# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7567 | 0 | 1.0000 | The role of water matrix on antibiotic resistance genes transmission in substrate layer from stormwater bioretention cells. Recently, extensive attention has been paid to antibiotic resistance genes (ARGs) transmission. However, little available literature could be found about ARGs transmission in stormwater bioretention cells, especially the role of water matrix on ARGs transmission. Batch experiments were conducted to investigate target ARGs (blaTEM, tetR and aphA) transmission behaviors in substrate layer from stormwater bioretention cells under different water matrices, including nutrient elements (e.g., carbon, nitrogen and phosphorus), water environmental conditions (dissolved oxygen (DO), pH and salinity, etc.) and pollution factors (like heavy metals, antibiotics and disinfectants), showing that ARGs conjugation frequency increased sharply with the enhancement of water matrices (expect DO and pH), while there were obvious increasing tendencies for all ARGs transformation frequencies under only the pollution factor. The correlation between dominant bacteria and ARGs transmission implied that conjugation and transformation of ARGs were mainly determined by Firmicutes, Bacteroidota, Latescibacterota, Chloroflexi and Cyanobacteria at the phylum level, and by Sphingomonas, Ensifer, IMCC26256, Rubellimicrobium, Saccharimonadales, Vicinamibacteraceae, Nocardioides, JG30-KF-CM66 at the genus level. The mentioned dominant bacteria were responsible for intracellular reactive oxygen species (ROS) and cell membrane permeability (CMP) in the substrate layer, where the amplification of intracellular ROS variation were the largest with 144 and 147 % under the condition of TP and salinity, respectively, and the one of CMP variation were the highest more than 165 % under various pollution factors. Furthermore, both increasing DO and reducing salinity could be potential approaches for the inhibition of ARGs transmission in bioretention cells taking into account the simultaneous removal of conventional pollutants. | 2024 | 38183842 |
| 7978 | 1 | 0.9996 | Metagenomic insight into the enrichment of antibiotic resistance genes in activated sludge upon exposure to nanoplastics. Activated sludge is an important reservoir for the co-occurring emerging contaminants including nanoplastics (NPs) and antibiotic resistance genes (ARGs). However, the impacts and potential mechanisms of NPs on the fate of ARGs in activated sludge are not fully understood. Herein, we used metagenomic approach to investigate the responses of ARGs, host bacteria, mobile genetic elements (MGEs), and functional genes to polystyrene (PS) NPs at environmentally relevant (0.5 mg/L) and high stress concentrations (50 mg/L) in activated sludge. The results showed that 0.5 and 50 mg/L PS NPs increased the relative abundance of ARGs in the activated sludge by 58.68% and 46.52%, respectively (p < 0.05). Host tracking analysis elucidated that the hosts of ARGs were significantly enriched by PS NPs (p < 0.05), with Proteobacteria being the predominant host bacteria. Additionally, the occurrence of new ARGs hosts and the enrichment of MGEs and functional genes (i.e., genes related to SOS response, cell membrane permeability, and secretion system, etc.) indicated that PS NPs promoted horizontal gene transfer (HGT) of ARGs. Finally, path modeling analysis revealed that the proliferation of ARGs caused by PS NPs was primarily attributed to the enhancement of HGT and the enrichment of host bacteria. Our findings contribute to a comprehensive understanding of the spread risk of ARGs in activated sludge under NPs pollution. | 2024 | 39510298 |
