Ancient Oriental Wisdom still Works: Removing ARGs in Drinking Water by Boiling as compared to Chlorination. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
757101.0000Ancient Oriental Wisdom still Works: Removing ARGs in Drinking Water by Boiling as compared to Chlorination. Antibiotic resistance genes (ARGs) in municipal drinking water may not be effectively removed during centralized treatment. To reduce potential health risks, water disinfection at the point-of-use scale is warranted. This study investigated the performance of boiling, a prevalent household water disinfection means, in response to ARGs contamination. We found that boiling was more efficient in inactivating both Escherichia coli and environmental bacteria compared to chlorination and pasteurization. Boiling of environmental bacteria suspension removed a much broader spectrum of ARGs and mobile genetic elements (up to 141 genes) than chlorination (up to 13 genes), such better performance was largely attributed to a stronger inactivation of chlorine-tolerant bacteria including Acinetobacter and Bacillus. Accumulation of extracellular ARGs was found during low-temperature heating (≤ 80°C) and in the initial stage of chlorination (first 3 min when initial chlorine was 5 mg/L and first 12 min when initial chlorine was 1 mg/L). These extracellular ARGs as well as the intracellular ARGs got removed as the heating temperature increased or the chlorination time prolonged. Under the same treatment time (30 min), high-temperature heating (≥ 90.1°C) damaged the DNA structure more thoroughly than chlorination (5 mg/L). Taking into account the low transferability of ARGs after DNA melting, boiling may provide an effective point-of-use approach to attenuating bacterial ARGs in drinking water and is still worth promoting in the future.202234910990
757210.9999Stormwater runoff treatment through electrocoagulation: antibiotic resistant bacteria removal and its transmission risks. Recently, increasing attention has been paid to antibiotic resistant bacteria (ARB) in stormwater runoff. However, there were little data on ARB removal through electrocoagulation (EC) treatment. In this study, batch experiments were conducted to investigate key designs for ARB removal, role of SS, effects of water matrix, and potential risks after EC treatment under the pre-determined conditions. EC treatment with 5 mA/cm(2) of current density and 4 cm of inter-electrode distance was optimal with the highest ARB removal (3.04 log reduction for 30 min). The presence of SS significantly improved ARB removal during EC treatment, where ARB removal increased with the increase of SS levels when SS less than 300 mg/L. Large ARB removal was found under particles with size lower than 150 μm with low contribution (less than 10%) of the settlement without EC treatment, implying that the enhancement of ARB adsorption onto small particles could be one of the reasonable approaches for ARB removal through EC treatment. ARB removal increased firstly and then decreased with the increase of pH, while had proportional relationship with conductivity. After the optimal condition, there were weak conjugation transfer but high transformation frequency (5.5 × 10(-2) for bla(TEM)) for target antibiotic resistance genes (ARGs), indicating that there could be still a risk of antibiotic resistance transformation after EC treatment. These suggested that the combination of EC and other technologies (like electrochemical disinfection) should be potential ways to control antibiotic resistance transmission through stormwater runoff.202436848218
784520.9999Mechanism and potential risk of antibiotic resistant bacteria carrying last resort antibiotic resistance genes under electrochemical treatment. The significant rise in the number of antibiotic resistance genes (ARGs) that resulted from our abuse of antibiotics could do severe harm to public health as well as to the environment. We investigated removal efficiency and removal mechanism of electrochemical (EC) treatment based on 6 different bacteria isolated from hospital wastewater carrying 3 last resort ARGs including NDM-1, mcr-1 and tetX respectively. We found that the removal efficiency of ARGs increased with the increase of both voltage and electrolysis time while the maximum removal efficiency can reach 90%. The optimal treatment voltage and treatment time were 3 V and 120 min, respectively. Temperature, pH and other factors had little influence on the EC treatment process. The mechanism of EC treatment was explored from the macroscopic and microscopic levels by scanning electron microscopy (SEM) and flow cytometry. Our results showed that EC treatment significantly changed the permeability of cell membrane and caused cells successively experience early cell apoptosis, late cell apoptosis and cell necrosis. Moreover, compared with traditional disinfection methods, EC treatment had less potential risks. The conjugative transfer frequencies of cells were significantly reduced after treatment. Less than 1% of bacteria entered the viable but nonculturable (VBNC) state and less than 5% of intracellular ARGs (iARGs) turned into extracellular ARGs (eARGs). Our findings provide new insights into as well as important reference for future electrochemical treatment in removing ARB from hospital wastewater.202235085630
