# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7680 | 0 | 1.0000 | Unveiling the Gut Microbiota and Resistome of Wild Cotton Mice, Peromyscus gossypinus, from Heavy Metal- and Radionuclide-Contaminated Sites in the Southeastern United States. The prevalence of antibiotic resistance genes (ARGs) can be driven by direct selection from antibiotic use and indirect selection from substances such as heavy metals (HMs). While significant progress has been made to characterize the influence of HMs on the enrichment and dissemination of ARGs in the environment, there is still much we do not know. To fill this knowledge gap, we present a comprehensive analysis of gut bacteria associated with wild cotton mice (Peromyscus gossypinus) trapped from several areas affected by legacies of HM and radionuclide contamination. We explore how these contaminants affect gut microbial community (GMC) composition and diversity and the enrichment of antibiotic, biocide, and metal resistance genes. Although we were able to identify that a myriad of co-occurring antimicrobial and HM resistance genes appear in mice from all areas, including those without a history of contamination, the proportions of co-occurring ARGs and metal resistance genes (MRGs) are higher in sites with radionuclide contamination. These results support those from several previous studies and enhance our understanding of the coselection process, while providing new insights into the ubiquity of antimicrobial resistance in the resistome of wild animals. IMPORTANCE Antimicrobial resistance is a serious global public health concern because of its prevalence and ubiquitous distribution. The rapid dissemination of antibiotic resistance genes is thought to be the result of the massive overuse of antibiotics in agriculture and therapeutics. However, previous studies have demonstrated that the spread of antibiotic resistance genes can also be influenced by heavy metal contamination. This coselection phenomenon, whereby different resistance determinants are genetically linked on the same genetic element (coresistance) or a single genetic element provides resistance to multiple antimicrobial agents (cross-resistance), has profound clinical and environmental implications. In contrast to antibiotics, heavy metals can persist in the environment as a selection pressure for long periods of time. Thus, it is important to understand how antibiotic resistance genes are distributed in the environment and to what extent heavy metal contaminants may be driving their selection, which we have done in one environmental setting. | 2021 | 34431703 |
| 4036 | 1 | 0.9999 | Man-made microbial resistances in built environments. Antimicrobial resistance is a serious threat to global public health, but little is known about the effects of microbial control on the microbiota and its associated resistome. Here we compare the microbiota present on surfaces of clinical settings with other built environments. Using state-of-the-art metagenomics approaches and genome and plasmid reconstruction, we show that increased confinement and cleaning is associated with a loss of microbial diversity and a shift from Gram-positive bacteria, such as Actinobacteria and Firmicutes, to Gram-negative such as Proteobacteria. Moreover, the microbiome of highly maintained built environments has a different resistome when compared to other built environments, as well as a higher diversity in resistance genes. Our results highlight that the loss of microbial diversity correlates with an increase in resistance, and the need for implementing strategies to restore bacterial diversity in certain built environments. | 2019 | 30814504 |
| 3994 | 2 | 0.9999 | Environmental Biofilms as Reservoirs for Antimicrobial Resistance. Characterizing the response of microbial communities to a range of antibiotic concentrations is one of the strategies used to understand the impact of antibiotic resistance. Many studies have described the occurrence and prevalence of antibiotic resistance in microbial communities from reservoirs such as hospitals, sewage, and farm feedlots, where bacteria are often exposed to high and/or constant concentrations of antibiotics. Outside of these sources, antibiotics generally occur at lower, sub-minimum inhibitory concentrations (sub-MICs). The constant exposure to low concentrations of antibiotics may serve as a chemical "cue" that drives development of antibiotic resistance. Low concentrations of antibiotics have not yet been broadly described in reservoirs outside of the aforementioned environments, nor is the transfer and dissemination of antibiotic resistant bacteria and genes within natural microbial communities fully understood. This review will thus focus on low antibiotic-concentration environmental reservoirs and mechanisms that are important in the dissemination of antibiotic resistance to help identify key knowledge gaps concerning the environmental resistome. | 2021 | 34970233 |
