Soil Amoebae Are Unexpected Hotspots of Environmental Antibiotics and Antibiotic Resistance Genes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
768201.0000Soil Amoebae Are Unexpected Hotspots of Environmental Antibiotics and Antibiotic Resistance Genes. Antibiotic resistance poses a significant threat to human health. While most studies focus on bacteria, interactions between antibiotics and other crucial microbial groups like protists remain uncertain. This study investigates how protists interact with antibiotics and examines how these interactions impact the fate of resistance genes. It reveals that amoebae exhibit high resistance to eight high-risk environmental antibiotics, accumulating significant quantities within their cells. Wild amoeboid strains from distant locations carry substantial antibiotic resistance genes (ARGs) and metal resistance genes (MRGs), with significant heterogeneity within a single species. Amoeboid symbionts and pathogens predominantly carry these genes. Paraburkholderia symbionts have reduced genomes and fewer resistance genes compared to free-living strains, while amoeba-endogenous Stenotrophomonas maltophilia does not exhibit a significantly reduced genome size. This suggests that the amoeboid hosts serve as a temporary medium facilitating its transmission. In summary, the study unveils that soil amoebae represent unexpected hotspots for antibiotics and resistance genes. Future research should assess the effects of antibiotics on often-overlooked protists and explore their role in spreading ARGs and MRGs in ecosystems. Incorporating protists into broader antibiotic resistance research is recommended, highlighting their significance within a One Health perspective.202439584452
768310.9999Antibiotic Resistomes in Plant Microbiomes. Microorganisms associated with plants may alter the traits of the human microbiome important for human health, but this alteration has largely been overlooked. The plant microbiome is an interface between plants and the environment, and provides many ecosystem functions such as improving nutrient uptake and protecting against biotic and abiotic stress. The plant microbiome also represents a major pathway by which humans are exposed to microbes and genes consumed with food, such as pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic-resistance genes. In this review we highlight the main findings on the composition and function of the plant microbiome, and underline the potential of plant microbiomes in the dissemination of antibiotic resistance via food consumption or direct contact.201930890301
645020.9998Protist predation promotes antimicrobial resistance spread through antagonistic microbiome interactions. Antibiotic resistance has grown into a major public health threat. In this study, we reveal predation by protists as an overlooked driver of antibiotic resistance dissemination in the soil microbiome. While previous studies have primarily focused on the distribution of antibiotic resistance genes, our work sheds light on the pivotal role of soil protists in shaping antibiotic resistance dynamics. Using a combination of metagenomics and controlled experiments in this study, we demonstrate that protists cause an increase in antibiotic resistance. We mechanistically link this increase to a fostering of antimicrobial activity in the microbiome. Protist predation gives a competitive edge to bacteria capable of producing antagonistic secondary metabolites, which secondary metabolites promote in turn antibiotic-resistant bacteria. This study provides insights into the complex interplay between protists and soil microbiomes in regulating antibiotic resistance dynamics. This study highlights the importance of top-down control on the spread of antibiotic resistance and directly connects it to cross-kingdom interactions within the microbiome. Managing protist communities may become an important tool to control outbreaks of antibiotic resistance in the environment.202439259188
768130.9998Amoebae contribute to the diversity and fate of antibiotic resistance genes in drinking water system. Free-living amoebae represent a significant eukaryotic group that thrives in drinking water systems, posing considerable risks to water quality due to their inherent pathogenicity and associations with various microorganisms. However, the symbiotic microbial profiles of different amoeba species and the impact of amoeba-bacteria interactions on the antibiotic resistome within drinking water systems remain poorly understood. In this study, we obtained 24 amoeba isolates from tap water, encompassing diverse phyla within the amoeba lineage. Through metagenome sequencing, we uncovered variations in symbiotic microbiome composition across different amoeba species and strains. Notably, amoebae acted as vectors for human pathogens, including bacteria and viruses. The majority of symbionts carried multiple antibiotic-resistance genes and virulence factors. Furthermore, dominant symbiotic species could be cultured independently, underscoring the critical role of amoebae in preserving and transmitting antibiotic-resistant opportunistic pathogens in drinking water systems. Disinfection experiments demonstrated highly diverse viability of amoebae and their protective capabilities for symbionts against chlorine disinfection. Our findings expand the germplasm bank for amoebae and symbiotic bacteria derived from tap water and emphasize the necessity for further research on amoeba-bacteria symbiosis to ensure drinking water quality and public health safety.202541101029
