Deciphering antibiotic resistome variations during nitrogen removal process transition under mixed antibiotics stress: Assembly process and driving factors. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
756101.0000Deciphering antibiotic resistome variations during nitrogen removal process transition under mixed antibiotics stress: Assembly process and driving factors. Antibiotic resistome, which encompasses all types of antibiotic resistance genes (ARGs) in a given environment, has received increasing attention in research on different wastewater treatment processes. However, the variation in antibiotic resistome during the transition from the full nitrification-denitrification to the shortcut nitrification-denitrification process remains unclear. In this study, a total of 269 targeted gene subtypes were identified, along with 108 genes were consistently present in all samples. The introduction of mixed antibioticsrapidly increased the abundance of corresponding and non-corresponding ARGs, as well as that of mobile genetic elements.The variations in of the antibiotic resistome were primarily driven by dissolved oxygen and nitrite accumulation rate. Moreover, 34 bacterial genera were identified as potential ARG hosts, with most denitrifiers considered as potential antibiotic-resistant bacteria, including Branchymonas, Rhodobacter, and Thauera. This study provides a method for controlling antibiotic resistance by regulating the changes in environmental variables and bacterial communities.202339492537
703010.9999Metagenomic profiling of antibiotic resistance genes/bacteria removal in urban water: Algal-bacterial consortium treatment system. Antibiotic resistance genes (ARGs) have exhibited significant ecological concerns, especially in the urban water that are closely associated with human health. In this study, with presence of exogenous Chlorella vulgaris-Bacillus licheniformis consortium, most of the typical ARGs and MGEs were removed. Furthermore, the relative abundance of potential ARGs hosts has generally decreased by 1-4 orders of magnitude, revealing the role of algal-bacterial consortium in cutting the spread of ARGs in urban water. While some of ARGs such as macB increased, which may be due to the negative impact of algicidal bacteria and algal viruses in urban water on exogenous C. vulgaris and the suppression of exogenous B. licheniformis by indigenous microorganisms. A new algal-bacterial interaction might form between C. vulgaris and indigenous microorganisms. The interplay between C. vulgaris and bacteria has a significant impact on the fate of ARGs removal in urban water.202438801952
703120.9999Free-living lifestyle preferences drive the antibiotic resistance promotion during drinking water chlorination. The risk associated with antibiotic resistance genes (ARGs) in size-fractionated bacterial community during drinking water chlorination remains unclear, and is of paramount importance for risk mitigation through process selection and optimization. This study employed metagenomic approaches to reveal the alterations of ARGs, their potential functions and hosts within the free-living and particle-associated fractions. The total relative abundance of ARGs, mobile genetic elements (MGEs), and virulence factor genes (VFGs) significantly increased in the free-living fraction after chlorination. The contribution of the free-living fraction to the ARG relative abundance rose from 16.40 ± 1.31 % to 93.62 ± 0.47 % after chlorination. Multidrug resistance genes (e.g. mexF and mexW) were major contributors, and their co-occurrence with MGEs in the free-living fraction was enhanced after chlorination. Considering multiple perspectives, including presence, mobility, and pathogenicity, chlorination led to a significant risk of the antibiotic resistome in the free-living fraction. Moreover, potential functions of ARGs, such as cell wall/membrane/envelope biogenesis, defense mechanisms, and transcription in the free-living fraction, were intensified following chlorination. Potential pathogens, including Pseudomonas aeruginosa, Pseudomonas alcaligenes, and Acinetobacter junii, were identified as the predominant hosts of multidrug resistance genes, with their increased abundances primarily contributing to the rise of the corresponding ARGs. Overall, alterations of hosts as well as enhancing mobility and biological functions could collectively aid the proliferation and spread of ARGs in the free-living fraction after chlorination. This study provides novel insights into antibiotic resistance evolution in size-fractionated bacteria community and offers a management strategy for microbiological safety in drinking water.202438043346
