Transport of antibiotic resistance genes in the landfill plume: Experiment and numerical modeling. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
761601.0000Transport of antibiotic resistance genes in the landfill plume: Experiment and numerical modeling. Antibiotic resistance genes (ARGs) in the landfill site would potentially seep into groundwater by leachate infiltration, which poses great threat of ARGs dissemination through groundwater flow. However, the transport characteristics of ARGs in the landfill plume are still unclear, impeding the risk management and remediation of landfill sites. This study carried out a series of column experiments to investigate the transport of various ARGs in the landfill plume and its influencing factors. Besides, a numerical model was also developed to simulate the transport of ARGs in the porous media, which could determine the attachment and decay rates of ARGs in various scenarios. Experimental results showed that high contents of organic matter and corresponding antibiotics in the landfill plume promoted the transport of antibiotic-resistant bacteria (ARB) and reduced the decay rates of intracellular ARGs (iARGs) in the porous media. Inorganic ions such as Cl(-) and SO(4)(2-) inhibited the mobility of ARB, while they had little influence on iARGs decay. Extracellular ARGs (eARGs) in plasmids exhibited higher decay rate in pore water, leading to shorter transport distance in porous media. In the landfill plume, sul1 had higher mobility than aadA and ermB, which was tightly correlated with its lower decay rate in groundwater and the smaller bacterial host. The decrease of particle size greatly inhibited the transport of ARGs in porous media due to the attachment of ARB on sand surface, while the attached ARGs would easily detach from sand surface during background water flushing. This study could guide the accurate risk assessment of ARGs in the landfill plume as well as the optimization of management strategy for landfill site.202540320129
762010.9997Higher chlorine dosage does not consistently enhance antibiotic resistance mitigation in the Cl(2)-UV process. Health problems arising from antibiotic resistance are a global concern. The Cl(2)-UV disinfection process has shown potential for controlling antibiotic resistance in water; however, the influence of disinfectant dosage on its effectiveness remains insufficiently understood. Can antibiotic resistance be controlled by simply increasing the disinfectant dosage? This study demonstrated that higher disinfectant levels improved antibiotic resistance gene (ARG) removal, with certain ARGs reaching 1.82 log removal under conventional conditions. Nevertheless, higher disinfectant dosages also led to an increase in the relative abundance of multidrug resistance genes (MRGs), aminoglycoside resistance genes (AmRGs), and fosmidomycin resistance genes (FRGs). Correlation analysis of ARGs with mobile genetic elements (MGEs) and ARG-host bacteria indicated that this enrichment was primarily driven by enhanced horizontal gene transfer (HGT). Notably, increases in UV fluence and chlorine dose had distinct impacts on the total relative abundance of ARGs: higher UV fluence reduced total relative abundance, whereas higher chlorine dose increased it. These contrasting trends are likely linked to differences in the dominant HGT pathways under each condition. Greater UV fluence tended to promote conjugative transfer among surviving bacteria, while higher chlorine dosages more effectively facilitated natural transformation. Considering both the absolute and relative abundances of ARGs, along with calculated health-risk indices for each treatment condition, the findings indicated that increasing UV fluence is more effective for controlling ARGs in water. These results provide valuable insights for optimizing the Cl(2)-UV disinfection process to better manage antibiotic resistance in aquatic environments.202540914041
761920.9997Removal of antibiotic resistance genes in an algal-based wastewater treatment system employing Galdieria sulphuraria: A comparative study. In this study, we compared removal of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in two wastewater treatment systems fed with the same primary effluent: a conventional wastewater treatment system (consisting of a trickling filter followed by an activated sludge process) versus an algal-based system, employing an extremophilic alga, Galdieria sulphuraria. Our results demonstrated that the algal system can reduce concentrations of erythromycin- and sulfamethoxazole-resistant bacteria in the effluent more effectively than the conventional treatment system. A decreasing trend of total bacteria and ARGs was observed in both the treatment systems. However, the relative ratio of most ARGs (qnrA, qnrB, qnrS, sul1) and