748040.9998Genetic compatibility and ecological connectivity drive the dissemination of antibiotic resistance genes. The dissemination of mobile antibiotic resistance genes (ARGs) via horizontal gene transfer is a significant threat to public health globally. The flow of ARGs into and between pathogens, however, remains poorly understood, limiting our ability to develop strategies for managing the antibiotic resistance crisis. Therefore, we aim to identify genetic and ecological factors that are fundamental for successful horizontal ARG transfer. We used a phylogenetic method to identify instances of horizontal ARG transfer in ~1 million bacterial genomes. This data was then integrated with >20,000 metagenomes representing animal, human, soil, water, and wastewater microbiomes to develop random forest models that can reliably predict horizontal ARG transfer between bacteria. Our results suggest that genetic incompatibility, measured as nucleotide composition dissimilarity, negatively influences the likelihood of transfer of ARGs between evolutionarily divergent bacteria. Conversely, environmental co-occurrence increases the likelihood, especially in humans and wastewater, in which several environment-specific dissemination patterns are observed. This study provides data-driven ways to predict the spread of ARGs and provides insights into the mechanisms governing this evolutionary process.202540090954
747950.9998Metagenomic investigation reveals bacteriophage-mediated horizontal transfer of antibiotic resistance genes in microbial communities of an organic agricultural ecosystem. Antibiotic resistance has become a serious health concern worldwide. The potential impact of viruses, bacteriophages in particular, on spreading antibiotic resistance genes is still controversial due to the complexity of bacteriophage-bacterial interactions within diverse environments. In this study, we determined the microbiome profiles and the potential antibiotic resistance gene (ARG) transfer between bacterial and viral populations in different agricultural samples using a high-resolution analysis of the metagenomes. The results of this study provide compelling genetic evidence for ARG transfer through bacteriophage-bacteria interactions, revealing the inherent risks associated with bacteriophage-mediated ARG transfer across the agricultural microbiome.202337754684
648260.9998Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils. Bioremediation represents a sustainable approach to remediating petroleum hydrocarbon contaminated soils. One aspect of sustainability includes the sourcing of nutrients used to stimulate hydrocarbon-degrading microbial populations. Organic nutrients such as animal manure and sewage sludge may be perceived as more sustainable than conventional inorganic fertilizers. However, organic nutrients often contain antibiotic residues and resistant bacteria (along with resistance genes and mobile genetic elements). This is further exacerbated since antibiotic resistant bacteria may become more abundant in contaminated soils due to co-selection pressures from pollutants such as metals and hydrocarbons. We review the issues surrounding bioremediation of petroleum-hydrocarbon contaminated soils, as an example, and consider the potential human-health risks from antibiotic resistant bacteria. While awareness is coming to light, the relationship between contaminated land and antibiotic resistance remains largely under-explored. The risk of horizontal gene transfer between soil microorganisms, commensal bacteria and/or human pathogens needs to be further elucidated, and the environmental triggers for gene transfer need to be better understood. Findings of antibiotic resistance from animal manures are emerging, but even fewer bioremediation studies using sewage sludge have made any reference to antibiotic resistance. Resistance mechanisms, including those to antibiotics, have been considered by some authors to be a positive trait associated with resilience in strains intended for bioremediation. Nevertheless, recognition of the potential risks associated with antibiotic resistant bacteria and genes in contaminated soils appears to be increasing and requires further investigation. Careful selection of bacterial candidates for bioremediation possessing minimal antibiotic resistance as well as pre-treatment of organic wastes to reduce selective pressures (e.g., antibiotic residues) are suggested to prevent environmental contamination with antibiotic-resistant bacteria and genes.202032236187