719330.9998Plasmid-mediated transfer of antibiotic resistance genes and biofilm formation in a simulated drinking water distribution system under chlorine pressure. The effects of disinfectants and plasmid-based antibiotic resistance genes (ARGs) on the growth of microorganisms and the plasmid-mediated transfer of ARGs in the water and biofilm of the drinking water distribution system under simulated conditions were explored. The heterotrophic plate count of the water in reactors with 0.1 mg/L NaClO and NH(2)Cl was higher than in the control groups. There was no similar phenomenon in biofilm. In the water of reactors containing NaClO, the aphA and bla genes were lower than in the antibiotic resistant bacteria group, while both genes were higher in the water of reactors with NH(2)Cl than in the control group. Chloramine may promote the transfer of ARGs in the water phase. Both genes in the biofilm of the reactors containing chlorine were lower than the control group. Correlation analysis between ARGs and water quality parameters revealed that the copy numbers of the aphA gene were significantly positively correlated with the copy numbers of the bla gene in water and significantly negatively correlated in biofilm (p < 0.05). The results of the sequencing assay showed that bacteria in the biofilm, in the presence of disinfectant, were primarily Gram-negative. 1.0 mg/L chlorine decreased the diversity of the community in the biofilm. The relative abundance of some bacteria that may undergo transfer increased in the biofilm of the reactor containing 0.1 mg/L chlorine.202539617560
757440.9998Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. The emergence and spread of antibiotic resistance has posed a major threat to both human health and environmental ecosystem. Although the disinfection has been proved to be efficient to control the occurrence of pathogens, little effort is dedicated to revealing potential impacts of disinfection on transmission of antibiotic resistance genes (ARGs), particularly for free-living ARGs in final disinfected effluent of urban wastewater treatment plants (UWWTP). Here, we investigated the effects of chlorine disinfection on the occurrence and concentration of both extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in a full-scale UWWTP over a year. We reported that the concentrations of both eARGs and iARGs would be increased by the disinfection with chlorine dioxide (ClO(2)). Specifically, chlorination preferentially increased the abundances of eARGs against macrolide (ermB), tetracycline (tetA, tetB and tetC), sulfonamide (sul1, sul2 and sul3), β-lactam (ampC), aminoglycosides (aph(2')-Id), rifampicin (katG) and vancomycin (vanA) up to 3.8 folds. Similarly, the abundances of iARGs were also increased up to 7.8 folds after chlorination. In terms of correlation analyses, the abundance of Escherichia coli before chlorination showed a strong positive correlation with the total eARG concentration, while lower temperature and higher ammonium concentration were assumed to be associated with the concentration of iARGs. This study suggests the chlorine disinfection could increase the abundances of both iARGs and eARGs, thereby posing risk of the dissemination of antibiotic resistance in environments.201829501757
757350.9998Chlorine and UV combination sequence: Effects on antibiotic resistance control and health risks of ARGs. The effective control of antibiotic resistance in aquatic environments is urgent. The combined chlorine and UV processes (Cl(2)-UV, UV/Cl(2), and UV-Cl(2)) are considered potential control processes for controlling antibiotic resistance. This study compared the effectiveness of these three processes in real water bodies and the potential health risks associated with antibiotic resistance genes (ARGs) after treatments. The removal of various antibiotic-resistant bacteria (ARB) and ARGs by the combined processes was analysed. The UV/Cl(2) process was less effective than the others in inactivating β-lactam-resistant bacteria (BRB) and sulfamethoxazole-resistant bacteria (SRB), which are more challenging to remove, though its performance might