intI1 in the surviving bacteria increased in the conventional system; whereas, the algal system reduced more of the relative abundance of qnrA, qnrS, tetW and intⅠ1 in the surviving bacteria. The role of bacteriophages in horizontal gene transfer (HGT) of ARGs in the two systems was indicated by a positive correlation between ARG absolute abundance in bacteriophage and ARG relative abundance in the bacteria. Four of the five detectable genes (qnrS, tetW, sul1 and intI1) were significantly reduced in the algal system in bacteriophage phase which signified a decrease in phage-mediated ARG transfer in the algal system. Results of this study demonstrate the feasibility of the algal-based wastewater treatment system in decreasing ARGs and ARB and in minimizing the spread of antibiotic resistance to the environment.202031810689
756630.9997Antibiotic sulfadiazine degradation by persulfate oxidation: Intermediates dependence of ecotoxicity and the induction of antibiotic resistance genes. To preserve the water resources, this study has analyzed the ecotoxicity and antibiotic resistance genes (ARGs) induction capacity of sulfadiazine degradation intermediates resulting from persulfate activation oxidation enhanced by ultraviolet, ultrasound and microwave. The five degradation pathways caused by the contribution discrepancy of electron transfer and singlet oxygen ((1)O(2)) and variations in the ecotoxicity of different degradation products were analyzed. Microcosm experiment exhibited that the microbial community in actual water changed significantly with SDZ and degradation intermediates, in which the dominant genera were Aeromonas, Cupriavidus, Elizabethkingia and Achromobacter. Except for the selective pressure on bacteria, the degradation intermediates also exert a certain degree or even stronger induction on sulfonamide ARGs (sul4, sul1 and sul2) than SDZ. Furthermore, the potential hosts for sulfonamide ARGs were revealed by network analysis. These results provide a better understanding of antibiotics degradation mechanism and ARGs occurrence, which is useful for controlling the spread of ARGs.202336372382
695440.9996Temporal effects of repeated application of biogas slurry on soil antibiotic resistance genes and their potential bacterial hosts. Biogas slurry, a liquid end product of animal manure fermentation, is widely used as fertilizer in crop fields. Land application may introduce antibiotics and related resistance genes from livestock production into agricultural soil. Nevertheless, changes in antimicrobial resistance in soil where biogas slurry has been repeatedly applied are not fully understood. In the present study, 13 veterinary antibiotics were analyzed in soils that were repeatedly sprayed with biogas slurry, and simultaneously, temporal changes in antibiotic resistance genes (ARGs) and bacterial community composition were investigated using a real-time quantitative PCR assay and MiSeq sequencing. Long-term repeated application of biogas slurry did not result in excessive accumulation of antibiotic residuals in the soil but increased the abundance of ARGs and facilitated ARG transfer among potential hosts. Although the quantitative PCR assay showed a decreasing trend for the relative abundance of ARGs over time, a relevance network analysis revealed highly complex bacteria-ARG co-occurrence after long-term application, which implied that repeated application might intensify horizontal gene transfer (HGT) of ARGs among different bacterial hosts in soil. The increased relative abundance of the intl1 gene supported the shift in ARG-bacteria co-occurrence. Furthermore, ordination analysis showed that the distributions of antibiotic resistance bacteria (ARB) and ARGs were closely related to application duration than to the influence of antibiotic residuals in the biogas slurry-treated soil environment. Additionally, natural level of ARG abundance in untreated soils indirectly suggested the presence/absence of antibiotics was not a key determinant causing the spread of antimicrobial resistance. This study provides improved insight into the effects of long-term repeated application of biogas slurry on the shift in ARG abundances and bacteria-ARG co-occurrence in soils, highlighting the need to focus on the influence of changed soil environment on the ARG transfer.202031818620