646770.9998The role of biofilms as environmental reservoirs of antibiotic resistance. Antibiotic resistance has become a significant and growing threat to public and environmental health. To face this problem both at local and global scales, a better understanding of the sources and mechanisms that contribute to the emergence and spread of antibiotic resistance is required. Recent studies demonstrate that aquatic ecosystems are reservoirs of resistant bacteria and antibiotic resistance genes as well as potential conduits for their transmission to human pathogens. Despite the wealth of information about antibiotic pollution and its effect on the aquatic microbial resistome, the contribution of environmental biofilms to the acquisition and spread of antibiotic resistance has not been fully explored in aquatic systems. Biofilms are structured multicellular communities embedded in a self-produced extracellular matrix that acts as a barrier to antibiotic diffusion. High population densities and proximity of cells in biofilms also increases the chances for genetic exchange among bacterial species converting biofilms in hot spots of antibiotic resistance. This review focuses on the potential effect of antibiotic pollution on biofilm microbial communities, with special emphasis on ecological and evolutionary processes underlying acquired resistance to these compounds.201526583011
645580.9998Bacteriophages: Underestimated vehicles of antibiotic resistance genes in the soil. Bacteriophages (phages), the most abundant biological entities on Earth, have a significant effect on the composition and dynamics of microbial communities, biogeochemical cycles of global ecosystems, and bacterial evolution. A variety of antibiotic resistance genes (ARGs) have been identified in phage genomes in different soil samples. Phages can mediate the transfer of ARGs between bacteria via transduction. Recent studies have suggested that anthropogenic activities promote phage-mediated horizontal gene transfer events. Therefore, the role of phages in the dissemination of ARGs, which are a potential threat to human health, may be underestimated. However, the contribution of phages to the transfer of ARGs is still poorly understood. Considering the growing and wide concerns of antibiotic resistance, phages should be considered a research focus in the mobile resistome. This review aimed to provide an overview of phages as vehicles of ARGs in soil. Here, we summarized the current knowledge on the diversity and abundance of ARGs in soilborne phages and analyzed the contribution of phages to the horizontal transfer of ARGs. Finally, research deficiencies and future perspectives were discussed. This study provides a reference for preventing and controlling ARG pollution in agricultural systems.202235992716
748290.9998Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. The spread of antibiotic resistance genes (ARGs) poses a substantial threat to human health. Phage-mediated transduction could exacerbate ARG transmission. While several case studies exist, it is yet unclear to what extent phages encode and mobilize ARGs at the global scale and whether human impacts play a role in this across different habitats. Here, we combine 38,605 bacterial genomes, 1432 metagenomes, and 1186 metatranscriptomes across 12 contrasting habitats to explore the distribution of prophages and their cargo ARGs in natural and human-impacted environments. Worldwide, we observe a significant increase in the abundance, diversity, and activity of prophage-encoded ARGs in human-impacted habitats linked with relatively higher risk of past antibiotic exposure. This effect was driven by phage-encoded cargo ARGs that could be mobilized to provide increased resistance in heterologous E. coli host for a subset of analyzed strains. Our findings suggest that human activities have altered bacteria-phage interactions, enriching ARGs in prophages and making ARGs more mobile across habitats globally.202439333115
6483100.9998Soil Component: A Potential Factor Affecting the Occurrence and Spread of Antibiotic Resistance Genes. In recent years, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil have become research hotspots in the fields of public health and environmental ecosystems, but the effects of soil types and soil components on the occurrence and spread of ARGs still lack systematic sorting and in-depth research. Firstly, investigational information about ARB and ARGs contamination of soil was described. Then, existing laboratory studies about the influence of the soil component on ARGs were summarized in the following aspects: the influence of soil types on the occurrence of ARGs during natural or human activities and the control of exogenously added soil components on ARGs from the macro perspectives, the effects of soil components on the HGT of ARGs in a pure bacterial system from the micro perspectives. Following that, the similarities in pathways by which soil components affect HGT were identified, and the potential mechanisms were discussed from the perspectives of intracellular responses, plasmid activity, quorum sensing, etc. In the future, related research on multi-component systems, multi-omics methods, and microbial communities should be carried out in order to further our understanding of the occurrence and spread of ARGs in soil.202336830244
