Responses of microbial community and antibiotic resistance genes to co-existence of chloramphenicol and salinity. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
758401.0000Responses of microbial community and antibiotic resistance genes to co-existence of chloramphenicol and salinity. In recent years, the risk from environmental pollution caused by chloramphenicol (CAP) has emerged as a serious concern worldwide, especially for the co-selection of antibiotic resistance microorganisms simultaneously exposed to CAP and salts. In this study, the multistage contact oxidation reactor (MCOR) was employed for the first time to treat the CAP wastewater under the co-existence of CAP (10-80 mg/L) and salinity (0-30 g/L NaCl). The CAP removal efficiency reached 91.7% under the co-existence of 30 mg/L CAP and 10 g/L NaCl in the influent, but it fluctuated around 60% with the increase of CAP concentration and salinity. Trichococcus and Lactococcus were the major contributors to the CAP and salinity shock loads. Furthermore, the elevated CAP and salinity selection pressures inhibited the spread of CAP efflux pump genes, including cmlA, tetC, and floR, and significantly affected the composition and abundance of antibiotic resistance genes (ARGs). As the potential hosts of CAP resistance genes, Acinetobacter, Enterococcus, and unclassified_d_Bacteria developed resistance against high osmotic pressure and antibiotic environment using the efflux pump mechanism. The results also revealed that shifting of potential host bacteria significantly contributed to the change in ARGs. Overall, the co-existence of CAP and salinity promoted the enrichment of core genera Trichococcus and Lactococcus; however, they inhibited the proliferation of ARGs. KEY POINTS: • Trichococcus and Lactococcus were the core bacteria related to CAP biodegradation • Co-existence of CAP and salinity inhibited proliferation of cmlA, tetC, and floR • The microorganism resisted the CAP using the efflux pump mechanism.202236205764
808210.9999Deciphering the toxic effects of antibiotics on denitrification: Process performance, microbial community and antibiotic resistance genes. The extensive application of antibiotics, and the occurrence and spread of antibiotic resistance genes (ARGs) shade health risks to human and animal. The long-term effects of sulfamethoxazole (SMX) and tetracycline (TC) on denitrification process were evaluated in this study, with the focus on nitrogen removal performance, microbial community and ARGs. Results showed that low-concentration SMX and TC (<0.2 mg L(-1)) initially caused a deterioration in nitrogen removal performance, while higher concentrations (0.4-20 mg L(-1)) of both antibiotics had no further inhibitory influences. The abundances of ARGs in both systems generally increased during the whole period, and most of them had significant correlations with intI1, especially efflux-pump genes. Castellaniella, which was the dominant genus under antibiotic pressure, might be potential resistant bacteria. These findings provide an insight into the toxic effects of different antibiotics on denitrification process, and guides future efforts to control antibiotics pollution in ecosystems.202032250829
763020.9999Coexistence of silver ion and tetracycline at environmentally relevant concentrations greatly enhanced antibiotic resistance gene development in activated sludge bioreactor. Antibiotic resistance has become a global public health problem. Recently, various environmental pollutants have been reported to induce the proliferation of antibiotic resistance. However, the impact of multiple pollutants (e.g., heavy metals and antibiotics), which more frequently occur in practical environments, is poorly understood. Herein, one widely distributed heavy metal (Ag(+)) and one frequently detected antibiotic (tetracycline) were chosen to investigate their coexisting effect on the proliferation of antibiotic resistance in the activated sludge system. Results show that the co-occurrence of Ag(+) and tetracycline at environmentally relevant concentrations exhibited no distinct inhibition in reactor performances. However, they inhibited the respiratory activity by 42%, destroyed the membrane structure by 218%, and increased membrane permeability by 29% compared with the blank control bioreactor. Moreover, the relative abundances of target antibiotic resistance genes (ARGs) (e.g., tetA, bla(TEM-1), and sulII) in effluent after exposure of coexisting Ag(+) and tetracycline were increased by 92-1983% compared with those in control reactor, which were 1.1-4.3 folds higher than the sum of the sole ones. These were possibly attributed to the enrichments of antibiotic-resistant bacteria. The results would illumine the coexisting effect of heavy metals and antibiotics on the dissemination of ARGs in activated sludge system.202234482077