857850.9996Impact of earthworms on suppressing dissemination of antibiotic resistance genes during vermicomposting treatment of excess sludge. Earthworms play a crucial role in suppressing the dissemination of antibiotic resistance genes (ARGs) during vermicomposting. However, there is still a lack of how earthworms influence the spread of ARGs. To address this gap, a microcosm experiment was conducted, incorporating earthworms and utilizing metagenomics and quantitative PCR to assess the impact of earthworms on microbial interactions and the removal of plasmid-induced ARGs. The findings revealed that vermicomposting led to a reduction in the relative abundance of ARGs by altering microbial communities and interactions. Significantly, vermicomposting demonstrated an impressive capability, reducing 92% of ARGs donor bacteria and impeding the transmission of 94% of the RP4 plasmid. Furthermore, through structural equation model analysis, it was determined that mobile genetic elements and environmental variables were the primary influencers of ARG reduction. Overall, this study offers a fresh perspective on the effects of vermicomposting and its potential to mitigate the spread of ARGs.202438885722
750260.9996Differential dose-response patterns of intracellular and extracellular antibiotic resistance genes under sub-lethal antibiotic exposure. Although antibiotics are one of the most significant factors contributing to the propagation of antibiotic resistance genes (ARGs), studies on the dose-response relationship at sub-lethal concentrations of antibiotics remain scarce, despite their importance for assessing the risks of antibiotics in the environment. In this study, we constructed a series of microcosms to investigate the propagation of intracellular (iARGs) and extracellular (eARGs) ARGs in both water and biofilms when exposed to antibiotics at various concentrations (1-100 μg/L) and frequencies. Results showed that eARGs were more abundant than iARGs in water, while iARGs were the dominant ARGs form in biofilms. eARGs showed differentiated dose-response relationships from iARGs. The abundance of iARGs increased with the concentration of antibiotics as enhanced selective pressure overcame the metabolic burden of antibiotic-resistant bacteria carrying ARGs. However, the abundance of eARGs decreased with increasing antibiotic concentrations because less ARGs were secreted from bacterial hosts at higher concentrations (100 μg/L). Furthermore, combined exposure to two antibiotics (tetracycline & imipenem) showed a synergistic effect on the propagation of iARGs, but an antagonistic effect on the propagation of eARGs compared to exposure to a single antibiotic. When exposed to antibiotic at a fixed total dose, one-time dosing (1 time/10 d) favored the propagation of iARGs, while fractional dosing (5 times /10 d) favored the propagation of eARGs. This study sheds light on the propagation of antibiotic resistance in the environment and can help in assessing the risks associated with the use of antibiotics.202337257347
695270.9996Modeling the vertical transport of antibiotic resistance genes in agricultural soils following manure application. Antibiotic resistance genes (ARGs) may be introduced to agricultural soil through the land application of cattle manure. During a rainfall event, manure-borne ARGs may infiltrate into subsurface soil and leach into groundwater. The objective of this study was to characterize and model the vertical transport of manure-borne ARGs through soil following the land application of beef cattle manure on soil surface. In this study, soil column experiments were conducted to evaluate the influence of manure application on subsurface transport of four ARGs: erm(C), erm(F), tet(O) and tet(Q). An attachment-detachment model with the decay of ARGs in the soil was used to simulate the breakthrough of ARGs in leachates from the control column (without manure) and treatment (with manure) soil columns. Results showed that the first-order attachment coefficient (k(a)) was five to six orders of magnitude higher in the treatment column than in the control column. Conversely, the first-order detachment and decay coefficients (k(d) and μ(s)) were not significantly changed due to manure application. These findings suggest that in areas where manure is land-applied, some manure-borne bacteria-associated ARGs will be attached to the soil, instead of leaching to groundwater in near terms.202134087637
756080.9996The effect of bacterial functional characteristics on the spread of antibiotic resistance genes in Expanded Granular Sludge Bed reactor treating the antibiotic wastewater. To explore the fate and spreading mechanism of antibiotics resistance genes (ARGs) in antibiotics wastewater system, a laboratory-scale (1.47 L) Expanded Granular Sludge Bed (EGSB) bioreactor was implemented. The operating parameters temperature (T) and hydraulic retention time (HRT) were mainly considered. This result showed the removal of ARGs and COD was asynchronous, and the recovery speed of ARGs removal was slower than that COD removal. The decreasing T was attributed to the high growth rate of ARGs host bacteria, while the shortened HRT could promote the horizontal and vertical gene transfer of ARGs in the sludge. The analysis result of potential bacterial host showed more than half of the potential host bacteria carried 2 or more ARGs and suggested an indirect mechanism of co-selection of multiple ARGs. