Safely coupling livestock and crop production systems: how rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure? - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
765201.0000Safely coupling livestock and crop production systems: how rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure? Animal manures recycled onto crop production land carry antibiotic-resistant bacteria. The present study evaluated the fate in soil of selected genes associated with antibiotic resistance or genetic mobility in field plots cropped to vegetables and managed according to normal farming practice. Referenced to unmanured soil, fertilization with swine or dairy manure increased the relative abundance of the gene targets sul1, erm(B), str(B), int1, and IncW repA. Following manure application in the spring of 2012, gene copy number decayed exponentially, reaching background levels by the fall of 2012. In contrast, gene copy number following manure application in the fall of 2012 or spring of 2013 increased significantly in the weeks following application and then declined. In both cases, the relative abundance of gene copy numbers had not returned to background levels by the fall of 2013. Overall, these results suggest that under conditions characteristic of agriculture in a humid continental climate, a 1-year period following a commercial application of raw manure is sufficient to ensure that an additional soil burden of antibiotic resistance genes approaches background. The relative abundance of several gene targets exceeded background during the growing season following a spring application or an application done the previous fall. Results from the present study reinforce the advisability of treating manure prior to use in crop production systems.201424632259
765410.9999Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest. The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice.201425172864
706320.9999Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. Manuring ground used for crop production is an important agricultural practice. Should antibiotic-resistant enteric bacteria carried in the manure be transferred to crops that are consumed raw, their consumption by humans or animals will represent a route of exposure to antibiotic resistance genes. Treatment of manures prior to land application is a potential management option to reduce the abundance of antibiotic resistance genes entrained with manure application. In this study, dairy manure that was untreated, anaerobically digested, mechanically dewatered or composted was applied to field plots that were then cropped to lettuce, carrots and radishes. The impact of treatment on manure composition, persistence of antibiotic resistance gene targets in soil following application, and distribution of antibiotic resistance genes and bacteria on vegetables at harvest was determined. Composted manure had the lowest abundance of antibiotic resistance gene targets compared to the other manures. There was no significant difference in the persistence characteristics of antibiotic resistance genes following land application of the various manures. Compared to unmanured soil, antibiotic resistance genes were detected more frequently in soil receiving raw or digested manure, whereas they were not in soil receiving composted manure. The present study suggests that vegetables grown in ground receiving raw or digested manure are at risk of contamination with manure-borne antibiotic resistant bacteria, whereas vegetables grown in ground receiving composted manure are less so.201728076772
765130.9999Antibiotic resistance gene profile changes in cropland soil after manure application and rainfall. Land application of manure introduces gastrointestinal microbes into the environment, including bacteria carrying antibiotic resistance genes (ARGs). Measuring soil ARGs is important for active stewardship efforts to minimize gene flow from agricultural production systems; however, the variety of sampling protocols and target genes makes it difficult to compare ARG results between studies. We used polymerase chain reaction (PCR) methods to characterize and/or quantify 27 ARG targets in soils from 20 replicate, long-term no-till plots, before and after swine manure application and simulated rainfall and runoff. All samples were negative for the 10 b-lactamase genes assayed. For tetracycline resistance, only source manure and post-application soil samples were positive. The mean number of macrolide, sulfonamide, and integrase genes increased in post-application soils when compared with source manure, but at plot level only, 1/20, 5/20, and 11/20 plots post-application showed an increase in erm(B), sulI, and intI1, respectively. Results confirmed the potential for temporary blooms of ARGs after manure application, likely linked to soil moisture levels. Results highlight uneven distribution of ARG targets, even within the same soil type and at the farm plot level. This heterogeneity presents a challenge for separating effects of manure application from background ARG noise under field conditions and needs to be considered when designing studies to evaluate the impact of best management practices to reduce ARG or for surveillance. We propose expressing normalized quantitative PCR (qPCR) ARG values as the number of ARG targets per 100,000 16S ribosomal RNA genes for ease of interpretation and to align with incidence rate data.202033016404