6449110.9998Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. The emergence, evolution and spread of antibiotic resistance genes (ARGs) in the environment represent a global threat to human health. Our knowledge of antibiotic resistance in human-impacted ecosystems is rapidly growing with antibiotic use, organic fertilization and wastewater irrigation identified as key selection pressures. However, the importance of biological interactions, especially predation and competition, as a potential driver of antibiotic resistance in the natural environment with limited anthropogenic disturbance remains largely overlooked. Stress-affected bacteria develop resistance to maximize competition and survival, and similarly bacteria may develop resistance to fight stress under the predation pressure of protists, an essential component of the soil microbiome. In this article, we summarized the major findings for the prevalence of natural ARGs on our planet and discussed the potential selection pressures driving the evolution and development of antibiotic resistance in natural settings. This is the first article that reviewed the potential links between protists and the antibiotic resistance of bacteria, and highlighted the importance of predation by protists as a crucial selection pressure of antibiotic resistance in the absence of anthropogenic disturbance. We conclude that an improved ecological understanding of the protists-bacteria interactions and other biological relationships would greatly expand our ability to predict and mitigate the environmental antibiotic resistance under the context of global change.202031818598
7704120.9998Temporal development and potential interactions between the gut microbiome and resistome in early childhood. Antimicrobial resistance-associated infections have become a major threat to global health. The gut microbiome serves as a major reservoir of bacteria with antibiotic resistance genes; whereas, the temporal development of gut resistome during early childhood and the factors influencing it remain unclear. Moreover, the potential interactions between gut microbiome and resistome still need to be further explored. In this study, we found that antibiotic treatment led to destabilization of the gut microbiome and resistome structural communities, exhibiting a greater impact on the resistome than on the microbiome. The composition of the gut resistome at various developmental stages was influenced by the abundance and richness of different core microbes. First exposure to antibiotics led to a dramatic increase in the number of opportunistic pathogens carrying multidrug efflux pump encoding genes. Multiple factors could influence the gut microbiome and resistome formation. The data may provide new insights into early-life research.IMPORTANCEIn recent years, the irrational or inappropriate use of antibiotics, an important life-saving medical intervention, has led to the emergence and increase of drug-resistant and even multidrug-resistant bacteria. It remains unclear how antibiotic exposure affects various developmental stages of early childhood and how gut core microbes under antibiotic exposure affect the structural composition of the gut resistome. In this study, we focused on early antibiotic exposure and analyzed these questions in detail using samples from infants at various developmental stages. The significance of our research is to elucidate the impact of early antibiotic exposure on the dynamic patterns of the gut resistome in children and to provide new insights for early-life studies.202438193687
6465130.9998Knowledge gaps in the assessment of antimicrobial resistance in surface waters. The spread of antibiotic resistance in the water environment has been widely described. However, still many knowledge gaps exist regarding the selection pressure from antibiotics, heavy metals and other substances present in surface waters as a result of anthropogenic activities, as well as the extent and impact of this phenomenon on aquatic organisms and humans. In particular, the relationship between environmental concentrations of antibiotics and the acquisition of ARGs by antibiotic-sensitive bacteria as well as the impact of heavy metals and other selective agents on antimicrobial resistance (AMR) need to be defined. Currently, established safety values are based on the effects of antibiotic toxicity neglecting the question of AMR spread. In turn, risk assessment of antibiotics in waterbodies remains a complex question implicating multiple variables and unknowns reinforced by the lack of harmonized protocols and official guidelines. In the present review, we discussed current state-of-the-art and the knowledge gaps related to pressure exerted by antibiotics and heavy metals on aquatic environments and their relationship to the spread of AMR. Along with this latter, we reflected on (i) the risk assessment in surface waters, (ii) selective pressures contributing to its transfer and propagation and (iii) the advantages of metagenomics in investigating AMR. Furthermore, the role of microplastics in co-selection for metal and antibiotic resistance, together with the need for more studies in freshwater are highlighted.202134625810
