil bacteria and predicted to encode antibiotic inactivation, antibiotic efflux, or alternative variants of target enzymes. Moreover, deduced gene products show a minimum identity of ~21% to reference database entries and confer high-level resistance. This highlights the vast potential of functional metagenomics for the discovery of novel ARGs from soil ecosystems.202133916668
964820.9999The highly diverse Antarctic Peninsula soil microbiota as a source of novel resistance genes. The rise of multiresistant bacterial pathogens is currently one of the most critical threats to global health, encouraging a better understanding of the evolution and spread of antimicrobial resistance. In this regard, the role of the environment as a source of resistance mechanisms remains poorly understood. Moreover, we still know a minimal part of the microbial diversity and resistome present in remote and extreme environments, hosting microbes that evolved to resist harsh conditions and thus a potentially rich source of novel resistance genes. This work demonstrated that the Antarctic Peninsula soils host a remarkable microbial diversity and a widespread presence of autochthonous antibiotic-resistant bacteria and resistance genes. We observed resistance to a wide array of antibiotics among isolates, including Pseudomonas resisting ten or more different compounds, with an overall increased resistance in bacteria from non-intervened areas. In addition, genome analysis of selected isolates showed several genes encoding efflux pumps, as well as a lack of known resistance genes for some of the resisted antibiotics, including colistin, suggesting novel uncharacterized mechanisms. By combining metagenomic approaches based on analyzing raw reads, assembled contigs, and metagenome-assembled genomes, we found hundreds of widely distributed genes potentially conferring resistance to different antibiotics (including an outstanding variety of inactivation enzymes), metals, and biocides, hosted mainly by Polaromonas, Pseudomonas, Streptomyces, Variovorax, and Burkholderia. Furthermore, a proportion of these genes were found inside predicted plasmids and other mobile elements, including a putative OXA-like carbapenemase from Polaromonas harboring conserved key residues and predicted structural features. All this evidence indicates that the Antarctic Peninsula soil microbiota has a broad natural resistome, part of which could be transferred horizontally to pathogenic bacteria, acting as a potential source of novel resistance genes.202234856283
399730.9998Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. The high and sometimes inappropriate use of antibiotics has accelerated the development of antibiotic resistance, creating a major challenge for the sustainable treatment of infections world-wide. Bacterial communities often respond to antibiotic selection pressure by acquiring resistance genes, i.e. mobile genetic elements that can be shared horizontally between species. Environmental microbial communities maintain diverse collections of resistance genes, which can be mobilized into pathogenic bacteria. Recently, exceptional environmental releases of antibiotics have been documented, but the effects on the promotion of resistance genes and the potential for horizontal gene transfer have yet received limited attention. In this study, we have used culture-independent shotgun metagenomics to investigate microbial communities in river sediments exposed to waste water from the production of antibiotics in India. Our analysis identified very high levels of several classes of resistance genes as well as elements for horizontal gene transfer, including integrons, transposons and plasmids. In addition, two abundant previously uncharacterized resistance plasmids were identified. The results suggest that antibiotic contamination plays a role in the promotion of resistance genes and their mobilization from environmental microbes to other species and eventually to human pathogens. The entire life-cycle of antibiotic substances, both before, under and after usage, should therefore be considered to fully evaluate their role in the promotion of resistance.201121359229
405140.9998The human microbiome harbors a diverse reservoir of antibiotic resistance genes. The increasing levels of multi-drug resistance in human pathogenic bacteria are compromising our ability to treat infectious disease. Since antibiotic resistance determinants are readily exchanged between bacteria through lateral gene transfer, there is an increasing interest in investigating reservoirs of antibiotic resistance accessible to pathogens. Due to the high likelihood of contact and genetic exchange with pathogens during disease progression, the human microflora warrants special attention as perhaps the most accessible reservoir of resistance genes. Indeed, numerous previous studies have demonstrated substantial antibiotic resistance in cultured isolates from the human microflora. By applying metagenomic functional selections, we recently demonstrated that the functional repertoire of resistance genes in the human microbiome