765540.9999Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Consumption of vegetables represents a route of direct human exposure to bacteria found in soil. The present study evaluated the complement of bacteria resistant to various antibiotics on vegetables often eaten raw (tomato, cucumber, pepper, carrot, radish, lettuce) and how this might vary with growth in soil fertilized inorganically or with dairy or swine manure. Vegetables were sown into field plots immediately following fertilization and harvested when of marketable quality. Vegetable and soil samples were evaluated for viable antibiotic-resistant bacteria by plate count on Chromocult medium supplemented with antibiotics at clinical breakpoint concentrations. DNA was extracted from soil and vegetables and evaluated by PCR for the presence of 46 gene targets associated with plasmid incompatibility groups, integrons, or antibiotic resistance genes. Soil receiving manure was enriched in antibiotic-resistant bacteria and various antibiotic resistance determinants. There was no coherent corresponding increase in the abundance of antibiotic-resistant bacteria enumerated from any vegetable grown in manure-fertilized soil. Numerous antibiotic resistance determinants were detected in DNA extracted from vegetables grown in unmanured soil. A smaller number of determinants were additionally detected on vegetables grown only in manured and not in unmanured soil. Overall, consumption of raw vegetables represents a route of human exposure to antibiotic-resistant bacteria and resistance determinants naturally present in soil. However, the detection of some determinants on vegetables grown only in freshly manured soil reinforces the advisability of pretreating manure through composting or other stabilization processes or mandating offset times between manuring and harvesting vegetables for human consumption.201323851089
740950.9998Longitudinal screening of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in soils fertilized with pig manure. Fertilization with animal manure is one of the main routes responsible for the introduction of antibiotic residues, antibiotic resistance genes, and zoonotic bacteria into the environment. The aim of this study was to assess the effect of the use of pig (swine) manure as a fertilizer on the presence and fate of six antibiotic residues, nine antibiotic resistance genes, and bacteria (zoonotic bacteria Salmonella spp. and Campylobacter spp. and E. coli as indicator for Gram-negative bacterial species of the microbiota of livestock) on five fields. To the best of our knowledge, the present study is the first to assess a multitude of antibiotic residues and resistance to several classes of antibiotics in pig manure and in fertilized soil over time in a region with an intensive pig industry (Flanders, Belgium). The fields were sampled at five consecutive time points, starting before fertilization up to harvest. Low concentrations of antibiotic residues could be observed in the soils until harvest. The antibiotic resistance genes studied were already present at background levels in the soil environment prior to fertilization, but after fertilization with pig manure, an increase in relative abundance was observed for most of them, followed by a decline back to background levels by harvest-time on all of the fields studied. No apparent differences regarding the presence of antibiotic resistance genes in soils were observed between those fertilized with manure that either contained antibiotic residues or not. With regard to dissemination of resistance, the results presented in this study confirm that fertilization with animal manure directly adds resistance genes to the soil. In addition, it shows that this direct mechanism may be more important than possible selective pressure in soil-dwelling bacteria exerted by antibiotic residues present in the manure. These results also indicate that zoonotic bacteria detected in the manure could be detected in the soil environment directly after fertilization, but not after 1 month. In conclusion, although some antibiotic residues may be present in both manure and soil at concentrations to exert selective pressure, it seems that antibiotic resistance is mostly introduced directly to soil through fertilization with animal manure.202032410188