7481140.9998The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes. Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens. IMPORTANCE: The development of antibiotic resistance threatens our modern medical achievements. The dissemination of antibiotic resistance can be largely attributed to the transfer of bacterial mobile antibiotic resistance genes (ARGs). Revealing the transfer network of these genes in bacteria and the forces driving the gene flow is of great importance for controlling and predicting the emergence of antibiotic resistance in the clinic. Here, by analyzing tens of thousands of bacterial genomes and millions of human and animal gut bacterial genes, we reveal that the transfer of mobile ARGs is mainly controlled by bacterial phylogeny but under ecological constraints. We also found that dozens of ARGs are transferred between the human and animal gut and human pathogens. This work demonstrates the whole profile of mobile ARGs and their transfer network in bacteria and provides further insight into the evolution and spread of antibiotic resistance in nature.201627613679
6430150.9998Plastic leachate exposure drives antibiotic resistance and virulence in marine bacterial communities. Plastic pollution is a serious global problem, with more than 12 million tonnes of plastic waste entering the oceans every year. Plastic debris can have considerable impacts on microbial community structure and functions in marine environments, and has been associated with an enrichment in pathogenic bacteria and antimicrobial resistance (AMR) genes. However, our understanding of these impacts is largely restricted to microbial assemblages on plastic surfaces. It is therefore unclear whether these effects are driven by the surface properties of plastics, providing an additional niche for certain microbes residing in biofilms, and/or chemicals leached from plastics, the effects of which could extend to surrounding planktonic bacteria. Here, we examine the effects of polyvinyl chloride (PVC) plastic leachate exposure on the relative abundance of genes associated with bacterial pathogenicity and AMR within a seawater microcosm community. We show that PVC leachate, in the absence of plastic surfaces, drives an enrichment in AMR and virulence genes. In particular, leachate exposure significantly enriches AMR genes that confer multidrug, aminoglycoside and peptide antibiotic resistance. Additionally, enrichment of genes involved in the extracellular secretion of virulence proteins was observed among pathogens of marine organisms. This study provides the first evidence that chemicals leached from plastic particles alone can enrich genes related to microbial pathogenesis within a bacterial community, expanding our knowledge of the environmental impacts of plastic pollution with potential consequences for human and ecosystem health.202337019264
6461160.9998Implications of indoor microbial ecology and evolution on antibiotic resistance. The indoor environment is an important source of microbial exposures for its human occupants. While we naturally want to favor positive health outcomes, built environment design and operation may counter-intuitively favor negative health outcomes, particularly with regard to antibiotic resistance. Indoor environments contain microbes from both human and non-human origins, providing a unique venue for microbial interactions, including horizontal gene transfer. Furthermore, stressors present in the built environment could favor the exchange of genetic material in general and the retention of antibiotic resistance genes in particular. Intrinsic and acquired antibiotic resistance both pose a potential threat to human health; these phenomena need to be considered and controlled separately. The presence of both environmental and human-associated microbes, along with their associated antibiotic resistance genes, in the face of stressors, including antimicrobial chemicals, creates a unique opportunity for the undesirable spread of antibiotic resistance. In this review, we summarize studies and findings related to various interactions between human-associated bacteria, environmental bacteria, and built environment conditions, and particularly their relation to antibiotic resistance, aiming to guide "healthy" building design.202031591493