is much more diverse than suggested using previous culture-dependent methods. We showed that many resistance genes from cultured proteobacteria from human fecal samples are identical to resistance genes harbored by human pathogens, providing strong support for recent genetic exchange of this resistance machinery. In contrast, most of the resistance genes we identified with culture independent metagenomic sampling from the same samples were novel when compared to all known genes in public databases. While this clearly demonstrates that the antibiotic resistance reservoir of the large fraction of the human microbiome recalcitrant to culturing is severely under sampled, it may also suggest that barriers exist to lateral gene transfer between these bacteria and readily cultured human pathogens. If we hope to turn the tide against multidrug resistant infections, we must urgently commit to quantitatively characterizing the resistance reservoirs encoded by our diverse human microbiomes, with a particular focus on routes of exchange of these reservoirs with other microbial communities.201021178459
388250.9998Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture. Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. IMPORTANCE: Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if they are genetically linked. No links to bacterial membership were observed for these clusters of resistance genes. These findings urge deeper understanding of colocalization of resistance genes and mobile genetic elements in resistance islands and their distribution throughout antibiotic-exposed microbiomes. As governments seek to combat the rise in antibiotic resistance, a balance is sought between ensuring proper animal health and welfare and preserving medically important antibiotics for therapeutic use. Metagenomic and genomic monitoring will be critical to determine if resistance genes can be reduced in animal microbiomes, or if these gene clusters will continue to be coselected by antibiotics not deemed medically important for human health but used for growth promotion or by medically important antibiotics used therapeutically.201627073098
768960.9998Discovery of Novel Antibiotic Resistance Determinants in Forest and Grassland Soil Metagenomes. Soil represents a significant reservoir of antibiotic resistance genes (ARGs), which can potentially spread across distinct ecosystems and be acquired by pathogens threatening human as well as animal health. Currently, information on the identity and diversity of these genes, enabling anticipation of possible future resistance development in clinical environments and the livestock sector, is lacking. In this study, we applied functional metagenomics to discover novel sulfonamide as well as tetracycline resistance genes in soils derived from forest and grassland. Screening of soil metagenomic libraries revealed a total of eight so far unknown ARGs. The recovered genes originate from phylogenetically diverse soil bacteria (e.g., Actinobacteria, Chloroflexi, or Proteobacteria) and encode proteins with a minimum identity of 46% to other antibiotic resistance determinants. In particular forest soil ecosystems have so far been neglected in studies focusing on antibiotic resistance. Here, we detected for the first time non-mobile dihydropteroate synthase (DHPS) genes conferring resistance to sulfonamides in forest soil with no history of exposure to these synthetic drugs. In total, three sulfonamide resistant DHPSs, differing in taxonomic origin, were discovered in beech or pine forest soil. This indicates that sulfonamide resistance naturally occurs in forest-resident soil bacterial communities. Besides forest soil-derived sulfonamide resistance proteins, we also identified a DHPS affiliated to Chloroflexi in grassland soil. This enzyme and the other recovered DHPSs confer reduced susceptibility toward sulfamethazine, which is widely used in food animal production. With respect to tetracycline resistance, four efflux proteins affiliated to the major facilitator superfamily (MFS) were identified. Noteworthy, one of these proteins also conferred reduced susceptibility toward lincomycin.201930899254
403370.9998Evolution and ecology of antibiotic resistance genes. A new perspective on the topic of antibiotic resistance is beginning to emerge based on a broader evolutionary and ecological understanding rather than from the traditional boundaries of clinical research of antibiotic-resistant bacterial pathogens. Phylogenetic insights into the evolution and diversity of several antibiotic resistance genes suggest that at least some of these genes have a long evolutionary history of diversification that began well before the 'antibiotic era'. Besides, there is no indication that lateral gene transfer from antibiotic-producing bacteria has played any significant role in shaping the pool of antibiotic resistance genes in clinically relevant and commensal bacteria. Most likely, the primary antibiotic resistance gene pool originated and diversified within the environmental bacterial communities, from which the genes were mobilized and penetrated into taxonomically and ecologically distant bacterial populations, including pathogens. Dissemination and penetration of antibiotic resistance genes from antibiotic producers were less significant and essentially limited to other high G+C bacteria. Besides direct selection by antibiotics, there is a number of other factors that may contribute to dissemination and maintenance of antibiotic resistance genes in bacterial populations.200717490428