738760.9998Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. The increasing prevalence of antibiotic-resistant bacteria is a global threat to public health. Agricultural use of antibiotics is believed to contribute to the spread of antibiotic resistance, but the mechanisms by which many agricultural practices influence resistance remain obscure. Although manure from dairy farms is a common soil amendment in crop production, its impact on the soil microbiome and resistome is not known. To gain insight into this impact, we cultured bacteria from soil before and at 10 time points after application of manure from cows that had not received antibiotic treatment. Soil treated with manure contained a higher abundance of β-lactam-resistant bacteria than soil treated with inorganic fertilizer. Functional metagenomics identified β-lactam-resistance genes in treated and untreated soil, and indicated that the higher frequency of resistant bacteria in manure-amended soil was attributable to enrichment of resident soil bacteria that harbor β-lactamases. Quantitative PCR indicated that manure treatment enriched the blaCEP-04 gene, which is highly similar (96%) to a gene found previously in a Pseudomonas sp. Analysis of 16S rRNA genes indicated that the abundance of Pseudomonas spp. increased in manure-amended soil. Populations of other soil bacteria that commonly harbor β-lactamases, including Janthinobacterium sp. and Psychrobacter pulmonis, also increased in response to manure treatment. These results indicate that manure amendment induced a bloom of certain antibiotic-resistant bacteria in soil that was independent of antibiotic exposure of the cows from which the manure was derived. Our data illustrate the unintended consequences that can result from agricultural practices, and demonstrate the need for empirical analysis of the agroecosystem.201425288759
706270.9998Impact of chicken litter pre-application treatment on the abundance, field persistence, and transfer of antibiotic resistant bacteria and antibiotic resistance genes to vegetables. Treatment of manures prior to land application can potentially reduce the abundance of antibiotic resistance genes and thus the risk of contaminating crops or water resources. In this study, raw and composted chicken litter were applied to field plots that were cropped to carrots, lettuce and radishes. Vegetables were washed per normal culinary practice before downstream analysis. The impact of composting on manure microbial composition, persistence of antibiotic resistant bacteria in soil following application, and distribution of antibiotic resistance genes and bacteria on washed vegetables were determined. A subset of samples that were thought likely to reveal the most significant effects were chosen for shotgun sequencing. The absolute abundance of all target genes detected by qPCR decreased after composting except sul1, intI1, incW and erm(F) that remained stable. The shotgun sequencing revealed that some integron integrases were enriched by composting. Composting significantly reduced the abundance of enteric bacteria, including those carrying antibiotic resistance. Manure-amended soil showed significantly higher abundances of sul1, str(A), str(B), erm(B), aad(A), intI1 and incW compared to unmanured soil. At harvest, those genes that were detected in soil samples before the application of manure (intI1, sul1, strA and strB) were quantifiable by qPCR on vegetables, with a larger number of gene targets detected on the radishes than in the carrots or lettuce. Shotgun metagenomic sequencing suggested that the increase of antibiotic resistance genes on radishes produced in soil receiving raw manure may be due to changes to soil microbial communities following manure application, rather than transfer to the radishes of enteric bacteria. Overall, under field conditions there was limited evidence for transfer of antibiotic resistance genes from composted or raw manure to vegetables that then persisted through washing.202134425441
745380.9998Long-term application of Swedish sewage sludge on farmland does not cause clear changes in the soil bacterial resistome. The widespread practice of applying sewage sludge to arable land makes use of nutrients indispensable for crops and reduces the need for inorganic fertilizer, however this application also provides a potential route for human exposure to chemical contaminants and microbial pathogens in the sludge. A recent concern is that such practice could promote environmental selection and dissemination of antibiotic resistant bacteria or resistance genes. Understanding the risks of sludge amendment in relation to antibiotic resistance development is important for sustainable agriculture, waste treatment and infectious disease management. To assess such risks, we took advantage of an agricultural field trial in southern Sweden, where land used for growing different crops has been amended with sludge every four years since 1981. We sampled raw, semi-digested and digested and stored sludge together with soils from the experimental plots before and two weeks after the most recent amendment in 2017. Levels of selected antimicrobials and bioavailable metals were determined and microbial effects were evaluated using both culture-independent metagenome sequencing and conventional culturing. Antimicrobials or bioavailable metals (Cu and Zn) did not accumulate to levels of concern for environmental selection of antibiotic resistance, and no coherent signs, neither on short or long time scales, of enrichment of antibiotic-resistant bacteria or resistance genes were found in soils amended with digested and stored sewage sludge in doses up to 12 metric tons per hectare. Likewise, only very few and slight differences in microbial community composition were observed after sludge amendment. Taken together, the current study does not indicate risks of sludge amendment related to antibiotic resistance development under the given conditions. Extrapolations should however be done with care as sludge quality and application practices vary between regions. Hence, the antibiotic concentrations and resistance load of the sludge are likely to be higher in regions with larger antibiotic consumption and resistance burden than Sweden.202032036119
