# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7603 | 0 | 1.0000 | Antibiotic enhances the spread of antibiotic resistance among chlorine-resistant bacteria in drinking water distribution system. The extensive use of antibiotics leads to the occurrences of antibiotic resistance genes (ARGs) in aquatic environment. As an emerging environmental pollutant, its pollution in aquatic environment has aroused widespread concern. However, the residues of antibiotics and antibiotic resistance genes in drinking water distribution system were barely reported up to now. Here, we studied the correlation and coordination between chlorine resistance mechanism and antibiotic resistance mechanism of chlorine-resistant bacteria. Antibiotics induce the resistance of chlorine-resistant bacteria (CRB) to NaClO, so that low-dose disinfectants can not inactivate CRB. We put forward a strategy to control the growth of CRB by controlling the concentration of biodegradable dissolved organic carbon (BDOC) in the front section of the water network. Moreover, We screened two strains of chlorine-resistant bacteria with different antibiotic resistance after mixed culture, the results showed that antibiotic resistance could spread horizontally among different kinds of bacteria. Then, the non-pathogenic bacteria can be used as a carrier, causing the pathogen to become resistant to antibiotic, and ultimately pose harm to human health. Generally, the antibiotic, antibiotic resistant genes, and the chlorine disinfectants added in water treatment plants will interact with bacteria in the water supply pipe network, which causes pollution to drinking water. | 2022 | 35248560 |
| 7604 | 1 | 0.9999 | Combined applications of UV and chlorine on antibiotic resistance control: A critical review. Environmental health problems caused by antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) have become a global concern. ARB and ARGs have been continuously detected in various water environments, which pose a new challenge for water quality safety assurance. Disinfection is a key water treatment process to eliminate pathogenic microorganisms in water, and combined chlorine and UV processes (the UV/Cl(2) process, the UV-Cl(2) process, and the Cl(2)-UV process) are considered potential disinfection methods to control antibiotic resistance. This review documented the efficacy and mechanism of combined UV and chlorine processes for the control of antibiotic resistance, as well as the effects of chlorine dose, solution pH, UV wavelength, and water matrix on the effectiveness of the processes. There are knowledge gaps in research on the combined chlorine and UV processes for antibiotic resistance control, in particular the UV-Cl(2) process and the Cl(2)-UV process. In addition, changes in the structure of microbial communities and the distribution of ARGs, which are closely related to the spread of antibiotic resistance in the water, induced by combined processes were also addressed. Whether these changes could lead to the re-transmission of antibiotic resistance and harm human health may need to be further evaluated. | 2024 | 38072103 |
| 7602 | 2 | 0.9999 | A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized. | 2016 | 26775188 |
| 7427 | 3 | 0.9999 | A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission. Antibiotics are commonly used to prevent and control diseases in aquaculture. However, long-term/overuse of antibiotics not only leaves residues but results in the development of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Antibiotics, ARB, and ARGs are widespread in aquaculture ecosystems. However, their impacts and interaction mechanisms in biotic and abiotic media remain to be clarified. In this paper, we summarized the detection methods, present status, and transfer mechanisms of antibiotics, ARB, and ARGs in water, sediment, and aquaculture organisms. Currently, the dominant methods of detecting antibiotics, ARB, and ARGs are UPLC-MS/MS, 16S rRNA sequencing, and metagenomics, respectively. Tetracyclines, macrolides, fluoroquinolones, and sulfonamides are most frequently detected in aquaculture. Generally, antibiotic concentrations and ARG abundance in sediment are much higher than those in water. Yet, no obvious patterns in the category of antibiotics or ARB are present in organisms or the environment. The key mechanisms of resistance to antibiotics in bacteria include reducing the cell membrane permeability, enhancing antibiotic efflux, and structural changes in antibiotic target proteins. Moreover, horizontal transfer is a major pathway for ARGs transfer, including conjugation, transformation, transduction, and vesiculation. Identifying, quantifying, and summarizing the interactions and transmission mechanisms of antibiotics, ARGs, and ARB would provide useful information for future disease diagnosis and scientific management in aquaculture. | 2023 | 37235235 |