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to investigate the functional characteristics of bacterial community. This result showed the bacterial functional genes contributed 40.41% to the abundance change of ARGs in the sludge, which was higher that of bacterial community. And the function genes of "aromatic hydrocarbon degradation", "Replication, recombination and repair proteins" and "Flagellar assembly" were mainly correlated with the transfer of ARGs in the sludge. This study further revealed the mechanism of ARGs spread in the EGSB system, which would provide new ideas for the development of ARGs reduction technology.202134488144
857790.9996Viral and thermal lysis facilitates transmission of antibiotic resistance genes during composting. While the distribution of extracellular ARGs (eARGs) in the environment has been widely reported, the factors governing their release remain poorly understood. Here, we combined multi-omics and direct experimentation to test whether the release and transmission of eARGs are associated with viral lysis and heat during cow manure composting. Our results reveal that the proportion of eARGs increased 2.7-fold during composting, despite a significant and concomitant reduction in intracellular ARG abundances. This relative increase of eARGs was driven by composting temperature and viral lysis of ARG-carrying bacteria based on metagenome-assembled genome (MAG) analysis. Notably, thermal lysis of mesophilic bacteria carrying ARGs was a key factor in releasing eARGs at the thermophilic phase, while viral lysis played a relatively stronger role during the non-thermal phase of composting. Furthermore, MAG-based tracking of ARGs in combination with direct transformation experiments demonstrated that eARGs released during composting pose a potential transmission risk. Our study provides bioinformatic and experimental evidence of the undiscovered role of temperature and viral lysis in co-driving the spread of ARGs in compost microbiomes via the horizontal transfer of environmentally released DNA. IMPORTANCE: The spread of antibiotic resistance genes (ARGs) is a critical global health concern. Understanding the factors influencing the release of extracellular ARGs (eARGs) is essential for developing effective strategies. In this study, we investigated the association between viral lysis, heat, and eARG release during composting. Our findings revealed a substantial increase in eARGs despite reduced intracellular ARG abundance. Composting temperature and viral lysis were identified as key drivers, with thermal lysis predominant during the thermophilic phase and viral lysis during non-thermal phases. Moreover, eARGs released during composting posed a transmission risk through horizontal gene transfer. This study highlights the significance of temperature and phage lysis in ARG spread, providing valuable insights for mitigating antibiotic resistance threats.202439078126
7452100.9996Elevation of antibiotic resistance genes at cold temperatures: implications for winter storage of sludge and biosolids. Prior research suggests that cold temperatures may stimulate the proliferation of certain antibiotic resistance genes (ARGs) and gene transfer elements during storage of biosolids. This could have important implications on cold weather storage of biosolids, as often required in northern climates until a time suitable for land application. In this study, levels of an integron-associated gene (intI1) and an ARG (sul1) were monitored in biosolids subject to storage at 4, 10 and 20°C. Both intI1 and sul1 were observed to increase during short-term storage (<2 months), but the concentrations returned to background within 4 months. The increases in concentration were more pronounced at lower temperatures than ambient temperatures. Overall, the results suggest that cold stress may induce horizontal gene transfer of integron-associated ARGs and that biosolids storage conditions should be considered prior to land application. SIGNIFICANCE AND IMPACT OF THE STUDY: Wastewater treatment plants have been identified as the hot spots for the proliferation and dissemination of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) to the environment through discharge of treated effluent to water bodies as well as application of biosolids to land. Identifying critical control points within the treatment process may aid in the development of solutions for the reduction of ARGs and ARB and curbing the spread of antibiotic resistance. This study found increases in ARGs during biosolids storage and identifies changes in operational protocols that could help reduce ARG loading to the environment when biosolids are land-applied.201425196177