9641170.9998Microplastics pollution in the ocean: Potential carrier of resistant bacteria and resistance genes. Microplastics pollution in marine environments is concerning. Microplastics persist and accumulate in various sections of the ocean where they present opportunity for micropollutant accumulation and microbial colonisation. Even though biofilm formation on plastics was first reported in the 1970's, it is only in recent years were plastic associated biofilms have gained research attention. Plastic surfaces pose a problem as they are a niche ready for colonisation by diverse biofilm assemblages, composed of specific bacterial communities and putative pathogens prone to acquiring ARGs and resistance in the biofilm. However, the nature of antibiotic resistance on aquatic plastic debris is not yet fully understood and remains a concern. Given the inevitable increase of plastic production and waste generation, microplastics released into the environment may prove to be problematic. This review explores microplastic waste in the ocean and possible concerns that may arise from the presence of microplastics in conjunction with favourable conditions for the development and dispersal of antibiotic resistance in the ocean and food web.202134562691
9642180.9998Towards the fate of antibiotics and the development of related resistance genes in stream biofilms. Antibiotics are ubiquitously found in natural surface waters and cause great harm to aquatic organisms. Stream biofilm is a complex and active community composed of algae, bacteria, fungi and other microorganisms, which mainly adheres to solid substances such as rocks and sediments. The durability and diverse structural and metabolic characteristics of biofilms make them a representative of microbial life in aquatic micrecosystems and can reflect major ecosystem processes. Microorganisms and extracellular polymeric substances in biofilms can adsorb and actively accumulate antibiotics. Therefore, biofilms are excellent biological indicators for detecting antibiotic in polluted aquatic environments, but the biotransformation potential of stream biofilms for antibiotics has not been fully explored in the aquatic environment. The characteristics of stream biofilm, such as high abundance and activity of bacterial community, wide contact area with pollutants, etc., which increases the opportunity of biotransformation of antibiotics in biofilm and contribute to bioremediation to improve ecosystem health. Recent studies have demonstrated that both exposure to high and sub-minimum inhibitory concentrations of antibiotics may drive the development of antibiotic resistance genes (ARGs) in natural stream biofilms, which are susceptible to the effects of antibiotic residues, microbial communities and mobile genetic elements, etc. On the basis of peer-reviewed papers, this review explores the distribution behavior of antibiotics in stream biofilms and the contribution of biofilms to the acquisition and spread of antibiotic resistance. Considering that antibiotics and ARGs alter the structure and ecological functions of natural microbial communities and pose a threat to river organisms and human health, our research findings provide comprehensive insights into the migration, transformation, and bioavailability of antibiotics in biofilms.202337454845
6460190.9998Biocides as drivers of antibiotic resistance: A critical review of environmental implications and public health risks. The widespread and indiscriminate use of biocides poses significant threats to global health, socioeconomic development, and environmental sustainability by accelerating antibiotic resistance. Bacterial resistance development is highly complex and influenced significantly by environmental factors. Increased biocide usage in households, agriculture, livestock farming, industrial settings, and hospitals produces persistent chemical residues that pollute soil and aquatic environments. Such contaminants contribute to the selection and proliferation of resistant bacteria and antimicrobial resistance genes (ARGs), facilitating their dissemination among humans, animals, and ecosystems. In this review, we conduct a critical assessment of four significant issues pertaining to this topic. Specifically, (i) the role of biocides in exerting selective pressure within the environmental resistome, thereby promoting the proliferation of resistant microbial populations and contributing to the global spread of antimicrobial resistance genes (ARGs); (ii) the role of biocides in triggering transient phenotypic adaptations in bacteria, including efflux pump overexpression, membrane alterations, and reduced porin expression, which often result in cross-resistance to multiple antibiotics; (iii) the capacity of biocides to disrupt bacteria and make the genetic content accessible, releasing DNA into the environment that remains intact under certain conditions, facilitating horizontal gene transfer and the spread of resistance determinants; (iv) the capacity of biocides to disrupt bacterial cells, releasing intact DNA into the environment and enhancing horizontal gene transfer of resistance determinants; and (iv) the selective interactions between biocides and bacterial biofilms in the environment, strengthening biofilm cohesion, inducing resistance mechanisms, and creating reservoirs for resistant microorganisms and ARG dissemination. Collectively, this review highlights the critical environmental and public health implications of biocide use, emphasizing an urgent need for strategic interventions to mitigate their role in antibiotic resistance proliferation.202540230384