| 7510 | 4 | 0.9999 | Impacts of antibiotics on biofilm bacterial community and disinfection performance on simulated drinking water supply pipe wall. Overuse of antibiotics is accelerating the spread of resistance risk in the environment. In drinking water supply systems, the effect of antibiotics on the resistance of biofilm is unclear, and there have been few studies in disinfectant-containing systems. Here, we designed a series of drinking water supply reactors to investigate the effects of antibiotics on biofilm and bacteria in the water. At low concentrations, antibiotics could promote the growth of bacteria in biofilm; among the tested antibiotics (tetracycline, sulfadiazine and chloramphenicol), tetracycline had the strongest ability to promote this. And the antibiotic resistant bacteria (ARB) could inhibit the growth of bacteria in drinking water. Results have shown that antibiotics enhanced the bacterial chlorine resistance in the effluent, but reduced that in the biofilm. Furthermore, metagenomic analysis showed that antibiotics reduced the richness of biofilm communities. The dominant phyla in the biofilm were Proteobacteria, Planctomycetes, and Firmicutes. In tetracycline-treated biofilm, the dominant phylum was Planctomycetes. In sulfadiazine- and chloramphenicol-treated groups, bacteria with complex cell structures preferentially accumulated. The dominant class in biofilm in the ARB-added group was Gammaproteobacteria. The abundance of antibiotic resistant genes (ARGs) was correlated with biofilm community structure. This study shows that antibiotics make the biofilm community structure of drinking water more resistant to chlorine. ARGs may be selective for certain bacteria in the process, and there may ultimately be enhanced chlorine and antibiotic resistance of effluent bacteria in drinking water. | 2021 | 34256291 |
| 7424 | 5 | 0.9999 | Fate of antibiotic resistance genes and antibiotic-resistant bacteria in water resource recovery facilities. Many important diseases are showing resistance to commonly used antibiotics, and the resistance is potentially caused by widespread use of antibiotics for maintaining human health and improving food production. Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) are associated with this increase, and their fate in water resource recovery facilities is an important, emerging area of research. This literature review summarizes current findings of worldwide research on the fate of ARB and ARGs in various types of treatment plants. Twenty-five published studies were reviewed which contained 215 observations in activated sludge, membrane bioreactors, anaerobic digestion, constructed wetlands, coagulation-filtration, and three types of disinfection. We found 70% decreased observations, 18% increased observations, and 12% unchanged observations of all observations in all treatment processes. Resistance genes to tetracycline were most often observed, but more studies are needed in other antibiotic resistance genes. The causes for increased abundance of ARGs and ARB are not well understood, and further studies are warranted. PRACTITIONER POINTS: Antibiotic resistance is increasing with concern that treatment plants may acclimate bacteria to antibiotics. A literature survey found 215 resistance observations with 70% decreased, 18% increased, 12% unchanged after treatment. The type of treatment process is important with activated sludge showing the greatest reductions. | 2019 | 30682226 |
| 7425 | 6 | 0.9998 | Antibiotic resistant bacteria and genes in wastewater treatment plants: From occurrence to treatment strategies. This study aims to discuss the following: (1) occurrence and proliferation of antibiotic resistance in wastewater treatment plants (WWTPs); (2) factors influencing antibiotic resistance bacteria and genes in WWTPs; (3) tools to assess antibiotic resistance in WWTPs; (4) environmental contamination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from WWTPs; (5) effects of ARB and ARGs from WWTPs on human health; and (6) treatment strategies. In general, resistant and multi-resistant bacteria, including Enterobacteriaceae, Pseudomonas aeruginosa, and Escherichia coli, exist in various processes of WWTPs. The existence of ARB and ARGs results from the high concentration of antibiotics in wastewater, which promote selective pressures on the local bacteria present in WWTPs. Thus, improving wastewater treatment technology and avoiding the misuse of antibiotics is critical to overcoming the threat of proliferation of ARBs and ARGs. Numerous factors can affect the development of ARB and ARGs in WWTPs. Abiotic factors can affect the bacterial community dynamics, thereby, affecting the applicability of ARB during the wastewater treatment process. Furthermore, the organic loads and other nutrients influence bacterial survival and growth. Specifically, molecular methods for the rapid characterization and detection of ARBs or their genes comprise DNA sequencing, real-time PCR, simple and multiplex PCR, and hybridization-based technologies, including micro- and macro-arrays. The reuse of effluent from WWTPs for irrigation is an efficient method to overcome water scarcity. However, there are also some potential environmental risks associated with this practice, such as increase in the levels of antibiotic resistance in the soil microbiome. Human mortality rates may significantly increase, as ARB can lead to resistance among several types of antibiotics or longer treatment times. Some treatment technologies, such as anaerobic and aerobic treatment, coagulation, membrane bioreactors, and disinfection processes, are considered potential techniques to restrict antibiotic resistance in the environment. | 2022 | 35679932 |