improve with increased UV fluence. Nevertheless, the UV/Cl(2) process showed an advantage in removing ARGs. The absolute abundance of aminoglycoside resistance genes (AmRGs), sulfonamide resistance genes (SRGs), macrolide resistance genes (MRGs), and multidrug efflux-associated ARGs detected after the UV/Cl(2) process was relatively low, and this process outperformed the others in removing a greater number of ARGs. Additionally, certain ARGs and bacterial genera were found to be enriched after the combined processes, with lower and more similar abundance levels of ARGs and genera observed after UV/Cl(2) and UV-Cl(2) processes compared to the Cl(2)-UV process. Health risk assessments indicated that the Cl(2)-UV process posed the highest risk, followed by UV/Cl(2) and UV-Cl(2) processes. Overall, the UV/Cl(2) process may offer the most practical advantages for controlling antibiotic resistance.202539708685
719460.9998Response of antibiotic resistance genes in constructed wetlands during treatment of livestock wastewater with different exogenous inducers: Antibiotic and antibiotic-resistant bacteria. This work aimed to study the behavior of antibiotic resistance genes (ARGs) in constructed wetlands with different exogenous inducers additions (oxytetracycline and its resistant bacteria) by high-throughput quantitative polymerase chain reaction. Results indicated that constructed wetlands have the potential to reduce ARGs relative abundances in wastewater, and the total ARGs removal efficiency could exceed 60%. ARGs profile in the effluent differed from that in the influent, and that did not directly reflect the export of dominant ARGs in wetland biofilms. Meanwhile, the highest levels of detected numbers and relative abundances of ARGs were 43 and 3.35 × 10(-1) for control system and 44 and 6.40 × 10(-1) for treatment system, respectively, which meant that ARGs generation in wetlands were inevitable, and antibiotic and antibiotic-resistant bacteria from wastewater could indeed promote ARGs abundance in the system. Compared to the single roles of inducers, their synergistic role had a more significant influence on ARGs relative abundance.202032652450
702270.9998Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants. The removal of antibiotics, antibiotic-resistant bacteria (ARB), and cell-free antibiotic-resistant genes (ARGs) and the microbial community of ARB were investigated in detail to understand their fate and provide valuable information on the feasibility of full-scale membrane bioreactor (MBR). The potential risks of cell-free ARGs to the receiving environment were discovered. High influent antibiotic concentration could inhibit the microbial activity of MBR sludge, whereas good antibiotic removal could be maintained because of relatively long solid retention time and high biomass retention. Approximately 61.8%-77.5% of the total antibiotics were degraded, and 22.5%-38.2% of the total antibiotics were adsorbed by MBR sludge on average. The individual antibiotic removal presented intense discrepancy because of the chemical construction and distribution coefficient of antibiotics. Aeromonas exhibited specific antibiotic resistance to ampicillin and erythromycin, Escherichia became the predominant genera in kanamycin-ARB and tetracycline-ARB, and Klebsiella and Bacteroides were the particular genera that exhibited distinct antibiotic resistance to ciprofloxacin. A significant correlation was found between cell-free ARG abundance and ARB content, and relatively high effluent cell-free ARG abundance facilitated the proliferation and transmission of ARB. The impacts of the receiving environment to eliminate the ecological risks and severe threats to human health should be investigated because of the low decay ratio and long-term persistence of cell-free ARGs.202031986335
784480.9998Insight into using a novel ultraviolet/peracetic acid combination disinfection process to simultaneously remove antibiotics and antibiotic resistance genes in wastewater: Mechanism and comparison with conventional processes. In this study, the simultaneous removal mechanism of antibiotics and antibiotic resistance genes (ARGs) was investigated using the novel ultraviolet/peracetic acid (UV/PAA) combination disinfection process and conventional disinfection processes were also applied for comparison. The results showed that UV/PAA disinfection with a high UV dosage (UV/PAA-H) was most effective for the removal of tetracyclines, quinolones, macrolides and β-lactams; their average removal efficiencies ranged from 25.7% to 100%, while NaClO disinfection was effective for the removal of sulfonamides (∼81.6%). The majority of ARGs were well removed after the UV/PAA-H disinfection, while specific genes including