756030.9999The effect of bacterial functional characteristics on the spread of antibiotic resistance genes in Expanded Granular Sludge Bed reactor treating the antibiotic wastewater. To explore the fate and spreading mechanism of antibiotics resistance genes (ARGs) in antibiotics wastewater system, a laboratory-scale (1.47 L) Expanded Granular Sludge Bed (EGSB) bioreactor was implemented. The operating parameters temperature (T) and hydraulic retention time (HRT) were mainly considered. This result showed the removal of ARGs and COD was asynchronous, and the recovery speed of ARGs removal was slower than that COD removal. The decreasing T was attributed to the high growth rate of ARGs host bacteria, while the shortened HRT could promote the horizontal and vertical gene transfer of ARGs in the sludge. The analysis result of potential bacterial host showed more than half of the potential host bacteria carried 2 or more ARGs and suggested an indirect mechanism of co-selection of multiple ARGs. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to investigate the functional characteristics of bacterial community. This result showed the bacterial functional genes contributed 40.41% to the abundance change of ARGs in the sludge, which was higher that of bacterial community. And the function genes of "aromatic hydrocarbon degradation", "Replication, recombination and repair proteins" and "Flagellar assembly" were mainly correlated with the transfer of ARGs in the sludge. This study further revealed the mechanism of ARGs spread in the EGSB system, which would provide new ideas for the development of ARGs reduction technology.202134488144
704240.9998Response of antibiotic resistance genes abundance by graphene oxide during the anaerobic digestion of swine manure with copper pollution. The pollution of various environments with antibiotic resistance genes (ARGs) is an urgent problem that needs to be addressed, especially in heavy metal-polluted environments. This study investigated the responses of ARGs and mobile genetic elements (MGEs) to the addition of graphene oxide (GO) to swine manure containing a high concentration copper during anaerobic digestion. The total copy numbers of ARGs and MGEs were significantly enhanced by the pressure due to Cu. GO significantly decreased the ARG and MGE copy numbers, where the low GO concentration performed better than the high GO concentration. Network analysis showed that most of the ARGs and MGEs co-occurred and they shared the same major potential host bacteria. The contributions of different factors to ARG abundances were assessed by redundancy analysis and MGEs had the most important effect on the fate of ARGs. Thus, GO may reduce the abundance of ARGs mainly by removing MGEs.201930445329
702950.9998Filamentous bacteria-induced sludge bulking can alter antibiotic resistance gene profiles and increase potential risks in wastewater treatment systems. Sludge bulking caused by filamentous bacteria is a prevalent issue in wastewater treatment systems. While previous studies have primarily concentrated on controlling sludge bulking, the biological risks associated with it have been overlooked. This study demonstrates that excessive growth of filamentous bacteria during sludge bulking can significantly increase the abundance of antibiotic resistance genes (ARGs) in activated sludge. Through metagenomic analysis, we identified specific ARGs carried by filamentous bacteria, such as Sphaerotilus and Thiothrix, which are responsible for bulking. Additionally, by examining over 1,000 filamentous bacterial genomes, we discovered a diverse array of ARGs across different filamentous bacteria derived from wastewater treatment systems. Our findings indicate that 74.84% of the filamentous bacteria harbor at least one ARG, with the occurrence frequency of ARGs in these bacteria being approximately 1.5 times higher than that in the overall bacterial population in activated sludge. Furthermore, genomic and metagenomic analyses have shown that the ARGs in filamentous bacteria are closely linked to mobile genetic elements and are frequently found in potentially pathogenic bacteria, highlighting potential risks posed by these filamentous bacteria. These insights enhance our understanding of ARGs in activated sludge and underscore the importance of risk management in wastewater treatment systems.202439094405