758530.9998Impacts of engineered nanoparticles and antibiotics on denitrification: Element cycling functional genes and antibiotic resistance genes. The wide presence of antibiotics and minerals warrants their combined effects on the denitrification in natural aquatic environment. Herein, we investigated the effects of two antibiotics, sulfamethazine (SMZ) and chlortetracycline (CTC), on the reduction of NO(3)(-)-N and accumulation of NO(2)(-)-N in the absence and presence of engineered nanoparticles (NPs) (Al(2)O(3), SiO(2), and geothite) using 16 S rRNA sequencing and high-throughput quantitative PCR. The results showed that the addition of antibiotics inhibited the reduction of NO(3)(-)-N by changing the bacterial community structure and reducing the abundance of denitrification genes, while engineered NPs promoted the denitrification by increasing the abundance of denitrification genes. In the binary systems, engineered NPs alleviated the inhibitory effect of antibiotics through enriching the denitrification genes and adsorbing antibiotics. Antibiotics and its combination with engineered NPs changed the composition of functional genes related to C, N, P, S metabolisms (p < 0.01). The addition of antibiotics and/or engineered NPs altered the bacterial community structure, which is dominated by the genera of Enterobacter (40.7-90.5%), Bacillus (4.9-58.5%), and Pseudomonas (0.21-12.7%). The significant relationship between denitrification, carbon metabolism genes, and antibiotic resistance genes revealed that the heterotrophic denitrifying bacteria may host the antibiotic resistance genes and denitrification genes simultaneously. The findings underscore the significance of engineered NPs in the toxicity assessment of pollutants, and provide a more realistic insight into the toxicity of antibiotics in the natural aquatic environment.202235738104
808440.9998Metagenomic insights into effects of carbon/nitrogen ratio on microbial community and antibiotic resistance in moving bed biofilm reactor. This study investigated the effects of carbon/nitrogen (C/N) ratio on microbial community in moving bed biofilm reactor (MBBR) using metagenomic analysis, and the dynamic changes of relevant antibiotic resistance genes (ARGs) were also analyzed. The results showed that under low C/N ratio, MBBR exhibited average removal rates of 98.41 % for ammonia nitrogen and 75.79 % for total nitrogen. Metagenomic analysis showed low C/N ratio altered the structure of biofilm and water microbiota, resulting in the detachment of bacteria such as Actinobacteria from biofilm into water. Furthermore, sulfamethazine (SMZ)-resistant bacteria and related ARGs were released into water under low C/N ratio, which lead to the increase of SMZ resistance rate to 90%. Moreover, most dominant genera are potential hosts for both nitrogen cycle related genes and ARGs. Specifically, Nitrosomonas that carried gene sul2 might be released from biofilm into water. These findings implied the risks of antibiotic resistance dissemination in MBBR under low C/N ratio.202438901747
808650.9998Biofilm enhanced the mitigations of antibiotics and resistome in sulfadiazine and trimethoprim co-contaminated soils. Reducing antibiotic levels in soil ecosystems is vital to curb the dissemination of antimicrobial resistance genes (ARGs) and mitigate global health threats. However, gaps persist in understanding how antibiotic resistome can be suppressed during antibiotic degradation. Herein, we investigate the efficacy of a biochar biofilm incorporating antibiotics-degrading bacterial strain (Arthrobacter sp. D2) to mitigate antibiotic resistome in non-manured and manure-amended soils with sulfadiazine (SDZ) and trimethoprim (TMP) contamination. Results show that biofilm enhanced SDZ degradation by 83.0% within three days and increased TMP attenuation by 55.4% over 60 days in non-manured soils. In the non-manured black soil, the relative abundance of ARGs increased initially after biofilm inoculation. However, by day 30, it decreased by 20.5% compared to the controls. Moreover, after 7 days, biofilm reduced TMP by 38.5% in manured soils and decreased the total ARG abundance by 19.0%. Thus, while SDZ degradation did not increase sulfonamide resistance genes, TMP dissipation led to a proliferation of insertion sequences and related TMP resistance genes. This study underscores the importance of antibiotic degradation in reducing related ARGs while cautioning against the potential proliferation and various ARGs transfer by resistant microorganisms.202439255667