tetB, tetC, ermA and bla(TEM) significantly increased after NaClO disinfection. In addition, β-lactam resistance genes (-35.9%) and macrolides resistance genes (-12.0%) remarkably augmented after UV/NaClO disinfection. The highly reactive oxidation species generated from UV/PAA process including hydroxyl radicals (•OH) and carbon-centered organic radicals (R-C•), were responsible for the elimination of antibiotics and ARGs. Correlation analysis showed that tetracycline, sulfonamide and macrolide antibiotics removal showed a positive correlation with the corresponding ARGs, and a low dose of antibiotic residues played an important role in the distribution of ARGs. Metagenomic sequencing analysis showed that UV/PAA disinfection could not only greatly decrease the abundance of resistant bacteria but also downregulate the expression of key functional genes involved in ARGs propagation and inhibit the signal transduction of the host bacteria, underlying that its removal mechanism was quite different from that of NaClO-based disinfection processes. Our study provides valuable information for understanding the simultaneous removal mechanism of antibiotics and ARGs in wastewater during the disinfection processes, especially for the novel UV/PAA combination process.202234982977
758090.9998Inactivation of antibiotic resistance genes in antibiotic fermentation residues by ionizing radiation: Exploring the development of recycling economy in antibiotic pharmaceutical factory. Antibiotic fermentation residues are a kind of hazardous waste due to the existence of the residual antibiotics and the potential risk to generate antibiotics resistance genes (ARGs). The appropriate treatment and disposal of antibiotic fermentation residues is imperative. In this study ionizing radiation was applied to treat the antibiotic fermentation residues and the removal efficiencies of antibiotic (erythromycin), ARGs (ermB and ermF) and antibiotic resistant bacteria were investigated. The experimental results showed that erythromycin A content in antibiotic fermentation residues decreased by 86% when the dose was 10 kGy. Moreover, the abundance of ermB and ermF reduced by 89% and 98% at 10 kGy irradiation. Over 99% of total bacteria was removed and antibiotic resistant bacteria (ARB) were less than detection limit after 10 kGy irradiation. Ionizing radiation process is a promising technology for simultaneously removing antibiotic and inactivating ARGs and ARB in antibiotic fermentation residues. Moreover, the irradiation at 10 kGy had no significant influence on the macromolecules organic matters (protein, polysaccharides) of the antibiotic fermentation residues, suggesting that the treated fermentative residues can be used as fertilizer, which could provide the technical support for the development of recycling economy in antibiotic pharmaceutical factory.201930691886
7195100.9998Insight into effect of high-level cephalexin on fate and driver mechanism of antibiotics resistance genes in antibiotic wastewater treatment system. In the study, antibiotic resistance genes (ARGs) were examined in wastewater and sludge samples to explore the effect of cephalexin (CFX) on the spreading and removal of ARGs in the Expanded Granular Sludge Bed (EGSB) reactor treating antibiotics wastewater. The result showed that the addition of CFX in the wastewater affected the removal amount of β-lactam ARGs and other types ARGs. Besides, the addition of CFX in the wastewater had no obviously effect on total concentration of targeted ARGs in the sludge, but it was related to the accumulation of some typical ARGs. Based on gene cassette array libraries analysis, the diversity of gene cassettes carried by intI1 gene was increased by the addition of CFX in the wastewater. Furthermore, the co-occurrence patterns between ARGs and bacterial genus were also investigated. The results showed the CFX in the wastewater not only affected the number of potential host bacteria of ARGs, but also changed the types of potential host bacteria of ARGs. The correlation analysis of ARG in influent, effluent and sludge showed that, for blaCTX-M, sul2, qnrS and AmpC genes, their removal amount in EGSB reactor treating antibiotic wastewater system might be enhanced by reducing their concentration in the sludge.202032505047