703460.9998Meta-analysis reveals the processes and conditions of using biochar to control antibiotic resistance genes in soil. Soil is a significant reservoir of antibiotic resistance genes (ARGs) and an important habitat for pathogens associated with many clinical infections and plant disease outbreaks. Although scientists have found that biochar can reduce ARGs in soil, the understanding of how biochar removes soil ARGs and the influencing factors remains limited. Here, a meta-analysis of 65 published studies was conducted to illuminate the mechanisms through which biochar remediates ARG-contaminated soils. In biochar-amended soil, the antibiotic content significantly decreased by 24.1 %, while the abundances of mobile genetic elements and ARG host bacteria declined by 23.5 % and 12.1 %, respectively. The reduced antibiotic content, suppressed mobile genetic elements, and altered bacterial community structure collectively led to a 41.8 % reduction in soil ARG abundance. In addition, wood-derived biochar pyrolyzed at 300-500 °C exhibited a substantial advantage in the remediation of ARGs. Furthermore, biochar application decreased the abundance of ARGs in alkaline and neutral soil more markedly than that in acidic soil. The results of this research confirmed the positive mitigating effect of biochar on ARGs in soil, providing valuable insights for the prevention and control of ARG pollution.202540359860
755970.9998Fate of antibiotic resistance genes and resistant bacteria under various operating temperatures of sludge anaerobic digestion. This study investigates the impact of varying temperatures on reducing antibiotic resistance genes (ARGs) during anaerobic digestion (AD) of mixed raw sludge in wastewater treatment plants. Employing three different operating temperatures, i.e., 37, 55, and 65 °C, the research aims to identify how these conditions affect the diminution of resistant genes. The results, based on quantitative PCR analysis and metagenomic sequencing, show that higher temperatures significantly enhance the reduction of ARGs, with the most substantial decreases observed at 65 °C. This temperature-dependent reduction correlates with changes in the microbial community structure, where specific bacterial genera like Alicycliphilus, Macellibacteroides, Dokdonella, Ahniella, Thauera, and Zoogloea associated with ARGs exhibit decreased abundance at elevated temperatures. The study infers that AD at higher temperatures could be a more effective strategy in mitigating the spread of antibiotic resistance in the environment, suggesting a pivotal role of operational temperature in optimizing wastewater treatment processes for ARGs attenuation. The findings highlight the need for further research to refine AD protocols, aiming to minimize the environmental impact of antibiotic resistance dissemination.202540662898
750780.9998Impact of different organic matters on the occurrence of antibiotic resistance genes in activated sludge. The occurrence of antibiotic resistance genes (ARGs) in various environments has drawn worldwide attention due to their potential risks. Previous studies have reported that a variety of substances can enhance the occurrence and dissemination of ARGs. However, few studies have compared the response of ARGs under the stress of different organic matters in biological wastewater treatment systems. In this study, seven organic pollutants were added into wastewater treatment bioreactors to investigate their impacts on the ARG occurrence in activated sludge. Based on high-throughput sequencing, it was found that the microbial communities and ARG patterns were significantly changed in the activated sludge exposed to these organic pollutants. Compared with the non-antibiotic refractory organic matters, antibiotics not only increased the abundance of ARGs but also significantly changed the ARG compositions. The increase of Gram-negative bacteria (e.g., Archangium, Prosthecobacter and Dokdonella) carrying ARGs could be the main cause of ARG proliferation. In addition, significant co-occurrence relationships between ARGs and mobile genetic elements were also observed in the sludge samples, which may also affect the ARG diversity and abundance during the organic matter treatment in the bioreactors. Overall, these findings provide new information for better understanding the ARG occurrence and dissemination caused by organic pollutants in wastewater treatment systems.202336522059
703890.9998Interactions between fungi and bacteria hosts carrying MGEs is dominant for ARGs fate during manure mesophilic composting. The mycelial networks of fungi promote the interaction between the originally isolated bacteria, thereby potentially enhancing the exchange of nutrients and the horizontal transfer of genetic materials. However, the driving effect of fungi on antibiotic resistance genes (ARGs) during mesophilic facultative composting is still unclear. This study aims to elucidate the changes in ARGs and underlying mechanisms during the mesophilic composting of manure. Results indicated that reduction rates of ARGs in sheep and pig manure over a 90-day composting period were 34.68% and 60.10%, respectively. The sul1, sul2 and tetX were identified as recalcitrant ARGs in both composting treatments, with the additional unique recalcitrant gene addA observed in sheep manure. Fungal communities appeared to have a more significant influence on the cooperation between bacteria and fungi. Massive fungi interacted intensively with bacterial hosts carrying both ARGs and mobile genetic elements (MGEs). In sheep and pig manure, there were 53 and 38 potential bacterial hosts (genus level) carrying both ARGs and MGEs, associated close interactions with fungi. Structural equation modeling revealed that compost properties influence ARGs by affecting the abundance of core fungi and the hosts carrying MGEs, and that core fungi could also impact ARGs by influencing the bacterial hosts carrying MGEs. Core fungi have the potential to facilitate the horizontal transfer of ARGs by enhancing bacterial network interactions.202539764902