| 7569 | 2 | 0.9996 | Simultaneous elimination of amoxicillin and antibiotic resistance genes in activated sludge process: Contributions of easy-to-biodegrade food. Antibiotics are continuously released into aquatic environments and ecosystems where they accumulate, which increases risks from the transmission of antibiotic resistance genes (ARGs). However, it is difficult to completely remove antibiotics by conventional biological methods, and during such treatment, ARGs may spread via the activated sludge process. Easy-to-biodegrade food have been reported to improve the removal of toxic pollutants, and therefore, this study investigated whether such co-substrates may also decrease the abundance of ARGs and their transferal. This study investigated amoxicillin (AMO) degradation using 0-100 mg/L acetate sodium as co-substrate in a sequencing biological reactor. Proteobacteria, Bacteroidetes, and Actinobacteria were identified as dominant phyla for AMO removal and mineralization. Furthermore, acetate addition increased the abundances of adeF and mdsC as efflux resistance genes, which improved microbial resistance, the coping ability of AMO toxicity, and the repair of the damage from AMO. As a result, acetate addition contributed to almost 100% AMO removal and stabilized the chemical oxygen demand (~20 mg/L) in effluents when the influent AMO fluctuated from 20 to 100 mg/L. Moreover, the total abundance of ARGs decreased by approximately ~30%, and the proportion of the most dominant antibiotic resistance bacteria Proteobacteria decreased by ~9%. The total abundance of plasmids that encode ARGs decreased by as much as ~30%, implying that the ARG spreading risks were alleviated. In summary, easy-to-biodegrade food contributed to the simultaneous elimination of antibiotics and ARGs in an activated sludge process. | 2021 | 33757248 |
| 7979 | 3 | 0.9996 | Size-dependent promotion of micro(nano)plastics on the horizontal gene transfer of antibiotic resistance genes in constructed wetlands. Constructed wetlands (CWs) have been identified as significant sources of micro(nano)plastics (MPs/NPs) and antibiotic resistance genes (ARGs) in aquatic environments. However, little is known about the impact of MPs/NPs exposure on horizontal gene transfer (HGT) of ARGs and shaping the corresponding ARG hosts' community. Herein, the contribution of polystyrene (PS) particles (control, 4 mm, 100 μm, and 100 nm) to ARG transfer was investigated by adding an engineered fluorescent Escherichia coli harboring RP4 plasmid-encoded ARGs into CWs. It was found MPs/NPs significantly promoted ARG transfer in a size-dependent manner in each CW medium (p < 0.05). The 100 μm-sized PS exhibited the most significant promotion of ARG transfer (p < 0.05), whereas 100 nm-sized PS induced limited promotion due to its inhibitory activity on microbes. The altered RP4-carrying bacterial communities suggested that MPs/NPs, especially 100 µm-PS, could recruit pathogenic and nitrifying bacteria to acquire ARGs. The increased sharing of RP4-carrying core bacteria in CW medium further suggested that ARGs can spread into CW microbiome using MPs/NPs as carriers. Overall, our results highlight the high risks of ARG dissemination induced by MPs/NPs exposure and emphasize the need for better control of plastic disposal to prevent the potential health threats. | 2023 | 37657315 |
| 7533 | 4 | 0.9996 | NO(3)(-) as an electron acceptor elevates antibiotic resistance gene and human bacterial pathogen risks in managed aquifer recharge (MAR): A comparison with O(2). Managed aquifer recharge (MAR) stands out as a promising strategy for ensuring water resource sustainability. This study delves into the comparative impact of nitrate (NO(3)(-)) and oxygen (O(2)) as electron acceptors in MAR on water quality and safety. Notably, NO(3)(-), acting as an electron acceptor, has the potential to enrich denitrifying bacteria, serving as hosts for antibiotic resistance genes (ARGs) and enriching human bacterial pathogens (HBPs) compared to O(2). However, a direct comparison between NO(3)(-) and O(2) remains unexplored. This study assessed risks in MAR effluent induced by NO(3)(-) and O(2), alongside the presence of the typical refractory antibiotic sulfamethoxazole. Key findings reveal that NO(3)(-) as an electron acceptor resulted in a 2 times reduction in dissolved organic carbon content compared to O(2), primarily due to a decrease in soluble microbial product production. Furthermore, NO(3)(-) significantly enriched denitrifying bacteria, the primary hosts of major ARGs, by 747%, resulting in a 66% increase in the overall abundance of ARGs in the effluent of NO(3)(-) MAR compared to O(2). This escalation was predominantly attributed to horizontal gene transfer mechanisms, as evidenced by a notable 78% increase in the relative abundance of mobile ARGs, alongside a minor 27% rise in chromosomal ARGs. Additionally, the numerous denitrifying bacteria enriched under NO(3)(-) influence also belong to the HBP category, resulting in a significant 114% increase in the abundance of all HBPs. The co-occurrence of ARGs and HBPs was also observed to intensify under NO(3)(-) influence. Thus, NO(3)(-) as an electron acceptor in MAR elevates ARG and HBP risks compared to O(2), potentially compromising groundwater quality and safety. | 2024 | 38266895 |