7042110.9996Response of antibiotic resistance genes abundance by graphene oxide during the anaerobic digestion of swine manure with copper pollution. The pollution of various environments with antibiotic resistance genes (ARGs) is an urgent problem that needs to be addressed, especially in heavy metal-polluted environments. This study investigated the responses of ARGs and mobile genetic elements (MGEs) to the addition of graphene oxide (GO) to swine manure containing a high concentration copper during anaerobic digestion. The total copy numbers of ARGs and MGEs were significantly enhanced by the pressure due to Cu. GO significantly decreased the ARG and MGE copy numbers, where the low GO concentration performed better than the high GO concentration. Network analysis showed that most of the ARGs and MGEs co-occurred and they shared the same major potential host bacteria. The contributions of different factors to ARG abundances were assessed by redundancy analysis and MGEs had the most important effect on the fate of ARGs. Thus, GO may reduce the abundance of ARGs mainly by removing MGEs.201930445329
6962120.9996The risk of viable but non-culturable (VBNC) enterococci and antibiotic resistance transmission during simulated municipal sludge composting. Sludge composting is a sludge resource utilization method that can reduce pollutants, such as pathogens. Enterococci are regarded as more reliable and conservative indicators of pathogen inactivation than fecal coliforms, which are typically used as indicators of fecal pollution. Non-spore pathogenic bacteria may enter a viable but non-culturable (VBNC) state during composting, leading to residual risk. The VBNC status of bacteria is related to their survival during composting. However, the survival mechanisms of enterococci during sludge composting remain unclear. Therefore, this study aimed to investigate the VBNC state of enterococci in different phases of simulated sludge composting and the fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) during the composting process. This study is expected to provide a basis for subsequent exploration of possible methods to completely inactivate enterococci and reduce ARGs during sludge composting. Culturable enterococci were reduced in the thermophilic phase of sludge composting, but the proportion of VBNC subpopulation increased. It was reported for the first time that most VBNC enterococci were killed by extending the cooling phase of sludge compost, and by prolonging the cooling phase the types of ARG were reduced. However, there was a certain quantity (approximately 10(4)/g dry weight) of culturable and VBNC enterococci in the compost products. In addition, MGEs and ARGs exist in both bacteria and compost products, leading to the risk of spreading antibiotic-resistant bacteria and antibiotic resistance when sludge compost products are used.202438703551
7547130.9996Mechanism concerning the occurrence and removal of antibiotic resistance genes in composting product with ozone post-treatment. The soil application of composting product will probably cause the spread of antibiotic resistance genes (ARGs) to environment, thereby it is crucial to remove ARGs in composting product. Ozone was adopted for the first time as a post-treatment method to remove the ARGs in composting product in this study. Ozone treatment significantly removed the total ARGs and mobile genetic elements (MGEs) once ozonation process finished. After 10-day storage stage, although the amount of total intracellular ARGs and MGEs increased, the total extracellular ARGs and MGEs decreased in the ozone-treated compost product. Correlation analysis revealed that the reduction in intracellular 16S rRNA contributed to intracellular tetQ and tetW removal, while the variations of other ARGs after ozonation related to MGEs abundance. Network analysis suggested that the reduction of potential host bacteria, as well as the decline in NH(4)(+)-N and TOC after the ozonation, contributed to the intracellular ARGs removal.202133257169