| 3993 | 3 | 0.9998 | Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Antibiotic resistance is a growing problem which threatens modern healthcare globally. Resistance has traditionally been viewed as a clinical problem, but recently non-clinical environments have been highlighted as an important factor in the dissemination of antibiotic resistance genes (ARGs). Horizontal gene transfer (HGT) events are likely to be common in aquatic environments; integrons in particular are well suited for mediating environmental dissemination of ARGs. A growing body of evidence suggests that ARGs are ubiquitous in natural environments. Particularly, elevated levels of ARGs and integrons in aquatic environments are correlated to proximity to anthropogenic activities. The source of this increase is likely to be routine discharge of antibiotics and resistance genes, for example, via wastewater or run-off from livestock facilities and agriculture. While very high levels of antibiotic contamination are likely to select for resistant bacteria directly, the role of sub-inhibitory concentrations of antibiotics in environmental antibiotic resistance dissemination remains unclear. In vitro studies have shown that low levels of antibiotics can select for resistant mutants and also facilitate HGT, indicating the need for caution. Overall, it is becoming increasingly clear that the environment plays an important role in dissemination of antibiotic resistance; further studies are needed to elucidate key aspects of this process. Importantly, the levels of environmental antibiotic contamination at which resistant bacteria are selected for and HGT is facilitated at should be determined. This would enable better risk analyses and facilitate measures for preventing dissemination and development of antibiotic resistance in the environment. | 2015 | 26356096 |
| 3997 | 4 | 0.9998 | Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. The high and sometimes inappropriate use of antibiotics has accelerated the development of antibiotic resistance, creating a major challenge for the sustainable treatment of infections world-wide. Bacterial communities often respond to antibiotic selection pressure by acquiring resistance genes, i.e. mobile genetic elements that can be shared horizontally between species. Environmental microbial communities maintain diverse collections of resistance genes, which can be mobilized into pathogenic bacteria. Recently, exceptional environmental releases of antibiotics have been documented, but the effects on the promotion of resistance genes and the potential for horizontal gene transfer have yet received limited attention. In this study, we have used culture-independent shotgun metagenomics to investigate microbial communities in river sediments exposed to waste water from the production of antibiotics in India. Our analysis identified very high levels of several classes of resistance genes as well as elements for horizontal gene transfer, including integrons, transposons and plasmids. In addition, two abundant previously uncharacterized resistance plasmids were identified. The results suggest that antibiotic contamination plays a role in the promotion of resistance genes and their mobilization from environmental microbes to other species and eventually to human pathogens. The entire life-cycle of antibiotic substances, both before, under and after usage, should therefore be considered to fully evaluate their role in the promotion of resistance. | 2011 | 21359229 |
| 7694 | 5 | 0.9998 | The Human Gut Resistome up to Extreme Longevity. Antibiotic resistance (AR) is indisputably a major health threat which has drawn much attention in recent years. In particular, the gut microbiome has been shown to act as a pool of AR genes, potentially available to be transferred to opportunistic pathogens. Herein, we investigated for the first time changes in the human gut resistome during aging, up to extreme longevity, by analyzing shotgun metagenomics data of fecal samples from a geographically defined cohort of 62 urban individuals, stratified into four age groups: young adults, elderly, centenarians, and semisupercentenarians, i.e., individuals aged up to 109 years. According to our findings, some AR genes are similarly represented in all subjects regardless of age, potentially forming part of the core resistome. Interestingly, aging was found to be associated with a higher burden of some AR genes, including especially proteobacterial genes encoding multidrug efflux pumps. Our results warn of possible health implications and pave the way for further investigations aimed at containing AR accumulation, with the ultimate goal of promoting healthy aging. IMPORTANCE Antibiotic resistance is widespread among different ecosystems, and in humans it plays a key role in shaping the composition of the gut microbiota, enhancing the ecological fitness of certain bacterial populations when exposed to antibiotics. A considerable component of the definition of healthy aging and longevity is associated with the structure of the gut microbiota, and, in this regard, the presence of antibiotic-resistant bacteria is critical to many pathologies that come about with aging. However, the structure of the resistome has not yet been sufficiently elucidated. Here, we show distinct antibiotic resistance assets and specific microbial consortia characterizing the human gut resistome through aging. | 2021 | 34494880 |