| 6493 | 7 | 0.9998 | Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review. The World Health Organization (WHO) has identified the spread of antibiotic resistance as one of the major risks to global public health. An important transfer route into the aquatic environment is the urban water cycle. In this paper the occurrence and transport of antibiotic microbial resistance in the urban water cycle are critically reviewed. The presence of antibiotic resistance in low impacted surface water is being discussed to determine background antibiotic resistance levels, which might serve as a reference for treatment targets in the absence of health-based threshold levels. Different biological, physical and disinfection/oxidation processes employed in wastewater treatment and their efficacy regarding their removal of antibiotic resistant bacteria and antibiotic resistance geness (ARGs) were evaluated. A more efficient removal of antibiotic microbial resistance abundances from wastewater effluents can be achieved by advanced treatment processes, including membrane filtration, ozonation, UV-irradiation or chlorination, to levels typically observed in urban surface water or low impacted surface water. | 2019 | 31195321 |
| 7504 | 8 | 0.9998 | Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater: A review. Antibiotic resistance genes (ARGs) in water environment have become a global health concern. Swine wastewater is widely considered to be one of the major contributors for promoting the proliferation of ARGs in water environments. This paper comprehensively reviews and discusses the occurrence and removal of ARGs in anaerobic treatment of swine wastewater, and contributions of antibiotics to the fate of ARGs. The results reveal that ARGs' removal is unstable during anaerobic processes, which negatively associated with the presence of antibiotics. The abundance of bacteria carrying ARGs increases with the addition of antibiotics and results in the spread of ARGs. The positive relationship was found between antibiotics and the abundance and transfer of ARGs in this review. However, it is necessary to understand the correlation among antibiotics, ARGs and microbial communities, and obtain more knowledge about controlling the dissemination of ARGs in the environment. | 2020 | 31917094 |
| 6496 | 9 | 0.9998 | Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants. The main goal of this manuscript is to review different treatment strategies and mechanisms for combating the antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in the wastewater environment. The high amount of antibiotics is released into the wastewater that may promote selection of ARB and ARGs which find their way into natural environments. Emerging microbial pathogens and increasing antibiotic resistance among them is a global public health issue. The propagation and spread of ARB and ARGs in the environment may result in an increase of antibiotic resistant microbial pathogens which is a worldwide environmental and public health concern. A proper treatment of wastewater is essential before its discharge into rivers, lake, or sewage system to prevent the spread of ARB and ARGs into the environment. This review discusses various treatment options applied for combating the spread of ARB and ARGs in wastewater treatment plants (WWTPs). It was reported that low-energy anaerobic-aerobic treatment reactors, constructed wetlands, and disinfection processes have shown good removal efficiencies. Nanomaterials and biochar combined with other treatment methods and coagulation process are very recent strategies regarding ARB and ARGs removal and need more investigation and research. Based on current studies a wide-ranging removal efficiency of ARGs can be achieved depending on the type of genes present and treatment processes used, still, there are gaps that need to be further investigated. In order to find solutions to control dissemination of antibiotic resistance in the environment, it is important to (1) study innovative strategies in large scale and over a long time to reach an actual evaluation, (2) develop risk assessment studies to precisely understand occurrence and abundance of ARB/ARGs so that their potential risks to human health can be determined, and (3) consider operating and environmental factors that affect the efficiency of each treatment mechanism. | 2017 | 29387043 |
| 6495 | 10 | 0.9998 | A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. This paper reviews current knowledge on sources, spread and removal mechanisms of antibiotic resistance genes (ARGs) in microbial communities of wastewaters, treatment plants and downstream recipients. Antibiotic is the most important tool to cure bacterial infections in humans and animals. The over- and misuse of antibiotics have played a major role in the development, spread, and prevalence of antibiotic resistance (AR) in the microbiomes of humans and animals, and microbial ecosystems worldwide. AR can be transferred and spread amongst bacteria via intra- and interspecies horizontal gene transfer (HGT). Wastewater treatment plants (WWTPs) receive wastewater containing an enormous variety of pollutants, including antibiotics, and chemicals