8563140.9996Overlooked role of extracellular polymeric substances in antibiotic-resistance gene transfer within microalgae-bacteria system. Controlling the spread of antibiotic-resistance genes (ARGs) under antibiotic stress has become an increasingly urgent issue. Microalgae possess the capability to remove antibiotics while concurrently inhibiting ARGs. Microalgae-bacteria systems can produce significant quantities of extracellular polymeric substances (EPS). However, the roles of EPS in the spread of ARGs have not been sufficiently explored, resulting in an insufficient understanding of the contribution of each EPS component and a lack of analysis on the complex interactions between EPS and ARGs. This study systematically explored the overlooked role of EPS in the transmission of ARGs within microalgae-bacteria systems. The current results showed that the potential of the microalgae-bacteria system for treating antibiotic wastewater. The tightly bound-EPS (TB-EPS) can acquire the higher absolute abundances of ARGs compared with the loosely bound-EPS (LB-EPS). The correlation coefficient between polysaccharides and TB-EPS ARGs was higher than that between polysaccharides and LB-EPS ARGs. The gene patterns of LB-EPS closely clustered with those of TB-EPS, while intracellular ARG gene patterns differed from both TB-EPS and LB-EPS. Metagenomic analyses indicated that the relative abundances of sul1 and sul2 were considerably higher at the beginning stage compared to the end stage. The abundance of Achromobacter, increased by the end stage, aligning with its potential to produce exopolysaccharide. Additionally, the absolute abundance of genes encoding exopolysaccharides (nagB and galE) and conjugative transfer transcription regulator (traF), increased over time. These findings enhanced our comprehension of the significance of EPS on the fate of ARGs in microalgae-bacteria systems during the treatment of antibiotic-contaminated wastewater.202539879767
7980150.9996Effect of dissolved biochar on the transfer of antibiotic resistance genes between bacteria. The spread of antibiotic resistance genes (ARGs) is a global environmental issue. Dissolved biochar is more likely to contact bacteria in water, producing ecological risks. This study explored the effects of dissolved biochar on ARGs transfer in bacteria. Conjugative transfer efficiency was significantly different following treatment with different types of dissolved biochar. Typically, humic acid-like substance in dissolved biochar can significantly improve the transfer efficiency of ARGs between bacteria. When the concentration of dissolved biochar was ≤10 mg biochar/mL, humic acid-like substance substantially promoted ARGs transfer. An increase in dissolved biochar concentration weakened the ARGs transfer from humic acid-like substance. The inhibitory effects of small-molecule matters dominated, decreasing conjugative transfer frequency. At a concentration of 100 mg biochar/mL, the conjugative transfer efficiency of all treatments was lower than that of control. Compared with corn straw dissolved biochar, there were more transconjugants in pine sawdust dissolved biochar. Following treatment with 10 mg biochar/mL pine sawdust dissolved biochar, the number of transconjugants was at its maximum; approximately 7.3 folds higher than the control. We also explored mechanisms by which dissolved biochar impacts conjugative transfer. Due to the complex composition of dissolved biochar, its effects on the expression of conjugative transfer-related genes were also dynamic. This study investigates the ecological risk of biochar and guides its scientific application.202134274650
8083160.9996Alteration of the migration trajectory of antibiotic resistance genes by microplastics in a leachate activated sludge system. The environmental behavior of emerging contaminants of microplastics (MPs), antibiotics and antibiotic resistance genes (ARGs) in the leachate activated sludge system has been monitored and analyzed comprehensively. The results suggested that MPs could effectively alter the migration trajectory of tetracycline resistance genes (tet genes) in the leachate activated sludge system under intermittent and continuous influent conditions. After adding MPs, the total average abundance of tet genes in leachate increased from 0.74 ± 0.07 to 0.78 ± 0.07 (log(10)tet genes/log(10) 16S rRNA) and that in sludge increased from 0.65 ± 0.08 to 0.70 ± 0.06 (log(10)tet genes/log(10) 16S rRNA). Except for tetA, the abundance of tetB, tetO, tetM and tetQ on MPs increased with increasing TC concentration under both aerobic and anaerobic conditions. MPs not only significantly affect the abundance level and migration trajectory of ARGs in the leachate activated sludge system, but also remarkably improve the level of heavy metals in the ambient environment, indirectly promoting the selective effect of antibiotic-resistant bacteria (ARB) and promoting the development of antibiotic resistance (AR). In addition, MPs changed their physicochemical properties and released hazardous substances with aging to force tet genes to migrate from the leachate activated sludge system to the MPs, making AR more difficult to eliminate and persisted in wastewater treatment plants. Meanwhile, microorganisms played a driving role, making MPs serve as a niche for ARGs and ARB colonization. The co-occurrence network analysis indicated the specific distribution pattern of tet genes and microorganisms in different media, and the potential host was speculated. This study improves the understanding of the environmental behavior of emerging contaminants in leachate activated sludge system and lays a theoretical for protecting the ecological environment.202337321316