| 9630 | 6 | 0.9998 | Novel Insights into Selection for Antibiotic Resistance in Complex Microbial Communities. Recent research has demonstrated that selection for antibiotic resistance occurs at very low antibiotic concentrations in single-species experiments, but the relevance of these findings when species are embedded in complex microbial communities is unclear. We show that the strength of selection for naturally occurring resistance alleles in a complex community remains constant from low subinhibitory to above clinically relevant concentrations. Selection increases with antibiotic concentration before reaching a plateau where selection remains constant over a 2-order-magnitude concentration range. This is likely to be due to cross protection of the susceptible bacteria in the community following rapid extracellular antibiotic degradation by the resistant population, shown experimentally through a combination of chemical quantification and bacterial growth experiments. Metagenome and 16S rRNA analyses of sewage-derived bacterial communities evolved under cefotaxime exposure show preferential enrichment for bla(CTX-M) genes over all other beta-lactamase genes, as well as positive selection and co-selection for antibiotic resistant, opportunistic pathogens. These findings have far-reaching implications for our understanding of the evolution of antibiotic resistance, by challenging the long-standing assumption that selection occurs in a dose-dependent manner.IMPORTANCE Antibiotic resistance is one of the greatest global issues facing society. Still, comparatively little is known about selection for resistance at very low antibiotic concentrations. We show that the strength of selection for clinically important resistance genes within a complex bacterial community can remain constant across a large antibiotic concentration range (wide selective space). Therefore, largely understudied ecological compartments could be just as important as clinical environments for selection of antibiotic resistance. | 2018 | 30042197 |
| 6465 | 7 | 0.9998 | Knowledge gaps in the assessment of antimicrobial resistance in surface waters. The spread of antibiotic resistance in the water environment has been widely described. However, still many knowledge gaps exist regarding the selection pressure from antibiotics, heavy metals and other substances present in surface waters as a result of anthropogenic activities, as well as the extent and impact of this phenomenon on aquatic organisms and humans. In particular, the relationship between environmental concentrations of antibiotics and the acquisition of ARGs by antibiotic-sensitive bacteria as well as the impact of heavy metals and other selective agents on antimicrobial resistance (AMR) need to be defined. Currently, established safety values are based on the effects of antibiotic toxicity neglecting the question of AMR spread. In turn, risk assessment of antibiotics in waterbodies remains a complex question implicating multiple variables and unknowns reinforced by the lack of harmonized protocols and official guidelines. In the present review, we discussed current state-of-the-art and the knowledge gaps related to pressure exerted by antibiotics and heavy metals on aquatic environments and their relationship to the spread of AMR. Along with this latter, we reflected on (i) the risk assessment in surface waters, (ii) selective pressures contributing to its transfer and propagation and (iii) the advantages of metagenomics in investigating AMR. Furthermore, the role of microplastics in co-selection for metal and antibiotic resistance, together with the need for more studies in freshwater are highlighted. | 2021 | 34625810 |
| 4025 | 8 | 0.9998 | Metagenomic Insights into Transferable Antibiotic Resistance in Oral Bacteria. Antibiotic resistance is considered one of the greatest threats to global public health. Resistance is often conferred by the presence of antibiotic resistance genes (ARGs), which are readily found in the oral microbiome. In-depth genetic analyses of the oral microbiome through metagenomic techniques reveal a broad distribution of ARGs (including novel ARGs) in individuals not recently exposed to antibiotics, including humans in isolated indigenous populations. This has resulted in a paradigm shift from focusing on the carriage of antibiotic resistance in pathogenic bacteria to a broader concept of an oral resistome, which includes all resistance genes in the microbiome. Metagenomics is beginning to demonstrate the role of the oral resistome and horizontal gene transfer within and between commensals in the absence of selective pressure, such as an antibiotic. At the chairside, metagenomic data reinforce our need to adhere to current antibiotic guidelines to minimize the spread of resistance, as such data reveal the extent of ARGs without exposure to antimicrobials and the ecologic changes created in the oral microbiome by even a single dose of antibiotics. The aim of this review is to discuss the role of metagenomics in the investigation of the oral resistome, including the transmission of antibiotic resistance in the oral microbiome. Future perspectives, including clinical implications of the findings from metagenomic investigations of oral ARGs, are also considered. | 2016 | 27183895 |