756460.9998Formation, characteristics and microbial community of aerobic granular sludge in the presence of sulfadiazine at environmentally relevant concentrations. The growing occurrence of antibiotics in water environment is causing increasing concern. To investigate the impact of frequently detected sulfadiazine on the formation of aerobic granular sludge, four sequencing batch reactors (SBRs) were set up with different environmentally relevant concentrations of sulfadiazine. Results showed that sulfadiazine pressure could lead to larger and more compact sludge particles and cause slight effect on reactor performance. Presence of sulfadiazine apparently increased the extracellular polymeric substances (EPS) secretion of microorganisms. Quantitative polymerase chain reaction (qPCR) showed that the abundances of sulfanilamide resistance genes in sludge increased with addition of sulfadiazine significantly. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to predict functional genes, results showed that sulfadiazine led to an increase of specific functional genes. Thereby, it concluded that microorganisms could change the community structure by acclimating of functional bacteria and antibiotic resistance species to adapt to the antibiotic stress.201829197771
808070.9998Fates of antibiotic resistance genes and bacterial/archaeal communities of activated sludge under stress of copper: Gradient increasing/decreasing exposure modes. Effect of copper (Cu) on antibiotic resistance genes (ARGs) and bacterial/archaeal community of activated sludge under gradient increasing (0.5-10 mg/L) or decreasing exposure (10-0.5 mg/L) modes was explored. Here, 29 genes were detected among 48 selected ARGs and mobile gene elements (MGEs). Two exposure modes showed dissimilar effects on ARGs and distribution was more affected by environmental concentrations of Cu, which promoted transmission of ARGs (multiple drug resistance and sulfonamide). Cellular protection was main resistance mechanism, which was less inhibited than efflux pumps. The tnpA-02, as main MGE, interacted closely with ARGs (sul2, floR, etc.). Gradient increasing exposure mode had more effects on bacterial/archaeal structure and composition. Bacteria were main hosts for specific ARGs and tnpA-02, while archaea carried multiple ARGs (cmx(A), adeA, etc.), and bacteria (24.24 %) contributed more to changes of ARGs than archaea (19.29 %). This study clarified the impacts of Cu on the proliferation and transmission of ARGs.202236096328
719080.9998Dynamics of microbial community and tetracycline resistance genes in biological nutrient removal process. The occurrence of antibiotics in wastewater has become a serious concern due to the possible development of antibiotic resistant bacteria in wastewater treatment process. In order to understand the dynamics of microbial community and tetracycline resistance genes in biological nutrient removal (BNR) process, three lab-scale sequencing batch reactors (SBRs) were operated under the stress of tetracycline. Results indicated that microbial community structure was altered, and tetracycline efflux pump genes were enhanced over 150-day operation in the presence of trace tetracycline of 20 and 50 μg L(-1), respectively. Furthermore, when the initial tetracycline concentrations were increased to 2 and 5 mg L(-1), substantial enhancement of tetracycline resistance was observed, accompanied with a sharp shift in microbial community structure. In this study, horizontal gene transfer was found to be the main mechanism for the development of tetracycline resistance genes under the long-terms stress of trace tetracycline. About 90.34% of the observed variations in tetracycline resistance genes could be explained by the dynamics of potential hosts of tetracycline resistance genes and class 1 integron. It should be noticed that the functional bacteria (e.g. Nitrospira, Dechloromonas, Rhodobacter and Candidatus_Accumulibacter) responsible for nutrient removal were positively correlated with tetracycline resistance, which might promote the prevalence of tetracycline resistance during biological wastewater treatment. Consequently, this study provided in-depth insights into the occurrence and prevalence of tetracycline resistance genes and their microbial hosts in BNR process.201930849601
758290.9998Anaerobic fermentation for hydrogen production and tetracycline degradation: Biodegradation mechanism and microbial community succession. The misuse and continues discharge of antibiotics can cause serious pollution, which is urgent to take steps to remit the environment pollution. In this study, anaerobic bacteria isolated from the aeration tank of a local sewage treatment plant were employed to investigate hydrogen production and tetracycline (TC) degradation during anaerobic fermentation. Results indicate that low concentrations of TC enhanced hydrogen production, increasing from 366 mL to a maximum of 480 mL. This increase is attributed to stimulated hydrolysis and acidogenesis, coupled with significant inhibition of homoacetogenesis. Furthermore, the removal of TC, facilitated by adsorption and biodegradation, exceeded 90 %. During the fermentation process, twenty-one by-products were identified, leading to the proposal of four potential degradation pathways. Analysis of the microbial community revealed shifts in diversity and a decrease in the abundance of hydrogen-producing bacteria, whereas bacteria harboring tetracycline resistance genes became more prevalent. This study provides a possibility to treat tetracycline-contaminated wastewater and to produce clean energy simultaneously by anaerobic fermentation.202439168318