| 7584 | 5 | 0.9996 | Responses of microbial community and antibiotic resistance genes to co-existence of chloramphenicol and salinity. In recent years, the risk from environmental pollution caused by chloramphenicol (CAP) has emerged as a serious concern worldwide, especially for the co-selection of antibiotic resistance microorganisms simultaneously exposed to CAP and salts. In this study, the multistage contact oxidation reactor (MCOR) was employed for the first time to treat the CAP wastewater under the co-existence of CAP (10-80 mg/L) and salinity (0-30 g/L NaCl). The CAP removal efficiency reached 91.7% under the co-existence of 30 mg/L CAP and 10 g/L NaCl in the influent, but it fluctuated around 60% with the increase of CAP concentration and salinity. Trichococcus and Lactococcus were the major contributors to the CAP and salinity shock loads. Furthermore, the elevated CAP and salinity selection pressures inhibited the spread of CAP efflux pump genes, including cmlA, tetC, and floR, and significantly affected the composition and abundance of antibiotic resistance genes (ARGs). As the potential hosts of CAP resistance genes, Acinetobacter, Enterococcus, and unclassified_d_Bacteria developed resistance against high osmotic pressure and antibiotic environment using the efflux pump mechanism. The results also revealed that shifting of potential host bacteria significantly contributed to the change in ARGs. Overall, the co-existence of CAP and salinity promoted the enrichment of core genera Trichococcus and Lactococcus; however, they inhibited the proliferation of ARGs. KEY POINTS: • Trichococcus and Lactococcus were the core bacteria related to CAP biodegradation • Co-existence of CAP and salinity inhibited proliferation of cmlA, tetC, and floR • The microorganism resisted the CAP using the efflux pump mechanism. | 2022 | 36205764 |
| 7032 | 6 | 0.9996 | Free Radicals on Aging Microplastics Regulated the Prevalence of Antibiotic Resistance Genes in the Aquatic Environment: New Insight into the Effect of Microplastics on the Spreading of Biofilm Resistomes. The spread of antibiotic resistance genes (ARGs) by microplastics has received a great concern in coexisting "hotspots". Despite most microplastics suffering from natural aging, little is known about the effect of aging microplastics (A-MPs) on ARGs dissemination. Here, we demonstrated significant suppression of A-MPs on ARGs dissemination in natural rivers. Although ARGs and mobile genetic elements (MGEs) were effectively enriched on A-MPs, the relative abundance of ARGs and MGEs on A-MPs as well as in receiving water decreased by approximately 21.4% to 42.3% during a period of 30 days of dissemination. Further investigation revealed that (•)OH was consistently generated on A-MPs with a maximum value of 0.2 μmol/g. Importantly, scavenging of (•)OH significantly increased the relative abundance of ARGs and MGEs both on A-MPs and in receiving water 1.4-29.1 times, indicating the vital role of (•)OH in suppressing ARGs dissemination. Microbial analysis revealed that (•)OH inhibited the potential antibiotic-resistant bacteria in surface biofilms, such as Pseudomonas and Acinetobacter (with a decrease of 68.8% and 89.3%). These results demonstrated that (•)OH was extensively produced on A-MPs, which greatly reduced both the vertical and horizontal gene transfer of ARGs. This study provided new insights into the dissemination of ARGs through microplastics in natural systems. | 2025 | 40359213 |