| 3996 | 9 | 0.9998 | Antibiotic resistance gene spread due to manure application on agricultural fields. The usage of antibiotics in animal husbandry has promoted the development and abundance of antibiotic resistance in farm environments. Manure has become a reservoir of resistant bacteria and antibiotic compounds, and its application to agricultural soils is assumed to significantly increase antibiotic resistance genes and selection of resistant bacterial populations in soil. The genome location of resistance genes is likely to shift towards mobile genetic elements such as broad-host-range plasmids, integrons, and transposable elements. Horizontal transfer of these elements to bacteria adapted to soil or other habitats supports their environmental transmission independent of the original host. The human exposure to soil-borne resistance has yet to be determined, but is likely to be severely underestimated. | 2011 | 21546307 |
| 6464 | 10 | 0.9998 | The potential contribution of aquatic wildlife to antibiotic resistance dissemination in freshwater ecosystems: A review. Antibiotic resistance (AR) is one of the major health threats of our time. The presence of antibiotics in the environment and their continuous release from sewage treatment plants, chemical manufacturing plants and animal husbandry, agriculture and aquaculture, result in constant selection pressure on microbial organisms. This presence leads to the emergence, mobilization, horizontal gene transfer and a selection of antibiotic resistance genes, resistant bacteria and mobile genetic elements. Under these circumstances, aquatic wildlife is impacted in all compartments, including freshwater organisms with partially impermeable microbiota. In this narrative review, recent advancements in terms of occurrence of antibiotics and antibiotic resistance genes in sewage treatment plant effluents source compared to freshwater have been examined, occurrence of antibiotic resistance in wildlife, as well as experiments on antibiotic exposure. Based on this current state of knowledge, we propose the hypothesis that freshwater aquatic wildlife may play a crucial role in the dissemination of antibiotic resistance within the environment. Specifically, we suggest that organisms with high bacterial density tissues, which are partially isolated from the external environment, such as fishes and amphibians, could potentially be reservoirs and amplifiers of antibiotic resistance in the environment, potentially favoring the increase of the abundance of antibiotic resistance genes and resistant bacteria. Potential avenues for further research (trophic transfer, innovative exposure experiment) and action (biodiversity eco-engineering) are finally proposed. | 2024 | 38599270 |
| 4027 | 11 | 0.9998 | Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. A global rise in antimicrobial resistance among pathogenic bacteria has proved to be a major public health threat, with the rate of multidrug-resistant bacterial infections increasing over time. The gut microbiome has been studied as a reservoir of antibiotic resistance genes (ARGs) that can be transferred to bacterial pathogens via horizontal gene transfer (HGT) of conjugative plasmids and mobile genetic elements (the gut resistome). Advances in metagenomic sequencing have facilitated the identification of resistome modulators, including live microbial therapeutics such as probiotics and fecal microbiome transplantation that can either expand or reduce the abundances of ARG-carrying bacteria in the gut. While many different gut microbes encode for ARGs, they are not uniformly distributed across, or transmitted by, various members of the microbiome, and not all are of equal clinical relevance. Both experimental and theoretical approaches in microbial ecology have been applied to understand differing frequencies of ARG horizontal transfer between commensal microbes as well as between commensals and pathogens. In this commentary, we assess the evidence for the role of commensal gut microbes in encoding antimicrobial resistance genes, the degree to which they are shared both with other commensals and with pathogens, and the host and environmental factors that can impact resistome dynamics. We further discuss novel sequencing-based approaches for identifying ARGs and predicting future transfer events of clinically relevant ARGs from commensals to pathogens. | 2022 | 35332832 |
| 3989 | 12 | 0.9998 | Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area. Aquaculture is the productive activity that will play a crucial role in the challenges of the millennium, such as the need for proteins that support humans and the respect for the environment. Aquaculture is an important economic activity in the Mediterranean basin. A great impact is presented, however, by aquaculture practices as they involve the use of antibiotics for treatment and prophylaxis. As a consequence of the use of antibiotics in aquaculture, antibiotic resistance is induced in the surrounding bacteria in the column water, sediment, and fish-associated bacterial strains. Through horizontal gene transfer, bacteria can diffuse antibiotic-resistance genes and mobile resistance genes further spreading genetic determinants. Once triggered, antibiotic resistance easily spreads among aquatic microbial communities and, from there, can reach human pathogenic bacteria, making vain the use of antibiotics for human health. Climate change claims a significant role in this context, as rising temperatures can affect cell physiology in bacteria in the same way as antibiotics, causing antibiotic resistance to begin with. The Mediterranean Sea represents a 'hot spot' in terms of climate change and aspects of antibiotic resistance in aquaculture in this area can be significantly amplified, thus increasing threats to human health. Practices must be adopted to counteract negative impacts on human health, with a reduction in the use of antibiotics as a pivotal point. In the meantime, it is necessary to act against climate change by reducing anthropogenic impacts, for example by reducing CO(2) emissions into the atmosphere. The One Health type approach, which involves the intervention of different skills, such as veterinary, ecology, and medicine in compliance with the principles of sustainability, is necessary and strongly recommended to face these important challenges for human and animal health, and for environmental safety in the Mediterranean area. | 2021 | 34073520 |