from different sources. They contain large and diverse communities of microorganisms and provide a favorable environment for the spread and reproduction of AR. Existing WWTPs are not designed to remove micropollutants, antibiotic resistant bacteria (ARB) and ARGs, which therefore remain present in the effluent. Studies have shown that raw and treated wastewaters carry a higher amount of ARB in comparison to surface water, and such reports have led to further studies on more advanced treatment processes. This review summarizes what is known about AR removal efficiencies of different wastewater treatment methods, and it shows the variations among different methods. Results vary, but the trend is that conventional activated sludge treatment, with aerobic and/or anaerobic reactors alone or in series, followed by advanced post treatment methods like UV, ozonation, and oxidation removes considerably more ARGs and ARB than activated sludge treatment alone. In addition to AR levels in treated wastewater, it examines AR levels in biosolids, settled by-product from wastewater treatment, and discusses AR removal efficiency of different biosolids treatment procedures. Finally, it puts forward key-points and suggestions for dealing with and preventing further increase of AR in WWTPs and other aquatic environments, together with a discussion on the use of mathematical models to quantify and simulate the spread of ARGs in WWTPs. Mathematical models already play a role in the analysis and development of WWTPs, but they do not consider AR and challenges remain before models can be used to reliably study the dynamics and reduction of AR in such systems. | 2021 | 34707579 |
| 6500 | 11 | 0.9998 | Effect of ozonation-based disinfection methods on the removal of antibiotic resistant bacteria and resistance genes (ARB/ARGs) in water and wastewater treatment: a systematic review. Antibiotic resistance is considered a universal health threat of the 21st century which its distribution and even development are mainly mediated by water-based media. Disinfection processes with the conventional methods are still the most promising options to combat such crises in aqueous matrices especially wastewater. Knowing that the extent of effectiveness and quality of disinfection is of great importance, this paper aimed to systematically review and discuss ozonation (as one of the main disinfectants with large scale application) effect on removing antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from aqueous solutions, for which no study has been reported. For this, a comprehensive literature survey was performed within the international databases using appropriate keywords which yielded several studies involving different aspects and the effectiveness extent of ozonation on ARB & ARGs. The results showed that no definite conclusion could be drawn about the superiority of ozone alone or in a hybrid form. Mechanism of action was carefully evaluated and discussed although it is still poorly understood. Evaluation of the studies from denaturation and repairment perspectives showed that regrowth cannot be avoided after ozonation, especially for some ARB & ARGs variants. In addition, the comparison of the effectiveness on ARB & ARGs showed that ozonation is more effective for resistant bacteria than their respective genes. The degradation efficiency was found to be mainly influenced by operational parameters of CT (i.e. ozone dose & contact time), solids, alkalinity, pH, and type of pathogens and genes. Moreover, the correlation between ARB & ARGs removal and stressors (such as antibiotic residuals, heavy metals, aromatic matters, microcystins, opportunistic pathogens, etc.) has been reviewed to give the optimal references for further in-depth studies. The future perspectives have also been reported. | 2022 | 34767893 |
| 7442 | 12 | 0.9998 | Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. Antibiotic resistance genes (ARGs), in association with antibiotic resistant bacteria (ARB), have been identified as widespread contaminants of treated drinking waters and wastewaters. As a consequence, concerns have been raised that ARB or ARG transport between aquatic compartments may enhance the spread of antibiotic resistance amongst non-resistant bacterial communities by means of horizontal gene transfer processes. Most often, discussion of horizontal gene transfer focuses on the probable role of conjugative plasmid or transposon exchange, which requires live ARB donor cells. Conventional water and wastewater disinfection processes generally provide highly effective means for mitigating the transport of live ARB; thereby minimizing risks of conjugative gene transfer. However, even if ARB present in a treated water are fully inactivated during a disinfection process, the possibility remains that intact remnants of DNA contained within the resulting cell debris could still confer resistance genotypes to downstream bacterial populations by means of natural transformation and/or transduction, which do not require live donor cells. Thus, a systematic evaluation of the capability of common disinfection technologies to ensure the destruction of bacterial DNA, in addition to pathogen inactivation, seems warranted. With that objective in mind, this review seeks to provide a concise introduction to the significance of ARB and ARG occurrence in environmental systems, coupled with a review of the role that commonly used water and wastewater disinfection processes may play in minimizing ARG transport and dissemination. | 2012 | 22572858 |