| 7563 | 7 | 0.9996 | Polystyrene microplastics alleviate the effects of sulfamethazine on soil microbial communities at different CO(2) concentrations. Microplastics were reported to adsorb antibiotics and may modify their effects on soil systems. But there has been little research investigating how microplastics may affect the toxicities of antibiotics to microbes under future climate conditions. Here, we used a free-air CO(2) enrichment system to investigate the responses of soil microbes to sulfamethazine (SMZ, 1 mg kg(-1)) in the presence of polystyrene microplastics (PS, 5 mg kg(-1)) at different CO(2) concentrations (ambient at 380 ppm and elevated at 580 ppm). SMZ alone decreased bacterial diversity, negatively affected the bacterial structure and inter-relationships, and enriched the sulfonamide-resistance genes (sul1 and sul2) and class 1 integron (intl1). PS, at both CO(2) conditions, showed little effect on soil bacteria but markedly alleviated SMZ's adverse effects on bacterial diversity, composition and structure, and inhibited sul1 transmission by decreasing the intl1 abundance. Elevated CO(2) had limited modification in SMZ's disadvantages to microbial communities but markedly decreased the sul1 and sul2 abundance. Results indicated that increasing CO(2) concentration or the presence of PS affected the responses of soil microbes to SMZ, providing new insights into the risk prediction of antibiotics under future climate conditions. | 2021 | 33592488 |
| 7566 | 8 | 0.9996 | Antibiotic sulfadiazine degradation by persulfate oxidation: Intermediates dependence of ecotoxicity and the induction of antibiotic resistance genes. To preserve the water resources, this study has analyzed the ecotoxicity and antibiotic resistance genes (ARGs) induction capacity of sulfadiazine degradation intermediates resulting from persulfate activation oxidation enhanced by ultraviolet, ultrasound and microwave. The five degradation pathways caused by the contribution discrepancy of electron transfer and singlet oxygen ((1)O(2)) and variations in the ecotoxicity of different degradation products were analyzed. Microcosm experiment exhibited that the microbial community in actual water changed significantly with SDZ and degradation intermediates, in which the dominant genera were Aeromonas, Cupriavidus, Elizabethkingia and Achromobacter. Except for the selective pressure on bacteria, the degradation intermediates also exert a certain degree or even stronger induction on sulfonamide ARGs (sul4, sul1 and sul2) than SDZ. Furthermore, the potential hosts for sulfonamide ARGs were revealed by network analysis. These results provide a better understanding of antibiotics degradation mechanism and ARGs occurrence, which is useful for controlling the spread of ARGs. | 2023 | 36372382 |
| 7966 | 9 | 0.9996 | How heavy metal stress promotes dissemination of antibiotic resistance genes in the activated sludge process. Heavy metals have been recently revealed as promoters to antibiotic resistance gene (ARG) dissemination in water environment, but their influence on ARG transfer in the activated sludge process has not been clear. In this study, a set of sequencing batch reactors (SBRs) and micro-scale microfluidic chips were established to quantify the impacts of heavy metals (0.5 mM of Pb, 0.1 mM of As, and 0.005 mM of Hg) on the ARG spreading in the activated sludge consortium. Under heavy metal stress, transfer frequencies were 1.7-3.6 folds increase compared to the control. Gram-negative bacteria increased significantly after heavy metal added, which were more prone to receiving resistant plasmid from donors. Meanwhile, the relative expression of genes related to conjugation changed in activated sludge, especially the expression of outer membrane protein and oxidative stress regulatory genes increased by 2.9-7.4 folds and 7.8-13.1 folds, respectively. Furthermore, using microfluidic chips, the dynamics of ARG transfer was observed at single cell level under heavy metal pressure. Heavy metals firstly promoted conjugation and then vertical gene transfer played an important part for ARG spreading. The results provided in-depth understanding of the influence of heavy metals on ARG behavior in the environment. | 2022 | 35724617 |