707090.9998Tetracycline resistance in semi-arid agricultural soils under long-term swine effluent application. Annually, millions pounds of antibiotics are released unmetabolized into environment along with animal wastes. Accumulation of antibiotics in soils could potentially induce the persistence of antibiotic resistant bacteria. Antibiotics such as tetracyclines and tetracycline-resistant bacteria have been previously detected in fields fertilized with animal manure. However, little is known about the accumulation of tetracyclines and the development of tetracycline resistance in semi-arid soils. Here we demonstrate that continuous land application with swine effluent, containing trace amounts of chlortetracycline, does not necessarily induce tetracycline resistance in soil bacteria. Based on the testing of more than 3,000 bacteria isolated from the amended soils, we found no significant increase in the occurrence and level of chlortetracycline resistant bacteria in soils after 15 years of continuous swine effluent fertilization. To account for a possible transfer of tetracycline-resistant bacteria originated from the swine effluent to soils, we analyzed two commonly found tetracycline resistant genes, tet(O) and tet(M), in the swine effluent and fertilized soils. Both genes were present in the swine effluent, however, they were not detectable in soils applied with swine effluent. Our data demonstrate that agronomic application of manure from antibiotic treated swine effluent does not necessarily result in the development of antibiotic bacterial resistance in soils. Apparently, concentrations of chlortetracycline present in manure are not significant enough to induce the development of antibiotic bacterial resistance.201728277084
7386100.9998Regulation of Antibiotic Resistance Genes on Agricultural Land Is Dependent on Both Choice of Organic Amendment and Prevalence of Predatory Bacteria. Antibiotic resistance genes (ARGs) are widespread in the environment, and soils, specifically, are hotspots for microorganisms with inherent antibiotic resistance. Manure and sludge used as fertilizers in agricultural production have been shown to contain vast amounts of ARGs, and due to continued applications, ARGs accumulate in agricultural soils. Some soils, however, harbor a resilience capacity that could depend on specific soil properties, as well as the presence of predatory bacteria that are able to hydrolyse living bacteria, including bacteria of clinical importance. The objectives of this study were to (i) investigate if the antibiotic resistance profile of the soil microbiota could be differently affected by the addition of cow manure, chicken manure, and sludge, and (ii) investigate if the amendments had an effect on the presence of predatory bacteria. The three organic amendments were mixed separately with a field soil, divided into pots, and incubated in a greenhouse for 28 days. Droplet digital PCR (ddPCR) was used to quantify three ARGs, two predatory bacteria, and total number of bacteria. In this study, we demonstrated that the choice of organic amendment significantly affected the antibiotic resistance profile of soil, and promoted the growth of predatory bacteria, while the total number of bacteria was unaffected.202439200050
7064110.9997Characterizing the soil microbiome and quantifying antibiotic resistance gene dynamics in agricultural soil following swine CAFO manure application. As agriculture industrializes, concentrated animal feeding operations (CAFOs) are becoming more common. Feces from CAFOs is often used as fertilizer on fields. However, little is known about the effects manure has on the soil microbiome, which is an important aspect of soil health and fertility. In addition, due to the subtherapeutic levels of antibiotics necessary to keep the animals healthy, CAFO manure has elevated levels of antibiotic resistant bacteria. Using 16s rRNA high-throughput sequencing and qPCR, this study sought to determine the impact of swine CAFO manure application on both the soil microbiome and abundance of select antibiotic resistance genes (ARGs) and mobile element genes (erm(B), erm(C), sul1, str(B), intI1, IncW repA) in agricultural soil over the fall and spring seasons. We found the manure community to be distinct from the soil community, with a majority of bacteria belonging to Bacteroidetes and Firmicutes. The soil samples had more diverse communities dominated by Acidobacteria, Actinobacteria, Proteobacteria, Verrucomicrobia, and unclassified bacteria. We observed significant differences in the soil microbiome between all time points, except between the spring samples. However, by tracking manure associated taxa, we found the addition of the manure microbiome to be a minor driver of the shift. Of the measured genes, manure application only significantly increased the abundance of erm(B) and erm(C) which remained elevated in the spring. These results suggest bacteria in the manure do not survive well in soil and that ARG dynamics in soil following manure application vary by resistance gene.201931425534