8041100.9998Insights into the microalgae-bacteria consortia treating swine wastewater: Symbiotic mechanism and resistance genes analysis. This study investigated the effects of microalgae-bacteria consortia (MBC) (Chlorella pyrenoidosa-activated sludge (AS)) treating swine wastewater with low C/N ratios. After co-culture, the removal rates of NH(4)(+)-N and PO(4)(3-)-P increased by 53.84% and 43.52%. Furthermore, the sulfamethoxazole (SMX) degradation rates in MBC were slightly higher than in the activated sludge process. Interestingly, the absolute abundance of antibiotic resistance genes (ARGs) in effluent from MBC is relatively less than in the AS process. C. pyrenoidosa has a negative zeta potential that allows bacteria to adhere to its surface. The concentrations of carbohydrates and proteins in extracellular polymeric substance (EPS) of MBC dramatically increased compared with the AS process. At the phylum level, Proteobacteria, Bacteroidota, and Cyanobacteria were the main bacteria, while Ascomycota and Basidiomycota were the primary fungi in MBC. Overall, those findings lead to a better understanding of the swine wastewater containing antibiotic treatment by MBC.202235217162
8078110.9998Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment. In present study, copper (Cu), zinc (Zn), tetracycline (TC) and ampicillin (AMP) were selected to study the individual and synergistic effects of antibiotics and heavy metals on the microbial communities and resistance genes on polyvinyl chloride microplastics (PVC MPs) and surrounding sewage after 28 and 84 days. The results indicated that PVC MPs enriched many microorganisms from surrounding sewage, especially pathogenic bacteria such as Mycobacterium and Aquabacterium. The resistance gene with the highest abundance enriched on PVC MPs was tnpA (average abundance of 1.0 × 10(7) copies/mL sewage). The single presence of Zn, TC and AMP inhibited these enrichments for a short period of time (28 days). But the single presence of Cu and the co-existence of antibiotics and heavy metals inhibited these enrichments for a long period of time (84 days), resulting in relatively low microbial diversities and resistance genes abundances. Transpose tnpA had significantly positive correlations (p < 0.05) with all other genes. Pathogenic bacteria Mycobacterium and Legionella were potential hosts harboring 5 and 1 resistance genes, respectively. Overall, PVC MPs played important roles in the distribution and transfer of pathogenic bacteria and resistance genes in sewage with the presence of antibiotics or (and) heavy metals.202133254740
8071120.9998Impact of ciprofloxacin and copper combined pollution on activated sludge: Abundant-rare taxa and antibiotic resistance genes. This study aimed to explore the impacts of ciprofloxacin (CIP, 0.05-40 mg/L) and copper (3 mg/L) combined pollution on nitrification, microbial community and antibiotic resistance genes (ARGs) in activated sludge system during stress- and post-effect periods. Higher CIP concentration inhibited nitrification and an average of 50% total nitrogen removal occurred under 40 mg/L of CIP pressure. The stress- and post-effects on bacterial diversity and structure were obviously distinct. Abundant genera were more sensitive to combined pollution than rare genera based on full-scale classification and conditionally rare or abundant taxa were keystone taxa in their interactions. Ammonia oxidation genes were inhibited under high CIP level, but some aerobic denitrifying bacteria (Thauera, Comamonas and Azoarcus) and key genes increased. 96 ARG subtypes were detected with complex positive relationships and their potential hosts (abundant-rare-functional genera) changed in two periods. This study highlights the different stress- and post-effects of combined pollution on activated sludge.202235217161
7193130.9998Plasmid-mediated transfer of antibiotic resistance genes and biofilm formation in a simulated drinking water distribution system under chlorine pressure. The effects of disinfectants and plasmid-based antibiotic resistance genes (ARGs) on the growth of microorganisms and the plasmid-mediated transfer of ARGs in the water and biofilm of the drinking water distribution system under simulated conditions were explored. The heterotrophic plate count of the water in reactors with 0.1 mg/L NaClO and NH(2)Cl was higher than in the control groups. There was no similar phenomenon in biofilm. In the water of reactors containing NaClO, the aphA and bla genes were lower than in the antibiotic resistant bacteria group, while both genes were higher in the water of reactors with NH(2)Cl than in the control group. Chloramine may promote the transfer of ARGs in the water phase. Both genes in the biofilm of the reactors containing chlorine were lower than the control group. Correlation analysis between ARGs and water quality parameters revealed that the copy numbers of the aphA gene were significantly positively correlated with the copy numbers of the bla gene in water and significantly negatively correlated in biofilm (p < 0.05). The results of the sequencing assay showed that bacteria in the biofilm, in the presence of disinfectant, were primarily Gram-negative. 1.0 mg/L chlorine decreased the diversity of the community in the biofilm. The relative abundance of some bacteria that may undergo transfer increased in the biofilm of the reactor containing 0.1 mg/L chlorine.202539617560