| 7944 | 10 | 0.9996 | Effects of nitrogen-driven eutrophication on the horizontal transfer of extracellular antibiotic resistance genes in water-sediment environments. Excessive nitrogen and other nutrients can trigger the eutrophication of freshwater bodies. Antibiotic resistance genes (ARGs) are now recognized as environmental pollutants, with extracellular ARGs (eARGs) being the dominant form in sediments. However, research on the propagation characteristics of eARGs remains limited. This study investigated the transfer characteristics of kanamycin resistance (KR) genes in the pEASY-T1 plasmid to intracellular DNA (iDNA) and extracellular DNA (eDNA) in water and sediment microenvironments under increasing nitrogen concentrations, as well as the community structure of free-living (FL) and particle-attached (PA) bacteria. The results revealed KR genes relative abundance in free extracellular DNA (f-eDNA) and adsorbed extracellular DNA (a-eDNA) of the water initially decreased and then increased with rising nitrogen concentrations. Its abundance in iDNA of the sediments decreased significantly with increasing nitrogen content, with relative abundance ranging from 5.09 × 10(-4) to 1.14 × 10(-3) copies/16SrRNA. The transfer from eDNA to iDNA in the water showed a rising and then falling trend as nitrogen concentration rose. The transfer of iDNA from the water to iDNA in sediments exhibited the opposite pattern. Additionally, copper (Cu) and zinc (Zn) were identified as key factors influencing the abundance of KR genes in the water, but total phosphorus (TP) was the primary determinant of KR gene distribution in sediments according to random forest analysis. These findings reveal novel mechanisms of eARG propagation in eutrophic environments, providing a theoretical foundation for managing antibiotic resistance in aquatic ecosystems. | 2025 | 40057108 |
| 7565 | 11 | 0.9996 | Microalgae Enhances the Adaptability of Epiphytic Bacteria to Sulfamethoxazole Stress and Proliferation of Antibiotic Resistance Genes Mediated by Integron. The transmission of ARGs in the microalgae-associated epiphytic bacteria remains unclear under antibiotic exposure, apart from altering the microbial community structure. In this study, Chlorella vulgaris cocultured with bacteria screened from surface water was examined to explore the spread of ARGs in the presence of sulfamethoxazole (SMX). The extracellular polymers released by Chlorella vulgaris could reduce antibiotic-induced collateral damage to bacteria, thus increasing the diversity of the microalgae-associated epiphytic bacteria. The abundances of sul1 and intI1 in the phycosphere at 1 mg/L SMX dose increased by 290 and 28 times, respectively. Metagenomic sequencing further confirmed that SMX bioaccumulation stimulated the horizontal transfer of sul1 mediated by intI1 in the microalgae-associated epiphytic bacteria, while reactive oxygen species (ROS)-mediated oxidative stress induced the SOS response and thus enhanced the transformation of sul1 in the J group. This is the first study to verify that microalgae protect bacteria from antibiotic damage and hinder the spread of ARGs mediated by SOS response, while the transfer of ARGs mediated by integron is promoted due to the bioaccumulation of SMX in the phycosphere. The results contribute to present comprehensive understanding of the risk of ARG proliferation by the presence of emerging contaminants residues in river. | 2024 | 39417646 |
| 8086 | 12 | 0.9996 | Biofilm enhanced the mitigations of antibiotics and resistome in sulfadiazine and trimethoprim co-contaminated soils. Reducing antibiotic levels in soil ecosystems is vital to curb the dissemination of antimicrobial resistance genes (ARGs) and mitigate global health threats. However, gaps persist in understanding how antibiotic resistome can be suppressed during antibiotic degradation. Herein, we investigate the efficacy of a biochar biofilm incorporating antibiotics-degrading bacterial strain (Arthrobacter sp. D2) to mitigate antibiotic resistome in non-manured and manure-amended soils with sulfadiazine (SDZ) and trimethoprim (TMP) contamination. Results show that biofilm enhanced SDZ degradation by 83.0% within three days and increased TMP attenuation by 55.4% over 60 days in non-manured soils. In the non-manured black soil, the relative abundance of ARGs increased initially after biofilm inoculation. However, by day 30, it decreased by 20.5% compared to the controls. Moreover, after 7 days, biofilm reduced TMP by 38.5% in manured soils and decreased the total ARG abundance by 19.0%. Thus, while SDZ degradation did not increase sulfonamide resistance genes, TMP dissipation led to a proliferation of insertion sequences and related TMP resistance genes. This study underscores the importance of antibiotic degradation in reducing related ARGs while cautioning against the potential proliferation and various ARGs transfer by resistant microorganisms. | 2024 | 39255667 |