7021110.9998Metagenomic insights into dissemination of antibiotic resistance across bacterial genera in wastewater treatment. The aim of this study was to evaluate the impacts of conventional wastewater treatment processes including secondary treatment and chlorination on the removal of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), and to assess the association of ARGs with their potential hosts in each treatment process. The results showed chlorination with subinhibitory concentration (<8 mg/L) resulted in an increased ARB number in the disinfection effluent. qPCR analysis indicated secondary treatment increased relative abundance of ARGs in remaining bacteria whereas disinfection reduced the relative abundance of those genes effectively. Metagenomic analysis revealed a significant shift of dominating bacterial genera harboring ARGs. Along the treatment train, 48, 95 and 80 genera were identified to be the ARG carriers in primary effluent, secondary effluent, and disinfection effluent, respectively. It was also found that secondary treatment increased the diversity of potential ARG hosts while both secondary treatment and chlorination broadened the host range of some ARGs at the genus level, which may be attributed to the spread of antibiotic resistance across bacterial genera through horizontal transfer. This study highlights the growing concerns that wastewater treatment plants (WWTPs) may disseminate ARGs by associating this effect to specific treatment stages and by correlating ARGs with their bacterial hosts.202133453487
8005120.9998Deciphering the fate of antibiotic resistance genes in norfloxacin wastewater treated by a bio-electro-Fenton system. The misuse of antibiotics has increased the prevalence of antibiotic resistance genes (ARGs), considered a class of critical environmental contaminants due to their ubiquitous and persistent nature. Previous studies reported the potentiality of bio-electro-Fenton processes for antibiotic removal and ARGs control. However, the production and fate of ARGs in bio-electro-Fenton processes triggered by microbial fuel cells are rare. In this study, the norfloxacin (NFLX) average residual concentrations within two days were 2.02, 6.07 and 14.84 mg/L, and the average removal efficiency of NFLX was 79.8 %, 69.6 % and 62.9 % at the initial antibiotic concentrations of 10, 20 and 40 mg/L, respectively. The most prevalent resistance gene type in all processes was the fluoroquinolone antibiotic gene. Furthermore, Proteobacteria was the dominant ARG-carrying bacteria. Overall, this study can provide theoretical support for the efficient treatment of high antibiotics-contained wastewater by bio-electro-Fenton systems to better control ARGs from the perspective of ecological security.202236252757
7305130.9998Inactivation of antibiotic-resistant bacteria in hospital wastewater by ozone-based advanced water treatment processes. The emergence and spread of antimicrobial resistance (AMR) continue on a global scale. The impacts of wastewater on the environment and human health have been identified, and understanding the environmental impacts of hospital wastewater and exploring appropriate forms of treatment are major societal challenges. In the present research, we evaluated the efficacy of ozone (O(3))-based advanced wastewater treatment systems (O(3), O(3)/H(2)O(2), O(3)/UV, and O(3)/UV/H(2)O(2)) for the treatment of antimicrobials, antimicrobial-resistant bacteria (AMRB), and antimicrobial resistance genes (AMRGs) in wastewater from medical facilities. Our results indicated that the O(3)-based advanced wastewater treatment inactivated multiple antimicrobials (>99.9%) and AMRB after 10-30 min of treatment. Additionally, AMRGs were effectively removed (1.4-6.6 log(10)) during hospital wastewater treatment. The inactivation and/or removal performances of these pollutants through the O(3)/UV and O(3)/UV/H(2)O(2) treatments were significantly (P < 0.05) better than those in the O(3) and O(3)/H(2)O(2) treatments. Altered taxonomic diversity of microorganisms based on 16S rRNA gene sequencing following the O(3)-based treatment showed that advanced wastewater treatments not only removed viable bacteria but also removed genes constituting microorganisms in the wastewater. Consequently, the objective of this study was to apply advanced wastewater treatments to treat wastewater, mitigate environmental pollution, and alleviate potential threats to environmental and human health associated with AMR. Our findings will contribute to enhancing the effectiveness of advanced wastewater treatment systems through on-site application, not only in wastewater treatment plants (WWTPs) but also in medical facilities. Moreover, our results will help reduce the discharge of AMRB and AMRGs into rivers and maintain the safety of aquatic environments.202437777130