| 7426 | 13 | 0.9998 | Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review. Antibiotics are among the most successful group of pharmaceuticals used for human and veterinary therapy. However, large amounts of antibiotics are released into municipal wastewater due to incomplete metabolism in humans or due to disposal of unused antibiotics, which finally find their ways into different natural environmental compartments. The emergence and rapid spread of antibiotic resistant bacteria (ARB) has led to an increasing concern about the potential environmental and public health risks. ARB and antibiotic resistant genes (ARGs) have been detected extensively in wastewater samples. Available data show significantly higher proportion of antibiotic resistant bacteria contained in raw and treated wastewater relative to surface water. According to these studies, the conditions in wastewater treatment plants (WWTPs) are favourable for the proliferation of ARB. Moreover, another concern with regards to the presence of ARB and ARGs is their effective removal from sewage. This review gives an overview of the available data on the occurrence of ARB and ARGs and their fate in WWTPs, on the biological methods dealing with the detection of bacterial populations and their resistance genes, and highlights areas in need for further research studies. | 2013 | 23414720 |
| 7501 | 14 | 0.9998 | Enhanced sensitivity of extracellular antibiotic resistance genes (ARGs) to environmental concentrations of antibiotic. As emerging contaminants, antibiotics are frequently present in various environments, particularly rivers, albeit often at sublethal concentrations (ng/L∼μg/L). Assessing the risk associated with these low levels, which are far below the lethal threshold for most organisms, remains challenging. In this study, using microcosms containing planktonic bacteria and biofilm, we examined how antibiotic resistance genes (ARGs) in different physical states, including intracellular ARGs (iARGs) and extracellular ARGs (eARGs) responded to these low-level antibiotics. Our findings reveal a positive correlation between sub-lethal antibiotic exposure (ranging from 0.1 to 10 μg/L) and increased prevalence (measured as ARG copies/16s rDNA) of both iARGs and eARGs in planktonic bacteria. Notably, eARGs demonstrated greater sensitivity to antibiotic exposure compared to iARGs, with a lower threshold (0.1 μg/L for eARGs versus 1 μg/L for iARGs) for abundance increase. Moreover, ARGs in biofilms demonstrates higher sensitivity to antibiotic exposure compared to planktonic bacteria. To elucidate the underlying mechanisms, we established an integrated population dynamics-pharmacokinetics-pharmacodynamics (PD-PP) model. This model indicates that the enhanced sensitivity of eARGs is primarily driven by an increased potential for plasmid release from cells under low antibiotic concentrations. Furthermore, the accumulation of antibiotic in biofilms induces a greater sensitivity of ARG compared to the planktonic bacteria. This study provides a fresh perspective on the development of antibiotic resistance and offers an innovative approach for assessing the risk of sublethal antibiotic in the environment. | 2024 | 38797215 |
| 7391 | 15 | 0.9998 | Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters. Antibiotic resistance has become a widely concerned issue due to the huge risk on the ecological environment and human health. China has the highest production and consumption of antibiotics than other countries. Thus, antibiotic resistance genes (ARGs) have been detected in various environmental settings (e.g., surface water, wastewater, sediment) in China. The occurrence of ARGs in these matrixes was summarized and discussed in this review. Sulfonamide resistance genes and tetracycline resistance genes were the most frequently detected ARGs in China. According to the abundance of these two classes of ARGs in the natural environment, sulfonamide resistance genes seem to be more stable than tetracycline resistance genes. Furthermore, the relationships between ARGs and antibiotics, antibiotic resistance bacteria (ARB), heavy metals, and environmental parameters (e.g., pH, organics) were also investigated. Specifically, relative abundance of total ARGs was found to correlate well with concentration of total antibiotics in aqueous phase but not in the solid phase (soil, sediment, sludge, and manure). As for relationship between ARGs and ARB, metals, and environmental parameters in different media, due to complex and variable environment, some exhibit positive correlation, some negative, while others no correlation at all. Three potential risks are discussed in the text: transmission to human, synergistic effect of different ARGs, and variability of ARGs. However, due to the complexity of the environment, more work is needed to establish a quantitative approach of ARG risk assessment, which can provide a theoretical support for the management of antibiotics and the protection of human health. | 2018 | 29948704 |