7069120.9997Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications. Bacterial genes responsible for resistance to antibiotic agents (ARG) are spread from livestock to soil through application of manure, threatening environmental and human health. We investigated the mechanisms of ARG dissemination and persistence to disentangle i) the influence of nutrients and microorganisms on the soil tetracycline (TET) resistome, and ii) the role of indigenous soil microbiota in preventing ARG spread. We analysed short-term (7 days) and persistent (84 days) effects of manure on the resistome of three antibiotic-free pasture soils. Four microcosm treatments were evaluated: control, mineral nutrient fertilization, and deposition of a layer of fresh manure onto soil or γ-irradiated soil. We quantified five TET-resistance genes, isolated 135 TET-resistant bacteria and sequenced both culturable TET-resistant and whole bacterial communities. Manure amendments, but not nutrient addition, increased the abundance of TET-r genes such as tet(Y). Such changes persisted with time, in contrast with the TET-resistant bacterial composition, which partially recovered after manure amendments. Manured γ-irradiated soils showed significantly lower nutrient content and higher TET-r gene abundance than non-irradiated soils, suggesting that native soil bacteria are essential for the fertilization effect of manure on soil as well as control the dissemination of potentially risky TET-r genes.201931043618
7410130.9997The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. The use of antibiotics at subtherapeutic concentrations for agricultural applications is believed to be an important factor in the proliferation of antibiotic-resistant bacteria. The goal of this study was to determine if the application of manure onto agricultural land would result in the proliferation of antibiotic resistance among soil bacteria. Chlortetracycline-resistant bacteria were enumerated and characterized from soils exposed to the manure of animals fed subtherapeutic concentrations of antibiotics and compared to the chlortetracycline-resistant bacteria from soils at farms with restricted antibiotic use (dairy farms) and from non-agricultural soils. No significant differences were observed at nine different study sites with respect to the numbers and types of cultivated chlortetracycline-resistant bacteria. Genes encoding for tetracycline resistance were rarely detected in the resistant bacteria from these sites. In contrast, soils collected from a tenth farm, which allowed manure to indiscriminately accumulate outside the animal pen, had significantly higher chlortetracycline-resistance levels. These resistant bacteria frequently harbored one of 14 different genes encoding for tetracycline resistance, many of which (especially tet(A) and tet(L)) were detected in numerous different bacterial species. Subsequent bacterial enumerations at this site, following the cessation of farming activity, suggested that this farm remained a hotspot for antibiotic resistance. In conclusion, we speculate that excessive application of animal manure leads to the spread of resistance to soil bacteria (potentially by lateral gene transfer), which then serve as persistent reservoir of antibiotic resistance.200718043630
7071140.9997Impacts of multi-year field exposure of agricultural soil to macrolide antibiotics on the abundance of antibiotic resistance genes and selected mobile genetic elements. Exposure of environmental bacteria to antibiotics may be increasing the global resistome. Antibiotic residues are entrained into agricultural soil through the application of animal and human wastes, and irrigation with reclaimed water. The impact of a mixture of three macrolide antibiotics on the abundance of selected genes associated with antibiotic resistance and genetic mobility were determined in a long-term field experiment undertaken in London, Canada. Replicated plots received annual applications of a mixture of erythromycin, clarithromycin and azithromycin every spring since 2010. Each antibiotic was added directly to the soil at a concentration of either 0.1 or 10 mg kg soil(-1) and all plots were cropped to soybeans. By means of qPCR, no gene targets were enriched in soil exposed to the 0.1 mg kg soil(-1) dose compared to untreated control. In contrast, the relative abundance of several gene targets including int1, sul2 and mphE increased significantly with the annual exposure to the 10 mg kg soil(-1) dose. By means of high-throughput qPCR, numerous gene targets associated with resistance to aminoglycosides, sulfonamides, trimethoprim, streptomycin, quaternary ammonium chemicals as well as mobile genetic elements (tnpA, IS26 and IS6100) were detected in soil exposed to 10 mg kg soil(-1), but not the lower dose. Overall, exposure of soil to macrolide antibiotics increased the relative abundance of numerous gene targets associated with resistance to macrolides and other antibiotics, and mobile genetic elements. This occurred at an exposure dose that is unrealistically high, but did not occur at the lower more realistic exposure dose.202032330714