7502140.9998Differential dose-response patterns of intracellular and extracellular antibiotic resistance genes under sub-lethal antibiotic exposure. Although antibiotics are one of the most significant factors contributing to the propagation of antibiotic resistance genes (ARGs), studies on the dose-response relationship at sub-lethal concentrations of antibiotics remain scarce, despite their importance for assessing the risks of antibiotics in the environment. In this study, we constructed a series of microcosms to investigate the propagation of intracellular (iARGs) and extracellular (eARGs) ARGs in both water and biofilms when exposed to antibiotics at various concentrations (1-100 μg/L) and frequencies. Results showed that eARGs were more abundant than iARGs in water, while iARGs were the dominant ARGs form in biofilms. eARGs showed differentiated dose-response relationships from iARGs. The abundance of iARGs increased with the concentration of antibiotics as enhanced selective pressure overcame the metabolic burden of antibiotic-resistant bacteria carrying ARGs. However, the abundance of eARGs decreased with increasing antibiotic concentrations because less ARGs were secreted from bacterial hosts at higher concentrations (100 μg/L). Furthermore, combined exposure to two antibiotics (tetracycline & imipenem) showed a synergistic effect on the propagation of iARGs, but an antagonistic effect on the propagation of eARGs compared to exposure to a single antibiotic. When exposed to antibiotic at a fixed total dose, one-time dosing (1 time/10 d) favored the propagation of iARGs, while fractional dosing (5 times /10 d) favored the propagation of eARGs. This study sheds light on the propagation of antibiotic resistance in the environment and can help in assessing the risks associated with the use of antibiotics.202337257347
7630150.9998Coexistence of silver ion and tetracycline at environmentally relevant concentrations greatly enhanced antibiotic resistance gene development in activated sludge bioreactor. Antibiotic resistance has become a global public health problem. Recently, various environmental pollutants have been reported to induce the proliferation of antibiotic resistance. However, the impact of multiple pollutants (e.g., heavy metals and antibiotics), which more frequently occur in practical environments, is poorly understood. Herein, one widely distributed heavy metal (Ag(+)) and one frequently detected antibiotic (tetracycline) were chosen to investigate their coexisting effect on the proliferation of antibiotic resistance in the activated sludge system. Results show that the co-occurrence of Ag(+) and tetracycline at environmentally relevant concentrations exhibited no distinct inhibition in reactor performances. However, they inhibited the respiratory activity by 42%, destroyed the membrane structure by 218%, and increased membrane permeability by 29% compared with the blank control bioreactor. Moreover, the relative abundances of target antibiotic resistance genes (ARGs) (e.g., tetA, bla(TEM-1), and sulII) in effluent after exposure of coexisting Ag(+) and tetracycline were increased by 92-1983% compared with those in control reactor, which were 1.1-4.3 folds higher than the sum of the sole ones. These were possibly attributed to the enrichments of antibiotic-resistant bacteria. The results would illumine the coexisting effect of heavy metals and antibiotics on the dissemination of ARGs in activated sludge system.202234482077
7605160.9998Inactivation of antibiotic resistant bacteria and their resistance genes in sewage by applying pulsed electric fields. We evaluated the suitability of pulsed electric field (PEF) technology as a new disinfection option in the sewage treatment plants (STPs) that can inactivate antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). It was shown that PEF applied disinfection could inactivate not only vancomycin-resistant enterococci (VRE), but also vanA resistance gene. Cultivable VRE could be effectively inactivated by PEF applied disinfection, and were reduced to below the detection limit (log reduction value of VRE > 5 log). Although the vanA also showed a reduction of more than 4 log, it remained in the order of 10(5) copies/mL, suggesting that ARGs are more difficult to be inactivated than ARB in PEF applied disinfection. Among parameters in each applying condition verified in this study, the initial voltage was found to be the most important for inactivation of ARB and ARGs. Furthermore, frequency was a parameter that affects the increase or decrease of the duration time, and it was suggested that the treatment time could be shortened by increasing the frequency. Our results strongly suggested that PEF applied disinfection may be a new disinfection technology option for STPs that contributes to the control of ARB and ARGs contamination in the aquatic environments.202234879573