7511100.9998Antibiotic resistome promotion in drinking water during biological activated carbon treatment: Is it influenced by quorum sensing? The contamination of antibiotic resistance genes (ARGs) in drinking water may pose a direct threat to human health. This study applied high-throughput qPCR and sequencing to investigate the dynamics of ARGs and bacterial communities during the advanced treatment of drinking water using biological activated carbon. The promotion of ARGs was observed, and the normalized copy number of ARGs increased significantly after BAC treatment, raising the number of detected ARGs from 84 to 159. Twenty-nine ARGs were identified as biofilm-influencing sources in the BAC, and they persisted after chlorination. The shift of bacterial communities primarily had effects on the changes in resistome. Firmicutes, Cyanobacteria were related to persistent ARGs mostly in the BAC biofilm. Meanwhile, the Acyl-Homoserine Lactones (AHLs), quorum sensing molecules, and bacteria that produced AHLs were identified to understand the promotion of ARGs. The isolated AHL-producing bacteria belonged to the Proteobacteria, Firmicutes and Bacteroidetes phyla. Six detectable AHLs had an influence on plasmid-based horizontal gene transfer in the intragenus mating systems, indicating that the dynamics of ARGs were strongly affected by quorum sensing between specific bacteria in the biofilm. These results provide new insight into the mechanism of antibiotic resistome promotion in BAC biofilms.201828846900
6951110.9998The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers. The prevalence of bacterial resistance caused by the application of animal manure has become an important environmental issue. Herein, the vertical migration of antibiotic resistance genes (ARGs) and pathogens in soil and vegetables after the application of different fertilizers was explored. The results showed that the application of composted manure considerably enhanced the abundance of most ARGs and pathogens, especially in surface soil and pakchoi roots. Moreover, the soil ARGs increased partially from log 1.93 to log 4.65 after the application of composted manure, and six pathogens were simultaneously detected. It was observed that the increase in soil depth decreased most ARGs and pathogens by log 1.04-2.24 and 53.98 %~85.54 %, respectively. This indicated that ARGs and pathogens still existed in the deep soil (80-100 cm). Moreover, total organic carbon had a significant influence on the pathogen distribution, whereas bacterial communities primarily drove the vertical migration of ARGs rather than environmental factors. Although most of the ARG-host associations observed in the surface soil were disappeared in deep soil as revealed by network analysis, some co-occurrence pattern still occurred in deep soil, suggesting that some ARGs might be carried to deep soil by their host bacteria. These results were novel in describing the vertical migration of ARGs in the environment after the application of different fertilizers, providing ideas for curbing their migration to crops.202234400159
7040120.9998The maturity period is the main stage of antibiotic resistance genes reduction in aerobic composting process of swine manure in sub-scale farms. This study was focused on the changes of antibiotic resistance genes (ARGs) and their potential host bacteria during the swine manure composting on sub-scale farms. Eight target ARGs increased 427% on average, with a trend of increase at early stage and decrease at later stage, and the main reduction stage appeared in maturity stage. The abundance of ARGs was mainly affected by the community succession of potential host bacteria. Composting could reduce the abundance of potential host bacteria of ARGs as well as pathogens such as Pseudomonas, and reduce the environmental risks of swine manure. N/C and S levels had a positive effect on the potential host of most ARGs. Prolonging the maturity period would inhibit the growth of potential host bacteria of ARGs during composting, therefore inhibiting the transmission of ARGs.202132971337