7388150.9997Poultry manure-derived microorganisms as a reservoir and source of antibiotic resistance genes transferred to soil autochthonous microorganisms. Animal husbandry is increasing yearly due to the growing demand for meat and livestock products, among other reasons. To meet these demands, prophylactic antibiotics are used in the livestock industry (i.e., poultry farming) to promote health and stimulate animal growth. However, antibiotics are not fully metabolized by animals, and they are evacuated to the environment with excreta. Animal manure is used as fertilizer to reduce the volume of waste generated in the livestock sector. However, manure often contains microorganisms harboring antibiotic resistance genes (ARGs). Then, the microbiome of manure applicate to the soil may contribute to the spread of antibiotic resistance in the environment, including autochthonous soil-dwelling microorganisms. The present study was conducted during the crops growing season in Poland (May to September 2019) to determine the influence of poultry manure as well as poultry manure supplemented with selected antibiotics on the diversity of the soil microbiome in treatments that had not been previously fertilized with manure and the ability of antibiotic-resistant bacteria to transfer ARGs to other soil bacteria. Antibiotic concentrations were elevated at the beginning of the study and decreased over time. Poultry manure induced significant changes in the structure of microbial communities in soil; the diversity of the soil microbiome decreased, and the abundance of bacterial genera Bradyrhizobium, Streptomyces, and Pseudomonas, which are characteristic of the analyzed manure, increased. Over time, soil microbial diversity was restored to the state observed before the application of manure. Genes conferring resistance to multiple drugs as well as genes encoding resistance to bacitracin and aminoglycosides were the most frequently identified ARGs in the analyzed bacteria, including on mobile genetic elements. Multidrug resistance was observed in 17 bacterial taxa, whereas ARGs were identified in 32 bacterial taxa identified in the soil microbiome. The results of the study conclude that the application of poultry manure supplemented with antibiotics initially affects soil microbiome and resistome diversity but finally, the soil shows resilience and returns to its original state after time, with most antibiotic resistance genes disappearing. This phenomenon is of great importance in sustainable soil health after manure application.202337832303
7455160.9997Lagoon, Anaerobic Digestion, and Composting of Animal Manure Treatments Impact on Tetracycline Resistance Genes. Increased demand for animal protein is met by increased food animal production resulting in large quantities of manure. Animal producers, therefore, need sustainable agricultural practices to protect environmental health. Large quantities of antimicrobials are used in commercial food animal production. Consequently, antimicrobial-resistant bacteria and the resistance genes emerge and are excreted through feces. Manure management is essential for the safe disposal of animal waste. Lagoons, with or without covers, and anaerobic digesters, with the primary purpose of methane production, and composting, with the primary purpose of producing organic fertilizer, are widely used methods of manure treatment. We reviewed manure management practices and their impact on tetracycline resistance genes. Lagoons are maintained at ambient temperatures; especially uncovered lagoons are the least effective in removing tetracycline resistance genes. However, some modifications can improve the performance of lagoons: sequential use of uncovered lagoons and the use of covered lagoons resulted in a one-log reduction, while post-treatments such as biofiltration following covered lagoon treatment resulted in 3.4 log reduction. Mesophilic digestion of animal manure did not have any significant effect; only a 0.7 log reduction in tet(A) was observed in one study. While thermophilic anaerobic digesters are effective, if properly operated, they are expensive for animal producers. Aerobic thermophilic composting is a promising technology if optimized with its economic benefits. Composting of raw animal manure can result in up to a 2.5 log reduction, and postdigestion composting can reduce tetracycline resistance gene concentration by >80%. In general, manure management was not designed to mitigate antimicrobial resistance; future research is needed to optimize the economic benefits of biogas or organic fertilizer on the one hand and for the mitigation of foodborne pathogens and antimicrobial resistance on the other.202235326854