965880.9998Functional metagenomic libraries generated from anthropogenically impacted environments reveal importance of metabolic genes in biocide and antibiotic resistance. Anthropogenic activities result in the release of antimicrobial resistant bacteria and a cocktail of antimicrobial compounds into the environment that may directly select or indirectly co-select for antimicrobial resistance (AMR). Many studies use metagenome sequencing or qPCR-based approaches to study the environmental resistome but these methods are limited by a priori knowledge. In this study, a functional metagenomic approach was used to explore biocide resistance mechanisms in two contaminated environments and a pristine site, and to identify whether potentially novel genes conferring biocide resistance also conferred resistance or reduced susceptibility to antibiotics. Resistance was predominately mediated through novel mechanisms exclusive of the well-known qac efflux genes. UDP-galactose 4-epimerase (galE) -like genes were identified in both contaminated environments and were shown to confer cross-resistance to biocides and clinically important antibiotics for the first time (to our knowledge), compared to knockout mutants. GalE -like genes were also co-located with transposons, suggesting mobilisation potential. These results show that housekeeping genes may play a significant yet underappreciated role in AMR in environmental microbiomes.202336908773
409090.9998Ancient Resistome. Antibiotic resistance is an ancient biological mechanism in bacteria, although its proliferation in our contemporary world has been amplified through antimicrobial therapy. Recent studies conducted on ancient environmental and human samples have uncovered numerous antibiotic-resistant bacteria and resistance genes. The resistance genes that have been reported from the analysis of ancient bacterial DNA include genes coding for several classes of antibiotics, such as glycopeptides, β-lactams, tetracyclines, and macrolides. The investigation of the resistome of ancient bacteria is a recent and emerging field of research, and technological advancements such as next-generation sequencing will further contribute to its growth. It is hoped that the knowledge gained from this research will help us to better understand the evolution of antibiotic resistance genes and will also be used in drug design as a proactive measure against antibiotic resistance.201627726801
4052100.9998Functional metagenomics for the investigation of antibiotic resistance. Antibiotic resistance is a major threat to human health and well-being. To effectively combat this problem we need to understand the range of different resistance genes that allow bacteria to resist antibiotics. To do this the whole microbiota needs to be investigated. As most bacteria cannot be cultivated in the laboratory, the reservoir of antibiotic resistance genes in the non-cultivatable majority remains relatively unexplored. Currently the only way to study antibiotic resistance in these organisms is to use metagenomic approaches. Furthermore, the only method that does not require any prior knowledge about the resistance genes is functional metagenomics, which involves expressing genes from metagenomic clones in surrogate hosts. In this review the methods and limitations of functional metagenomics to isolate new antibiotic resistance genes and the mobile genetic elements that mediate their spread are explored.201424556726
4049110.9998The Plasmidome of Firmicutes: Impact on the Emergence and the Spread of Resistance to Antimicrobials. The phylum Firmicutes is one of the most abundant groups of prokaryotes in the microbiota of humans and animals and includes genera of outstanding relevance in biomedicine, health care, and industry. Antimicrobial drug resistance is now considered a global health security challenge of the 21st century, and this heterogeneous group of microorganisms represents a significant part of this public health issue.The presence of the same resistant genes in unrelated bacterial genera indicates a complex history of genetic interactions. Plasmids have largely contributed to the spread of resistance genes among Staphylococcus, Enterococcus, and Streptococcus species, also influencing the selection and ecological variation of specific populations. However, this information is fragmented and often omits species outside these genera. To date, the antimicrobial resistance problem has been analyzed under a "single centric" perspective ("gene tracking" or "vehicle centric" in "single host-single pathogen" systems) that has greatly delayed the understanding of gene and plasmid dynamics and their role in the evolution of bacterial communities.This work analyzes the dynamics of antimicrobial resistance genes using gene exchange networks; the role of plasmids in the emergence, dissemination, and maintenance of genes encoding resistance to antimicrobials (antibiotics, heavy metals, and biocides); and their influence on the genomic diversity of the main Gram-positive opportunistic pathogens under the light of evolutionary ecology. A revision of the approaches to categorize plasmids in this group of microorganisms is given using the 1,326 fully sequenced plasmids of Gram-positive bacteria available in the GenBank database at the time the article was written.201526104702