7032130.9998Free Radicals on Aging Microplastics Regulated the Prevalence of Antibiotic Resistance Genes in the Aquatic Environment: New Insight into the Effect of Microplastics on the Spreading of Biofilm Resistomes. The spread of antibiotic resistance genes (ARGs) by microplastics has received a great concern in coexisting "hotspots". Despite most microplastics suffering from natural aging, little is known about the effect of aging microplastics (A-MPs) on ARGs dissemination. Here, we demonstrated significant suppression of A-MPs on ARGs dissemination in natural rivers. Although ARGs and mobile genetic elements (MGEs) were effectively enriched on A-MPs, the relative abundance of ARGs and MGEs on A-MPs as well as in receiving water decreased by approximately 21.4% to 42.3% during a period of 30 days of dissemination. Further investigation revealed that (•)OH was consistently generated on A-MPs with a maximum value of 0.2 μmol/g. Importantly, scavenging of (•)OH significantly increased the relative abundance of ARGs and MGEs both on A-MPs and in receiving water 1.4-29.1 times, indicating the vital role of (•)OH in suppressing ARGs dissemination. Microbial analysis revealed that (•)OH inhibited the potential antibiotic-resistant bacteria in surface biofilms, such as Pseudomonas and Acinetobacter (with a decrease of 68.8% and 89.3%). These results demonstrated that (•)OH was extensively produced on A-MPs, which greatly reduced both the vertical and horizontal gene transfer of ARGs. This study provided new insights into the dissemination of ARGs through microplastics in natural systems.202540359213
6981140.9998Decline in the Relative Abundance of Antibiotic Resistance Genes in Long-Term Fertilized Soil and Its Driving Factors. The changes in antibiotic resistance genes (ARGs) in long-term fertilized soil remain controversial. We aimed to analyze the variation characteristics of ARGs in long-term fertilized soil using metagenomic sequencing. The relative abundance of ARGs did not increase significantly after 7 years of fertilization. However, a clear decline in the relative abundance of ARGs was observed compared to the data from the 4th year. Microbial adaptation strategies in response to changes in the ARG abundance were associated with shifts in microbiome composition and function. Among these, bacterial abundance was the primary driving factor. Additionally, total heavy metal content might serve as the most significant co-selective pressure influencing ARG number. We believe that increasing the selective pressure from heavy metals and antibiotics might result in the loss of certain microbial species and a decrease in ARG abundance. This study provides novel insights into the variations of soil resistance genes under long-term fertilization.202540785530
8574150.9998Impact of different manure-derived dissolved organic matters on the fate of arsenic-antibiotic in co-contaminated paddy soils. Manure application increases the transfer risk of antibiotic resistance to farmland. Especially, its impact remains unclear when it occurs in arsenic (As)-contaminated paddy soils, which is considered as a global environmental problem. In this work, we investigated the fate of antibiotic resistance genes (ARGs) in As-antibiotic co-contaminated paddy soils under the application of manure from different sources (pig manure, cow dung, and chicken manure). Differences in the aliphatic carbon and electron-donating capacities of these dissolved organic matters (DOM) regulated the transformation of iron and As by both biotic and abiotic processes. The regulation by pig manure was stronger than that by cow dung and chicken manure. DOM regulation increased the abundance of As-related functional genes (arsC, arrA, aioA, and arsM) in the soil and accelerated the transformation of As speciation, the highest proportion of As(III) being 45%-61%. Meanwhile, the continuous selection pressure provided by the highly toxic As(III) increased the risk of ARGs and mobile genetic elements (MGEs) via horizontal gene transfer. As-resistant bacteria, including Bacillus, Geobacter, and Desulfitobacterium, were finally considered as potential host bacteria for ARGs and MGEs. In summary, this study clarified the synergistic mechanism of As-antibiotic on the fate of ARGs in co-contaminated paddy soils, and provided practical guidance for the proper application of organic fertilizers.202235491001