7383170.9997Spread of plasmids carrying antibiotic resistance genes in soil-lettuce-snail food chain. Fertilization can change the composition of antibiotic resistance genes(ARGs) and their host bacteria in agricultural fields, while complex microbial activities help ARGs into crops and transmit them to humans through agricultural products.Therefore, this study constructed a farmland food chain with soil-lettuce-snail as a typical structure, added genetically engineered Pseudomonas fluorescens containing multidrug-resistant plasmid RP4 to track its spread in the farmland food chain, and used different fertilization methods to explore its influence on the spread and diffusion of ARGs and intl1 in the farmland food chain. It was found that exogenous Pseudomonas can enter plants from soil and pass into snails' intestines, and there is horizontal gene transfer phenomenon of RP4 plasmid in bacteria. At different interfaces of the constructed food chain, the addition of exogenous drug-resistant bacteria had different effects on the total abundance of ARGs and intl1. Fertilization, especially manure, not only promoted the spread of Pseudomonas aeruginosa and the transfer of RP4 plasmid levels, but also significantly increased the total abundance of ARGs and intl1 at all interfaces of the constructed food chain. The main ARGs host bacteria in the constructed food chain include Proteobacteria, Bacteroides, and Firmicutes, while Flavobacterium of Bacteroides is the unique potential host bacteria of RP4 plasmid. In conclusion, this study provides a reference for the risk assessment of ARGs transmitted to the human body through the food chain, and has important practical significance to reduce the antibiotic resistance contamination of agricultural products and ensure the safety of vegetable basket.202438700770
7389180.9997Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. The emerging environmental spread of antibiotic-resistance genes (ARGs) and their subsequent acquisition by clinically relevant microorganisms is a major threat to public health. Animal manure has been recognized as an important reservoir of ARGs; however, the dissemination of manure-derived ARGs and the impacts of manure application on the soil resistome remain obscure. Here, we conducted a microcosm study to assess the temporal succession of total bacteria and a broad spectrum of ARGs in two contrasting soils following manure application from cattle that had not been treated with antibiotics. High-capacity quantitative PCR detected 52 unique ARGs across all the samples, with β-lactamase as the most dominant ARG type. Several genes of soil indigenous bacteria conferring resistance to β-lactam, which could not be detected in manure, were found to be highly enriched in manure-treated soils, and the level of enrichment was maintained over the entire course of 140 days. The enriched β-lactam resistance genes had significantly positive relationships with the relative abundance of the integrase intI1 gene, suggesting an increasing mobility potential in manure-treated soils. The changes in ARG patterns were accompanied by a significant effect of cattle manure on the total bacterial community compositions. Our study indicates that even in the absence of selective pressure imposed by agricultural use of antibiotics, manure application could still strongly impact the abundance, diversity and mobility potential of a broad spectrum of soil ARGs. Our findings are important for reliable prediction of ARG behaviors in soil environment and development of appropriate strategies to minimize their dissemination.201626712351
7452190.9997Elevation of antibiotic resistance genes at cold temperatures: implications for winter storage of sludge and biosolids. Prior research suggests that cold temperatures may stimulate the proliferation of certain antibiotic resistance genes (ARGs) and gene transfer elements during storage of biosolids. This could have important implications on cold weather storage of biosolids, as often required in northern climates until a time suitable for land application. In this study, levels of an integron-associated gene (intI1) and an ARG (sul1) were monitored in biosolids subject to storage at 4, 10 and 20°C. Both intI1 and sul1 were observed to increase during short-term storage (<2 months), but the concentrations returned to background within 4 months. The increases in concentration were more pronounced at lower temperatures than ambient temperatures. Overall, the results suggest that cold stress may induce horizontal gene transfer of integron-associated ARGs and that biosolids storage conditions should be considered prior to land application. SIGNIFICANCE AND IMPACT OF THE STUDY: Wastewater treatment plants have been identified as the hot spots for the proliferation and dissemination of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) to the environment through discharge of treated effluent to water bodies as well as application of biosolids to land. Identifying critical control points within the treatment process may aid in the development of solutions for the reduction of ARGs and ARB and curbing the spread of antibiotic resistance. This study found increases in ARGs during biosolids storage and identifies changes in operational protocols that could help reduce ARG loading to the environment when biosolids are land-applied.201425196177