4102120.9998Forces shaping the antibiotic resistome. Antibiotic resistance has become a problem of global scale. Resistance arises through mutation or through the acquisition of resistance gene(s) from other bacteria in a process called horizontal gene transfer (HGT). While HGT is recognized as an important factor in the dissemination of resistance genes in clinical pathogens, its role in the environment has been called into question by a recent study published in Nature. The authors found little evidence of HGT in soil using a culture-independent functional metagenomics approach, which is in contrast to previous work from the same lab showing HGT between the environment and human microbiome. While surprising at face value, these results may be explained by the lack of selective pressure in the environment studied. Importantly, this work suggests the need for careful monitoring of environmental antibiotic pollution and stringent antibiotic stewardship in the fight against resistance.201425213620
4018130.9998Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Multiple antibiotic resistant pathogens represent a major clinical challenge in both human and veterinary context. It is now well-understood that the genes that encode resistance are context independent. That is, the same gene is commonly present in otherwise very disparate pathogens in both humans and production and companion animals, and among bacteria that proliferate in an agricultural context. This can be true even for pathogenic species or clonal types that are otherwise confined to a single host or ecological niche. It therefore follows that mechanisms of gene flow must exist to move genes from one part of the microbial biosphere to another. It is widely accepted that lateral (or horizontal) gene transfer (L(H)GT) drives this gene flow. LGT is relatively well-understood mechanistically but much of this knowledge is derived from a reductionist perspective. We believe that this is impeding our ability to deal with the medical ramifications of LGT. Resistance genes and the genetic scaffolds that mobilize them in multiply drug resistant bacteria of clinical significance are likely to have their origins in completely unrelated parts of the microbial biosphere. Resistance genes are increasingly polluting the microbial biosphere by contaminating environmental niches where previously they were not detected. More attention needs to be paid to the way that humans have, through the widespread application of antibiotics, selected for combinations of mobile elements that enhance the flow of resistance genes between remotely linked parts of the microbial biosphere. Attention also needs to be paid to those bacteria that link human and animal ecosystems. We argue that multiply antibiotic resistant commensal bacteria are especially important in this regard. More generally, the post genomics era offers the opportunity for understanding how resistance genes are mobilized from a one health perspective. In the long term, this holistic approach offers the best opportunity to better manage what is an enormous problem to humans both in terms of health and food security.201323641238
4281140.9998Investigating RND efflux pumps in Sphingobium yanoikuyae P4: the role of nonpathogenic bacteria in antibiotic resistance gene spread amid environmental contamination. The widespread and inappropriate application of antibiotics across human and veterinary medicine has generated pressing global health threats, principally the emergence of antimicrobial resistance (AMR) and the contamination of the environment with antibiotics. A fundamental mechanism fueling environmental AMR is the proliferation and horizontal dissemination of antibiotic resistance genes (ARGs), with efflux transporter proteins functioning as central intermediaries. Surprisingly, nonpathogenic bacteria, which are usually regarded as harmless, now pose a substantial risk to society due to the presence of efflux transporters, which make them AMR contributors. In this study, the genomic analysis of the nonpathogenic soil bacterium Sphingobium yanoikuyae P4 revealed an RND (Resistance-Nodulation-Division) efflux pump containing the relevant domains responsible for antibiotic efflux. Molecular docking studies revealed high affinities between the efflux pump and various antibiotics, including fluoroquinolones, beta-lactams, and sulfonamides, raising the possibility of their efflux into the environment. Antibiotic susceptibility tests showed reduced susceptibility due to the action of this efflux transporter. Furthermore, the genome analysis suggested the presence of mobile genetic elements and plasmid-associated sequences, indicating possible horizontal gene transfer. The data highlights that both nonpathogenic and pathogenic bacteria are crucial for capturing and transmitting antibiotic-resistance genes. These results confirm the disregard for existing concerns over the substantial role of nonpathogenic environmental bacteria in the ecological resistome and warrant the need to consider such microorganisms in monitoring and controlling AMR.202540737558