7558160.9998Interaction of sulfate-reducing bacteria and methanogenic archaea in urban sewers, leads to increased risk of proliferation of antibiotic resistance genes. Sewers are considered a potential reservoir of antibiotic resistance. However, the generation of antibiotic resistance genes (ARGs) in microbial communities in pipeline biofilms under antibiotic stress remains unexplored. In this study, the biodegradation efficiency of tetracycline (TCY) and sulfamethoxazole (SMX) was evaluated in a pilot reactor of the sewers. The results showed that under TCY and SMX stress, the degradation efficiency of sewage water was inhibited. The most abundant ARGs detected in the biofilm samples were TCY-related genes (e.g., tetW/N/W, tetC, and tetM), accounting for 34.1%. The microbial community composition varied, and the correlation analysis showed that antibiotic stress had a certain impact on the biological metabolic activity and function of the urban sewers. The community structure and diversity of biofilms enabled the evaluation of the bioconversion of antibiotics. Notably, Anaerocella and Paludibacter directly influenced the methanogenesis and sulfate reduction processes, playing a key role in the interaction between sulfate-reducing bacteria and methanogenic archaea. These microorganisms facilitated the proliferation of ARGs (tet and sul) in the biofilms through horizontal gene transfer. This study provides insight into the front-end control of ARGs, further improving sewage treatment plant processes and reducing the environmental and health risks caused by antibiotic abuse.202539894155
6950170.9998Ceftiofur in swine manure contributes to reducing pathogens and antibiotic resistance genes during composting. Aerobic composting is a common way for the disposal of feces produced in animal husbandry, and can reduce the release of antibiotic resistance genes (ARGs) from feces into the environment. In this study, we collected samples from two distinct treatments of swine manure compost with and without ceftiofur (CEF), and identified the ARGs, mobile genetic elements (MGEs), and bacterial community by metagenomic sequencing. The impacts of CEF on the bacterial community composition and fate of ARGs and MGEs were investigated. With increasing composting temperature and pH, the concentration of CEF in the manure decreased rapidly, with a degradation half-life of 1.12 d and a 100% removal rate after 10 d of aerobic composting. Metagenomics demonstrated that CEF in the manure might inhibit the growth of Firmicutes and Proteobacteria, thereby reducing some ARGs and MGEs hosted by these two bacteria, which was further confirmed by the variations of ARGs and MGEs. A further redundancy analysis suggested that pH and temperature are key environmental factors affecting ARG removal during composting, and intI1 and bacterial communities also have significant influence on ARG abundance. These results are of great significance for promoting the removal of some ARGs from animal manure by controlling some key environmental factors and the type of antibiotics used in animals.202438685300
7551180.9998Microbial community evolution and fate of antibiotic resistance genes during sludge treatment in two full-scale anaerobic digestion plants with thermal hydrolysis pretreatment. Anaerobic digestion (AD) with thermal hydrolysis pretreatment is widely used as an efficient sludge treatment nowadays. However, the evolution of microbial community (especially for the archaea community), the fate of antibiotic resistance genes (ARGs), and their associations during such process in full-scale sludge treatment plants are rarely reported. Therefore, these scientific questions were explored at two full-scale sludge treatment plants through high-throughput sequencing and quantitative PCR. Results showed that Methanobacterium and Methanosphaera were the dominant archaea in thermal hydrolyzed sludge. The predominant bacteria in the sludge first shifted from nutrients removal functional bacteria to spore-forming bacteria after thermal hydrolysis, and then shifted to fermentative bacteria after AD. The full-scale plants could select ermB, ermF, mefA/E, qnrS and tetM. Though the bacteria and archaea biomass and community largely influenced the fate of ARGs, multiple linear regression analysis showed that the total ARGs were mainly affected by mobile genetic elements (MGEs).201931158777
8082190.9998Deciphering the toxic effects of antibiotics on denitrification: Process performance, microbial community and antibiotic resistance genes. The extensive application of antibiotics, and the occurrence and spread of antibiotic resistance genes (ARGs) shade health risks to human and animal. The long-term effects of sulfamethoxazole (SMX) and tetracycline (TC) on denitrification process were evaluated in this study, with the focus on nitrogen removal performance, microbial community and ARGs. Results showed that low-concentration SMX and TC (<0.2 mg L(-1)) initially caused a deterioration in nitrogen removal performance, while higher concentrations (0.4-20 mg L(-1)) of both antibiotics had no further inhibitory influences. The abundances of ARGs in both systems generally increased during the whole period, and most of them had significant correlations with intI1, especially efflux-pump genes. Castellaniella, which was the dominant genus under antibiotic pressure, might be potential resistant bacteria. These findings provide an insight into the toxic effects of different antibiotics on denitrification process, and guides future efforts to control antibiotics pollution in ecosystems.202032250829