| 7503 | 16 | 0.9998 | Microplastics exhibit accumulation and horizontal transfer of antibiotic resistance genes. Although the fates of microplastics (0.1-5 mm) in marine environments and freshwater are increasingly studied, little is known about their vector effect in wastewater treatment plants (WWTPs). Previous studies have evaluated the accumulation of antibiotic resistance genes (ARGs) on microplastics, but there is no direct evidence for the selection and horizontal transfer of ARGs on different microplastics in WWTPs. Here, we show biofilm formation as well as bacterial community and ARGs in these biofilms grown on four kinds of microplastics via incubation in the aerobic and anaerobic tanks of a WWTP. Microplastics showed differential capacities for bacteria and ARGs enrichment, differing from those of the culture environment. Furthermore, ARGs in microplastic biofilms were horizontally transferred at frequencies higher than those in water samples in both tanks. Therefore, microplastics in WWTPs can act as substrates for horizontal transfer of ARGs, potentially causing a great harm to the ecological environment and adversely affecting human health. | 2023 | 36921474 |
| 7465 | 17 | 0.9998 | Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors. The inadequate elimination of micropollutants in wastewater treatment plants (WWTP), cause to increase in the incidence of antibiotic resistant bacterial strains. Growth of microbial pathogens in WWTP is one of the serious public health problems. The widespread and simultaneous emergence of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment with heavy metals create persistent and selective pressure for co-selection of both genes on environmental microorganisms. Co-localization of ARGs and HMRGs on the same horizontal mobile genetic elements (MGEs) allows the spreading of numerous antibiotic-resistant strains of bacteria in aquatic and terrestrial environment. The biofilm formation and colonization potential of environmental bacteria leads to the co-selection of multi-antibiotic resistance and multi-metal tolerance. Horizontal gene transfer (HGT), co-localization of both ARGs and HMRGs on the same MGEs, and the shared resistomes are important bacteria-associated ecological risks factors, which reduce the effectiveness of antibiotics against bacterial infections. | 2023 | 36805463 |
| 7466 | 18 | 0.9998 | Effects of heavy metals on the development and proliferation of antibiotic resistance in urban sewage treatment plants. Sewage treatment plants (STPs) are considered as "hotspots" for the emergence and proliferation of antibiotic resistance. However, the impact of heavy metals contamination on dispersal of antibiotic resistance in STPs is poorly understood. This study simultaneously investigated the effect of removal of metal and antibiotic resistance as well as mobile elements at different treatment units of STPs in Delhi, India. Results showed that treatment technologies used in STPs were inefficient for the complete removal of metal and antibiotic resistance, posing an ecological risk of co-selection of antibiotic resistance. The strong correlations were observed between heavy metals, metal and antibiotic resistance, and integrons, implying that antibiotic resistance may be exacerbated in the presence of heavy metals via integrons, and that metal and antibiotic resistance share a common or closely associated mechanism. We quantified an MRG rcnA, conferring resistance to Co and Ni, and identified that it was more abundant than all MRGs, ARGs, integrons, and 16S rRNA, suggesting rcnA could be important in antibiotic resistance dissemination in the environment. The associations between heavy metals, metal and antibiotic resistance, and integrons highlight the need for additional research to better understand the mechanism of co-selection as well as to improve the removal efficacy of current treatment systems. | 2022 | 35724944 |
| 6491 | 19 | 0.9998 | Nature-based bioreactors: Tackling antibiotic resistance in urban wastewater treatment. The overuse and misuse of antibiotics have accelerated the selection of antibiotic-resistant bacteria, significantly impacting human, animal, and environmental health. As aquatic environments are vulnerable to antibiotic resistance, suitable management practices should be adopted to tackle this phenomenon. Here we show an effective, nature-based solution for reducing antibiotic resistance from actual wastewater. We utilize a bioreactor that relies on benthic (biofilms) and planktonic microbial communities to treat secondary effluent from a small urban wastewater treatment plant (<10,000 population equivalent). This treated effluent is eventually released into the local aquatic ecosystem. We observe high removal efficiency for genes that provide resistance to commonly used antibiotic families, as well as for mobile genetic elements that could potentially aid in their spread. Importantly, we notice a buildup of sulfonamide (sul1 and sul2) and tetracycline (tet(C), tet(G), and tetR) resistance genes specifically in biofilms. This advancement marks the initial step in considering this bioreactor as a nature-based, cost-effective tertiary treatment option for small UWWTPs facing antibiotic resistance challenges. | 2024 | 39055482 |