7617170.9996Ozone pretreatment of wastewater containing aromatics reduces antibiotic resistance genes in bioreactors: The example of p-aminophenol. Aromatic matters are widely present in wastewater, especially industrial wastewater, and may lead to a high abundance of antibiotic resistance genes (ARGs) in wastewater treatment bioreactors and stimulate horizontal transfers of ARGs. Here, we investigated a practical approach that applying ozone pretreatment to mitigate ARGs in bioreactors treating wastewater containing a typical aromatic pollutant, p-aminophenol (PAP). The results showed that ozone pretreatment could effectively reduce the aromaticity of wastewater, and the relative abundance of ARGs in the bioreactor fed with ozone treated wastewater decreased by over 70% compared to the control reactor. Multidrug, quinolone, mupirocin, polymyxin, aminoglycoside, glycopeptide, beta-lactam, and trimethoprim resistance genes were all reduced in the bioreactors receiving wastewater pretreated by ozone. Metagenomic analysis suggested that the reduction of ARGs could be attributed to the co-occurrence of ARGs and aromatic degradation genes in bacteria. Furthermore, we expanded our analysis to investigate 71 metagenomes from different environments, and the results indicated that the impact of aromatics on ARG abundance widely occurs in various ecosystems and confirmed that high levels of aromatics could lead to high abundance of ARGs. Taken together, our work confirmed that the aromatics played critical roles in selecting ARGs and proposed a feasible approach to reduce ARGs in wastewater treatment bioreactors.202032563772
7573180.9996Chlorine and UV combination sequence: Effects on antibiotic resistance control and health risks of ARGs. The effective control of antibiotic resistance in aquatic environments is urgent. The combined chlorine and UV processes (Cl(2)-UV, UV/Cl(2), and UV-Cl(2)) are considered potential control processes for controlling antibiotic resistance. This study compared the effectiveness of these three processes in real water bodies and the potential health risks associated with antibiotic resistance genes (ARGs) after treatments. The removal of various antibiotic-resistant bacteria (ARB) and ARGs by the combined processes was analysed. The UV/Cl(2) process was less effective than the others in inactivating β-lactam-resistant bacteria (BRB) and sulfamethoxazole-resistant bacteria (SRB), which are more challenging to remove, though its performance might improve with increased UV fluence. Nevertheless, the UV/Cl(2) process showed an advantage in removing ARGs. The absolute abundance of aminoglycoside resistance genes (AmRGs), sulfonamide resistance genes (SRGs), macrolide resistance genes (MRGs), and multidrug efflux-associated ARGs detected after the UV/Cl(2) process was relatively low, and this process outperformed the others in removing a greater number of ARGs. Additionally, certain ARGs and bacterial genera were found to be enriched after the combined processes, with lower and more similar abundance levels of ARGs and genera observed after UV/Cl(2) and UV-Cl(2) processes compared to the Cl(2)-UV process. Health risk assessments indicated that the Cl(2)-UV process posed the highest risk, followed by UV/Cl(2) and UV-Cl(2) processes. Overall, the UV/Cl(2) process may offer the most practical advantages for controlling antibiotic resistance.202539708685
7039190.9996Profiles and key drivers of bacteria/phage co-mediated antibiotic resistance genes during swine manure composting amended with humic acid. Phages can promote the spread of antibiotic resistance genes (ARGs) in agricultural environments through transduction. However, studies on phage-mediated ARG profiles during composting have not been performed. This study investigated the effects of adding humic acid (HA) on the abundances of bacteria/phage co-mediated ARGs (b/pARGs) during swine manure composting and the key factors that affected the transmission of b/pARGs. The results showed that the addition of 5 % HA during composting could effectively reduce the absolute abundances of b/pARGs, inhibit the proliferation of pathogenic microorganisms (e.g., Corynebacterium and Streptococcus) that carried ARGs, and ultimately affect the fate of b/pARGs in the composting process by regulating key environmental factors to change the abundance of co-host bacteria. Overall, the findings of this study provided new information for understanding the main driving factors affecting the b/pARGs profile and provided a reference for the prevention and control of ARGs pollution during composting.202336774987