| 6469 | 13 | 0.9998 | From environment to clinic: the role of pesticides in antimicrobial resistance. Antimicrobial resistance (AMR) in pathogens has been associated mainly with excessive use of antibiotics. Most studies of resistance have focused on clinical pathogens; however, microorganisms are exposed to numerous anthropogenic substances. Few studies have sought to determine the effects of chemical substances on microorganisms. Exposure to these substances may contribute to increased rates of AMR. Understanding microorganism communities in natural environments and AMR mechanisms under the effects of anthropogenic substances, such as pesticides, is important to addressing the current crisis of antimicrobial resistance. This report draws attention to molecules, rather than antibiotics, that are commonly used in agrochemicals and may be involved in developing AMR in non-clinical environments, such as soil. This report examines pesticides as mediators for the appearance of AMR, and as a route for antibiotic resistance genes and antimicrobial resistant bacteria to the anthropic environment. Available evidence suggests that the natural environment may be a key dissemination route for antibiotic-resistant genes. Understanding the interrelationship of soil, water, and pesticides is fundamental to raising awareness of the need for environmental monitoring programs and overcoming the current crisis of AMR. | 2020 | 32973897 |
| 3988 | 14 | 0.9998 | The Phenomenon of Antibiotic Resistance in the Polar Regions: An Overview of the Global Problem. The increasing prevalence of antibiotic resistance is a global problem in human and animal health. This leads to a reduction in the therapeutic effectiveness of the measures used so far and to the limitation of treatment options, which may pose a threat to human health and life. The problem of phenomenon of antibiotic resistance affects more and more the polar regions. This is due to the increase in tourist traffic and the number of people staying at research stations, unmodernised sewage systems in inhabited areas, as well as the migration of animals or the movement of microplastics, which may contain resistant bacteria. Research shows that the presence of antibiotic resistance genes is more dominant in zones of human and wildlife influence than in remote areas. In a polluted environment, there is evidence of a direct correlation between human activity and the spread and survival of antibiotic-resistant bacteria. Attention should be paid to the presence of resistance to synthetic and semi-synthetic antibiotics in the polar regions, which is likely to be correlated with human presence and activity, and possible steps to be taken. We need to understand many more aspects of this, such as bacterial epigenetics and environmental stress, in order to develop effective strategies for minimizing the spread of antibiotic resistance genes. Studying the diversity and abundance of antibiotic resistance genes in regions with less anthropogenic activity could provide insight into the diversity of primary genes and explain the historical evolution of antibiotic resistance. | 2023 | 37034396 |
| 6461 | 15 | 0.9998 | Implications of indoor microbial ecology and evolution on antibiotic resistance. The indoor environment is an important source of microbial exposures for its human occupants. While we naturally want to favor positive health outcomes, built environment design and operation may counter-intuitively favor negative health outcomes, particularly with regard to antibiotic resistance. Indoor environments contain microbes from both human and non-human origins, providing a unique venue for microbial interactions, including horizontal gene transfer. Furthermore, stressors present in the built environment could favor the exchange of genetic material in general and the retention of antibiotic resistance genes in particular. Intrinsic and acquired antibiotic resistance both pose a potential threat to human health; these phenomena need to be considered and controlled separately. The presence of both environmental and human-associated microbes, along with their associated antibiotic resistance genes, in the face of stressors, including antimicrobial chemicals, creates a unique opportunity for the undesirable spread of antibiotic resistance. In this review, we summarize studies and findings related to various interactions between human-associated bacteria, environmental bacteria, and built environment conditions, and particularly their relation to antibiotic resistance, aiming to guide "healthy" building design. | 2020 | 31591493 |