7816170.9998Reduction of antibiotic resistance determinants in urban wastewater by ozone: Emphasis on the impact of wastewater matrix towards the inactivation kinetics, toxicity and bacterial regrowth. This study investigated the impact of bench-scale ozonation on the inactivation of total cultivable and antibiotic-resistant bacteria (faecal coliforms, Escherichia coli, Pseudomonas aeruginosa, Enterococcus spp., and total heterotrophs), and the reduction of gene markers (16S rRNA and intl1) and antibiotic resistance genes (qacEΔ1, sul1, aadA1 and dfrA1) indigenously present in wastewater effluents treated by membrane bioreactor (MBR) or conventional activated sludge (CAS). The Chick-Watson model-predicted ozone exposure (CT) requirements, showed that higher CT values were needed for CAS- than MBR-treated effluents to achieve a 3-log reduction of each microbial group, i.e., ~30 and 10 gO(3) min gDOC(-1) respectively. Ozonation was efficient in inactivating the examined antibiotic-resistant bacteria, and no bacterial regrowth was observed after 72 h. The genes abundance decreased significantly by ozone, but an increase in their abundance was detected 72 h after storage of the treated samples. A very low removal of DOC was achieved and at the same time phyto- and eco-toxicity increased after the ozonation treatment in both wastewater matrices. The gene abundance, regrowth and toxicity results of this study may be of high environmental significance for comprehensive evaluation of ozone and may guide future studies in assessing these parameters for other oxidants/disinfectants.202134329111
7847180.9998Inactivation and change of tetracycline-resistant Escherichia coli in secondary effluent by visible light-driven photocatalytic process using Ag/AgBr/g-C(3)N(4). Control of antibiotic-resistant bacteria (ARB) and their related genes in secondary effluents has become a serious issue because of increased awareness of their health risks. A considerable number of techniques have been developed in recent years, particularly in relation to advanced oxidation. However, limited information is known about cellular behavior and resistance characteristic change during photocatalytic treatment. In this study, the inactivation of tetracycline (TC)-resistant Escherichia coli (TC-E. coli), removal of TC-resistant genes (TC-RGs), and antibiotic susceptibility were evaluated by employing photocatalytic treatment using Ag/AgBr/g-C(3)N(4) with visible light irradiation. The effects of light intensity, photocatalyst dosage, and reaction ambient temperature on photocatalysis were modelled and investigated. The rate of TC-E. coli removal was also optimized. Results demonstrated that the optimal conditions for TC-E. coli removal included light intensity of 96.0 mW/cm(2), photocatalyst dosage of 211.0 mg/L, and reaction ambient temperature of 23.7 °C. Under such conditions, the ARB removal rate was 6.1 log after 90 min and the related TC-RG removal rates were 49%, 86%, 69%, and 86% for tetA, tetM, tetQ, and intl1, respectively. The minimum inhibitory concentration test after photocatalysis shows that the antibiotic resistance of TC-E. coli was enhanced, which may be mainly due to the changes in the membrane potential and resulted in difficulty in destroying the bacteria through antibiotic contact. Hence, photocatalytic treatment could be an ideal method for ARB and antibiotic-resistant gene (ARG) control in wastewater, but the health risks of the remaining ARB and ARG should be investigated further.202031841919
7311190.9998Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions. The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs found in bacteria can become mobilized in bacteriophage particles in the environment. Sludge derived from secondary treatment in wastewater treatment plants (WWTPs) constitutes a concentrated pool of bacteria and phages that are removed during the treatment process. This study evaluates the prevalence of ARGs in the bacterial and phage fractions of anaerobic digested sludge; five ARGs (blaTEM, blaCTX-M, qnrA, qnrS, and sul1) are quantified by qPCR. Comparison between the wastewater and sludge revealed a shift in the prevalence of ARGs (blaTEM and sul1 became more prevalent in sludge), suggesting there is a change in the bacterial and phage populations from wastewater to those selected during the secondary treatment and the later anaerobic mesophilic digestion of the sludge. ARGs densities were higher in the bacterial than in the phage fraction, with high densities in both fractions; particularly for blaTEM and sul1 (5 and 8 log10 gene copies (GC)/g, respectively, in bacterial DNA; 5.5 and 4.4 log10 GC/g, respectively, in phage DNA). These results question the potential agricultural uses of treated sludge, as it could contribute to the spread of ARGs in the environment and have an impact on the bacterial communities of the receiving ecosystem.201424873655