| 8588 | 13 | 0.9996 | Does lipid stress affect performance, fate of antibiotic resistance genes and microbial dynamics during anaerobic digestion of food waste? The dissemination of antibiotic resistance genes (ARGs) in food waste (FW) disposal can pose severe threats to public health. Lipid is a primary composition in FW, while whether lipid stress can affect ARGs dynamics during anaerobic digestion (AD) process of FW is uncertain. This study focused on the impacts of lipid stress on methane production, fate of ARGs and its microbial mechanisms during AD of FW. Results showed that high lipid content increased methane yield but prolonged hydrolysis and lag time of methane production compared to AD of FW without oil. Moreover, variations of ARGs were more susceptible to lipid stress. Lipid stress could facilitate the reduction of total ARGs abundances compared to the group without oil, particularly restraining the proliferation of sul1, aadA1 and mefA in AD systems (P < 0.05). Mantel test suggested that integrons (intl1 and intl2) were significantly correlated with all detected ARGs (r: 0.33, P < 0.05), indicating that horizontal gene transfer mediated by integrons could be the driving force on ARGs dissemination. Network analysis suggested that Firmicutes, Bacteroidetes, Synergistetes and Proteobacteria were the main potential hosts of ARGs. In addition, under the lipid stress, the reduction of host bacteria was responsible for the elimination of several specific ARGs, thereby affecting ARGs profiles. These findings firstly deciphered ARGs dynamics and their driving factors responding to lipid stress during anaerobic biological treatment of FW. | 2021 | 33250254 |
| 7936 | 14 | 0.9996 | Impact of uranium on antibiotic resistance in activated sludge. The emergence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment is well established as a human health crisis. The impact of radioactive heavy metals on ecosystems and ultimately on human health has become a global issue, especially for the regions suffering various nuclear activities or accidents. However, whether the radionuclides can affect the fate of antibiotic resistance in bacteria remains poorly understood. Here, the dynamics of ARB, three forms of ARGs-intracellular ARGs (iARGs), adsorbed extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs)-and microbial communities were investigated following exposure to uranium (U), a representative radioactive heavy metal. The results showed that 90-d of U exposure at environmentally relevant concentrations of 0.05 mg/L or 5 mg/L significantly increased the ARB concentration in activated sludge (p < 0.05). Furthermore, 90-d of U exposure slightly elevated the absolute abundance of aeARGs (except tetO) and sulfonamide iARGs, but decreased tetracycline iARGs. Regarding feARGs, the abundance of tetC, tetO, and sul1 decreased after 90-d of U stress, whereas sul2 showed the opposite trend. Partial least-squares path model analysis revealed that the abundance of aeARGs and iARGs under U stress was predominantly driven by increased cell membrane permeability/intI1 abundance and cell membrane permeability/reactive oxygen species concentration, respectively. Conversely, the changes in feARGs abundance depended on the composition of the microbial community and the expression of efflux pumps. Our findings shed light on the variations of ARGs and ARB in activated sludge under U exposure, providing a more comprehensive understanding of antibiotic resistance risks aggravated by radioactive heavy metal-containing wastewater. | 2024 | 38278272 |
| 7630 | 15 | 0.9996 | Coexistence of silver ion and tetracycline at environmentally relevant concentrations greatly enhanced antibiotic resistance gene development in activated sludge bioreactor. Antibiotic resistance has become a global public health problem. Recently, various environmental pollutants have been reported to induce the proliferation of antibiotic resistance. However, the impact of multiple pollutants (e.g., heavy metals and antibiotics), which more frequently occur in practical environments, is poorly understood. Herein, one widely distributed heavy metal (Ag(+)) and one frequently detected antibiotic (tetracycline) were chosen to investigate their