7533140.9998NO(3)(-) as an electron acceptor elevates antibiotic resistance gene and human bacterial pathogen risks in managed aquifer recharge (MAR): A comparison with O(2). Managed aquifer recharge (MAR) stands out as a promising strategy for ensuring water resource sustainability. This study delves into the comparative impact of nitrate (NO(3)(-)) and oxygen (O(2)) as electron acceptors in MAR on water quality and safety. Notably, NO(3)(-), acting as an electron acceptor, has the potential to enrich denitrifying bacteria, serving as hosts for antibiotic resistance genes (ARGs) and enriching human bacterial pathogens (HBPs) compared to O(2). However, a direct comparison between NO(3)(-) and O(2) remains unexplored. This study assessed risks in MAR effluent induced by NO(3)(-) and O(2), alongside the presence of the typical refractory antibiotic sulfamethoxazole. Key findings reveal that NO(3)(-) as an electron acceptor resulted in a 2 times reduction in dissolved organic carbon content compared to O(2), primarily due to a decrease in soluble microbial product production. Furthermore, NO(3)(-) significantly enriched denitrifying bacteria, the primary hosts of major ARGs, by 747%, resulting in a 66% increase in the overall abundance of ARGs in the effluent of NO(3)(-) MAR compared to O(2). This escalation was predominantly attributed to horizontal gene transfer mechanisms, as evidenced by a notable 78% increase in the relative abundance of mobile ARGs, alongside a minor 27% rise in chromosomal ARGs. Additionally, the numerous denitrifying bacteria enriched under NO(3)(-) influence also belong to the HBP category, resulting in a significant 114% increase in the abundance of all HBPs. The co-occurrence of ARGs and HBPs was also observed to intensify under NO(3)(-) influence. Thus, NO(3)(-) as an electron acceptor in MAR elevates ARG and HBP risks compared to O(2), potentially compromising groundwater quality and safety.202438266895
7966150.9998How heavy metal stress promotes dissemination of antibiotic resistance genes in the activated sludge process. Heavy metals have been recently revealed as promoters to antibiotic resistance gene (ARG) dissemination in water environment, but their influence on ARG transfer in the activated sludge process has not been clear. In this study, a set of sequencing batch reactors (SBRs) and micro-scale microfluidic chips were established to quantify the impacts of heavy metals (0.5 mM of Pb, 0.1 mM of As, and 0.005 mM of Hg) on the ARG spreading in the activated sludge consortium. Under heavy metal stress, transfer frequencies were 1.7-3.6 folds increase compared to the control. Gram-negative bacteria increased significantly after heavy metal added, which were more prone to receiving resistant plasmid from donors. Meanwhile, the relative expression of genes related to conjugation changed in activated sludge, especially the expression of outer membrane protein and oxidative stress regulatory genes increased by 2.9-7.4 folds and 7.8-13.1 folds, respectively. Furthermore, using microfluidic chips, the dynamics of ARG transfer was observed at single cell level under heavy metal pressure. Heavy metals firstly promoted conjugation and then vertical gene transfer played an important part for ARG spreading. The results provided in-depth understanding of the influence of heavy metals on ARG behavior in the environment.202235724617
7192160.9998Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors. The abundant microbial community in biological treatment processes in wastewater treatment plants (WWTPs) may potentially enhance the horizontal gene transfer of antibiotic resistance genes with the presence of antibiotics. A lab-scale sequencing batch reactor was designed to investigate response of sulfonamide resistance genes (sulI, sulII) and bacterial communities to various concentrations of sulfamethoxazole (SMX) and chemical oxygen demand (COD) of wastewater. The SMX concentrations (0.001 mg/L, 0.1 mg/L and 10 mg/L) decreased with treatment time and higher SMX level was more difficult to remove. The presence of SMX also significantly reduced the removal efficiency of ammonia nitrogen, affecting the normal function of WWTPs. All three concentrations of SMX raised both sulI and sulII genes with higher concentrations exhibiting greater increases. The abundance of sul genes was positive correlated with treatment time and followed the second-order reaction kinetic model. Interestingly, these two genes have rather similar activity. SulI and sulII gene abundance also performed similar response to COD. Simpson index and Shannon-Weiner index did not show changes in the microbial community diversity. However, the 16S rRNA gene cloning and sequencing results showed the bacterial community structures varied during different stages. The results demonstrated that influent antibiotics into WWTPs may facilitate selection of ARGs and affect the wastewater conventional treatment as well as the bacteria community structures.201728211331