7694150.9998The Human Gut Resistome up to Extreme Longevity. Antibiotic resistance (AR) is indisputably a major health threat which has drawn much attention in recent years. In particular, the gut microbiome has been shown to act as a pool of AR genes, potentially available to be transferred to opportunistic pathogens. Herein, we investigated for the first time changes in the human gut resistome during aging, up to extreme longevity, by analyzing shotgun metagenomics data of fecal samples from a geographically defined cohort of 62 urban individuals, stratified into four age groups: young adults, elderly, centenarians, and semisupercentenarians, i.e., individuals aged up to 109 years. According to our findings, some AR genes are similarly represented in all subjects regardless of age, potentially forming part of the core resistome. Interestingly, aging was found to be associated with a higher burden of some AR genes, including especially proteobacterial genes encoding multidrug efflux pumps. Our results warn of possible health implications and pave the way for further investigations aimed at containing AR accumulation, with the ultimate goal of promoting healthy aging. IMPORTANCE Antibiotic resistance is widespread among different ecosystems, and in humans it plays a key role in shaping the composition of the gut microbiota, enhancing the ecological fitness of certain bacterial populations when exposed to antibiotics. A considerable component of the definition of healthy aging and longevity is associated with the structure of the gut microbiota, and, in this regard, the presence of antibiotic-resistant bacteria is critical to many pathologies that come about with aging. However, the structure of the resistome has not yet been sufficiently elucidated. Here, we show distinct antibiotic resistance assets and specific microbial consortia characterizing the human gut resistome through aging.202134494880
4155160.9998Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. The discovery and use of antimicrobial agents in the last 50 yr has been one of medicine's greatest achievements. These agents have reduced morbidity and mortality of humans and animals and have directly contributed to human's increased life span. However, bacteria are becoming increasingly resistant to these agents by mutations, which alter existing bacterial proteins, and/or acquisition of new genes, which provide new proteins. The latter are often associated with mobile elements that can be exchanged quickly across bacterial populations and may carry multiple antibiotic genes for resistance. In some case, virulence factors are also found on these same mobile elements. There is mounting evidence that antimicrobial use in agriculture, both plant and animal, and for environmental purposes does influence the antimicrobial resistant development in bacteria important in humans and in reverse. In this article, we will examine the genes which confer resistance to tetracycline, macrolide-lincosamide-streptogramin (MLS), trimethoprim, and sulfonamide.200211936257
9406170.9998Proteomics as the final step in the functional metagenomics study of antimicrobial resistance. The majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the genomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient to rely on the identification of putative resistance genes, we must also determine if the resultant proteins confer a resistant phenotype. This will require an analysis pipeline that extends from the extraction of environmental DNA, to the identification and analysis of potential resistance genes and their resultant proteins and phenotypes. This review focuses on the application of functional metagenomics and proteomics to study antimicrobial resistance in diverse environments.201525784907
4070180.9998Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens.201830555448
4035190.9998Discovery of novel antibiotic resistance genes through metagenomics. Antibiotic resistance (AR) represents a challenge for the treatment of infectious diseases. Traditionally, antibiotic resistance determinants have been retrieved from culturable bacteria which represent a minor fraction of the total microbial diversity found in natural environments such as soils. In this review, we summarize recent advances in the study of antibiotic resistance using two main culture-independent approaches: sequence-based metagenomics and functional metagenomics.201425564024