| 7679 | 16 | 0.9998 | The High Risk of Bivalve Farming in Coastal Areas With Heavy Metal Pollution and Antibiotic-Resistant Bacteria: A Chilean Perspective. Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood. | 2022 | 35463633 |
| 7704 | 17 | 0.9998 | Temporal development and potential interactions between the gut microbiome and resistome in early childhood. Antimicrobial resistance-associated infections have become a major threat to global health. The gut microbiome serves as a major reservoir of bacteria with antibiotic resistance genes; whereas, the temporal development of gut resistome during early childhood and the factors influencing it remain unclear. Moreover, the potential interactions between gut microbiome and resistome still need to be further explored. In this study, we found that antibiotic treatment led to destabilization of the gut microbiome and resistome structural communities, exhibiting a greater impact on the resistome than on the microbiome. The composition of the gut resistome at various developmental stages was influenced by the abundance and richness of different core microbes. First exposure to antibiotics led to a dramatic increase in the number of opportunistic pathogens carrying multidrug efflux pump encoding genes. Multiple factors could influence the gut microbiome and resistome formation. The data may provide new insights into early-life research.IMPORTANCEIn recent years, the irrational or inappropriate use of antibiotics, an important life-saving medical intervention, has led to the emergence and increase of drug-resistant and even multidrug-resistant bacteria. It remains unclear how antibiotic exposure affects various developmental stages of early childhood and how gut core microbes under antibiotic exposure affect the structural composition of the gut resistome. In this study, we focused on early antibiotic exposure and analyzed these questions in detail using samples from infants at various developmental stages. The significance of our research is to elucidate the impact of early antibiotic exposure on the dynamic patterns of the gut resistome in children and to provide new insights for early-life studies. | 2024 | 38193687 |
| 4284 | 18 | 0.9998 | Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. Environmental health is a critical concern, continuously contaminated by physical and biological components (viz., anthropogenic activity), which adversely affect on biodiversity, ecosystems and human health. Nonetheless, environmental pollution has great impact on microbial communities, especially bacteria, which try to evolve in changing environment. For instance, during the course of adaptation, bacteria easily become resistance to antibiotics and heavy metals. Antibiotic resistance genes are now one of the most vital pollutants, provided as a source of frequent horizontal gene transfer. In this review, the environmental cause of multidrug resistance (MDR) that was supposed to be driven by either heavy metals or combination of environmental factors was essentially reviewed, especially focussed on the correlation between accumulation of heavy metals and development of MDR by bacteria. This kind of correlation was seemed to be non-significant, i.e. paradoxical. Gram-positive bacteria accumulating much of toxic heavy metal (i.e. highly stress tolerance) were unlikely to become MDR, whereas Gram-negative bacteria that often avoid accumulation of toxic heavy metal by efflux pump systems were come out to be more prone to MDR. So far, other than antibiotic contaminant, no such available data strongly support the direct influence of heavy metals in bacterial evolution of MDR; combinations of factors may drive the evolution of antibiotic resistance. Therefore, Gram-positive bacteria are most likely to be an efficient member in treatment of industrial waste water, especially in the removal of heavy metals, perhaps inducing the less chance of antibiotic resistance pollution in the environment. | 2021 | 33811263 |
| 4101 | 19 | 0.9998 | What Is the Role of the Environment in the Emergence of Novel Antibiotic Resistance Genes? A Modeling Approach. It is generally accepted that intervention strategies to curb antibiotic resistance cannot solely focus on human and veterinary medicine but must also consider environmental settings. While the environment clearly has a role in transmission of resistant bacteria, its role in the emergence of novel antibiotic resistance genes (ARGs) is less clear. It has been suggested that the environment constitutes an enormous recruitment ground for ARGs to pathogens, but its extent is practically unknown. We have constructed a model framework for resistance emergence and used available quantitative data on relevant processes to identify limiting steps in the appearance of ARGs in human pathogens. We found that in a majority of possible scenarios, the environment would only play a minor role in the emergence of novel ARGs. However, the uncertainty is enormous, highlighting an urgent need for more quantitative data. Specifically, more data is most needed on the fitness costs of ARG carriage, the degree of dispersal of resistant bacteria from the environment to humans, and the rates of mobilization and horizontal transfer of ARGs. This type of data is instrumental to determine which processes should be targeted for interventions to curb development and transmission of ARGs in the environment. | 2021 | 34792330 |