7611170.9998Response of microorganisms in biofilm to sulfadiazine and ciprofloxacin in drinking water distribution systems. Effects of sulfadiazine and ciprofloxacin on microorganisms in biofilm of drinking water distribution systems (DWDSs) were studied. The results verified that the increases of 16S rRNA for total bacteria and bacterial genus Hyphomicrobium were related to the promotion of antibiotic resistance genes (ARGs) and class 1 integrons (int1) in DWDSs with sulfadiazine and ciprofloxacin. Moreover, the bacteria showed higher enzymatic activities in DWDSs with sulfadiazine and ciprofloxacin, which resulted in more production of extracellular polymeric substances (EPS). The higher contents of EPS proteins and secondary structure β-sheet promoted bacterial aggregation and adsorption onto surface of pipelines to form biofilm. EPS can serve as a barrier for the microorganisms in biofilm. Therefore, the biofilm bacterial communities shifted and the 16S rRNA for total bacteria increased in DWDSs with antibiotics, which also drove the ARGs promotion. Furthermore, the two antibiotics exhibited stronger combined effects than that caused by sulfadiazine and ciprofloxacin alone.201930471500
7022180.9998Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants. The removal of antibiotics, antibiotic-resistant bacteria (ARB), and cell-free antibiotic-resistant genes (ARGs) and the microbial community of ARB were investigated in detail to understand their fate and provide valuable information on the feasibility of full-scale membrane bioreactor (MBR). The potential risks of cell-free ARGs to the receiving environment were discovered. High influent antibiotic concentration could inhibit the microbial activity of MBR sludge, whereas good antibiotic removal could be maintained because of relatively long solid retention time and high biomass retention. Approximately 61.8%-77.5% of the total antibiotics were degraded, and 22.5%-38.2% of the total antibiotics were adsorbed by MBR sludge on average. The individual antibiotic removal presented intense discrepancy because of the chemical construction and distribution coefficient of antibiotics. Aeromonas exhibited specific antibiotic resistance to ampicillin and erythromycin, Escherichia became the predominant genera in kanamycin-ARB and tetracycline-ARB, and Klebsiella and Bacteroides were the particular genera that exhibited distinct antibiotic resistance to ciprofloxacin. A significant correlation was found between cell-free ARG abundance and ARB content, and relatively high effluent cell-free ARG abundance facilitated the proliferation and transmission of ARB. The impacts of the receiving environment to eliminate the ecological risks and severe threats to human health should be investigated because of the low decay ratio and long-term persistence of cell-free ARGs.202031986335
7191190.9998The impact of antimicrobials on the efficiency of methane fermentation of sewage sludge, changes in microbial biodiversity and the spread of antibiotic resistance. The study was designed to simultaneously evaluate the influence of high doses (512-1024 µg/g) the most commonly prescribed antimicrobials on the efficiency of anaerobic digestion of sewage sludge, qualitative and quantitative changes in microbial consortia responsible for the fermentation process, the presence of methanogenic microorganisms, and the fate of antibiotic resistance genes (ARGs). The efficiency of antibiotic degradation during anaerobic treatment was also determined. Metronidazole, amoxicillin and ciprofloxacin exerted the greatest effect on methane fermentation by decreasing its efficiency. Metronidazole, amoxicillin, cefuroxime and sulfamethoxazole were degraded in 100%, whereas ciprofloxacin and nalidixic acid were least susceptible to degradation. The most extensive changes in the structure of digestate microbiota were observed in sewage sludge exposed to metronidazole, where a decrease in the percentage of bacteria of the phylum Bacteroidetes led to an increase in the proportions of bacteria of the phyla Firmicutes and Proteobacteria. The results of the analysis examining changes in the concentration of the functional methanogen gene (mcrA) did not reflect the actual efficiency of methane fermentation. In sewage sludge exposed to antimicrobials, a significant increase was noted in the concentrations of β-lactam, tetracycline and fluoroquinolone ARGs and integrase genes, but selective pressure was not specific to the corresponding ARGs.202133831706