coexisting effect on the proliferation of antibiotic resistance in the activated sludge system. Results show that the co-occurrence of Ag(+) and tetracycline at environmentally relevant concentrations exhibited no distinct inhibition in reactor performances. However, they inhibited the respiratory activity by 42%, destroyed the membrane structure by 218%, and increased membrane permeability by 29% compared with the blank control bioreactor. Moreover, the relative abundances of target antibiotic resistance genes (ARGs) (e.g., tetA, bla(TEM-1), and sulII) in effluent after exposure of coexisting Ag(+) and tetracycline were increased by 92-1983% compared with those in control reactor, which were 1.1-4.3 folds higher than the sum of the sole ones. These were possibly attributed to the enrichments of antibiotic-resistant bacteria. The results would illumine the coexisting effect of heavy metals and antibiotics on the dissemination of ARGs in activated sludge system. | 2022 | 34482077 |
| 7568 | 16 | 0.9996 | Self-rescue of nitrogen-cycling bacteria under β-lactam antibiotics stress during managed aquifer recharge (MAR): Microbial collaboration and anti-resistance. Storing reclaimed water via managed aquifer recharge (MAR) is an effective strategy for alleviating groundwater overdraft and achieving water resource recycling simultaneously. However, β-lactam antibiotics in the reclaimed water can induce stress on aquifer system, reshape microbial community, and affect the emergence and prevalence of antibiotic resistance genes (ARGs). In this study, three sandy soil columns (H 1.5 m, ID 14 cm) were employed to simulate MAR, and synthetic reclaimed water containing either amoxicillin (AMO), ampicillin (AMP) or oxacillin (OXA) was continuously recharged for 120 d The temporal and spatial attenuation of β-lactams and nitrogen was studied, and microbial collaboration and the resistance mechanism were elaborated. Biodegradation is the main pathway for β-lactams elimination, AMO and AMP were eliminated when migrating 30 cm, while the attenuation of OXA experienced in the whole column with final removal efficiency of 82%. Moreover, refractory OXA induced more ARGs production, and approximately 10% and 13% higher than that of AMO and AMP columns. Efflux pump and antibiotics inactivation were the two major resistance mechanisms. NO(3)(-)-N gradually decreased (by 26%, 38%, and 49% for AMO, AMP, and OXA, respectively) along the recharge direction. Microbial co-occurrence network revealed that nitrogen-cycling bacteria were the keystone species in aquifer community, and ammonation provided NH(4)(+)-N for the nitrification process of ammonia-oxidizing archaea (AOA), promoting the further denitrification for nitrogen removal in MAR process. Nitrogen-cycling bacteria were the key and active ARG hosts, which could keep nitrogen transformation activity under antibiotics stress. In sum, nitrogen-cycling bacteria exhibited intimate collaboration and elastic resistance in response to the malnutrition environment and β-lactams exposure during MAR. | 2023 | 36689880 |
| 8082 | 17 | 0.9996 | Deciphering the toxic effects of antibiotics on denitrification: Process performance, microbial community and antibiotic resistance genes. The extensive application of antibiotics, and the occurrence and spread of antibiotic resistance genes (ARGs) shade health risks to human and animal. The long-term effects of sulfamethoxazole (SMX) and tetracycline (TC) on denitrification process were evaluated in this study, with the focus on nitrogen removal performance, microbial community and ARGs. Results showed that low-concentration SMX and TC (<0.2 mg L(-1)) initially caused a deterioration in nitrogen removal performance, while higher concentrations (0.4-20 mg L(-1)) of both antibiotics had no further inhibitory influences. The abundances of ARGs in both systems generally increased during the whole period, and most of them had significant correlations with intI1, especially efflux-pump genes. Castellaniella, which was the dominant genus under antibiotic pressure, might be potential resistant bacteria. These findings provide an insight into the toxic effects of different antibiotics on denitrification process, and guides future efforts to control antibiotics pollution in ecosystems. | 2020 | 32250829 |
| 7901 | 18 | 0.9996 | Responses of antibiotic resistance genes and microbial community in the microalgae-bacteria system under sulfadiazine: Mechanisms and implications. Microalgae-bacteria system is an emerging alternative for sustainable wastewater treatment. Exploring the structure and diversity of microbial community in microalgae-bacteria system under sulfadiazine stress can contribute to the understanding of the sulfadiazine behavior in environments. Furthermore, as important carriers of antibiotic resistance genes (ARGs), microalgae can influence the profiles of ARGs either directly or indirectly through the secretion of metabolites. However, the effects of sulfadiazine on ARGs dissemination of microalgae-bacteria systems remain underreported. Herein, the impacts of sulfadiazine (1 mg/L) on the structural diversity and metabolic activity of microorganisms were examined in microalgae-bacteria systems. Results showed that microalgae-bacteria system could remove NH(4)(+)-N better (about 72.3 %) than activated sludge system, and hydrolysis was the first step in sulfadiazine degradation. A high level of intI1 (5.7 × 10(4) copies/mL) was detected in the initial media of the microalgae-bacteria system. Microalgae could hamper the rate of horizontal gene transfer activation. Compared with activated sludge system, the abundance of sul genes (sul1, sul2, sul3, and sulA) was significantly lowered after treating with microalgae-bacteria system. Additionally, the number of proteins and the sum of polysaccharides in the extracellular polymeric substances of the activated sludge system were lower than those of the microalgae-bacteria system. Microalgae can alter microbial communities. The genus Rozellomycota predominated all samples. Fungi with relatively high abundance increased in the microalgae-bacteria system, including Dipodascaceae, Rhodotorula, and Geotrichum. These results offer valuable insights into the application processes involving microalgae-bacteria system. | 2025 | 40602895 |
| 7618 | 19 | 0.9996 | Anaerobic sludge digestion elevates dissemination risks of bacterial antibiotic resistance in effluent supernatant. Anaerobic digestion following a variety of pretreatments is a promising technique for the reduction of excess sludge in municipal wastewater treatment plants (MWWTPs), and eliminations of possible pathogens, viruses, protozoa, and other disease-causing organisms. Notwithstanding a rapidly increasing health concern of antibiotic resistant bacteria (ARB) in MWWTPs, dissemination risks of ARB in anaerobic digestion processes are still poorly understood, especially in the digested supernatant. Taking the representative ARB with respect to the common tetracycline-, sulfamethoxazole-, clindamycin- and ciprofloxacin resistance, we investigated the compositions of ARB in the sludge and supernatant, and quantified their variations along the entire anaerobic sludge digestion process following ultrasonication-, alkali-hydrolysis- and alkali-ultrasonication pretreatments, respectively. Results showed that the abundance of ARB was diminished by up to 90% from the sludge along anaerobic digestion coupling with the pretreatments. Surprisingly, pretreatments clearly boosted the abundance of specific ARB (e.g., 2.3 × 10(2) CFU/mL of tetracycline-resistant bacteria) in the supernatant that otherwise remained relatively low value of 0.6 × 10(2) CFU/mL from the direct digestion. Measurements of the soluble-, loosely-bound- and tightly-bound extracellular polymeric substances components revealed a gradually intensified destruction of the sludge aggregates along the entire anaerobic digestion processes, which could be likely responsible to the increase of the ARB abundance in the supernatant. Furthermore, analysis of the bacterial community components showed that the ARB populations were strongly correlated with the occurrence of Bacteroidetes, Patescibacteria, and Tenericutes. Interestingly, intensified conjugal transfer (0.015) of antibiotic resistance genes (ARGs) was observed upon returning of the digested supernatant to the biological treatment system. It implies the likelihood of ARGs spreading and subsequent ecological risks upon anaerobic digestion towards reducing excess sludge, and therefore requires further attentions for the excess sludge treatments especially of supernatant. | 2023 | 37023605 |