# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 754 | 0 | 1.0000 | Resistance to Bipyridyls Mediated by the TtgABC Efflux System in Pseudomonas putida KT2440. Resistance-nodulation-division (RND) transporters are involved in antibiotic resistance and have a broad substrate specificity. However, the physiological significance of these efflux pumps is not fully understood. Here, we have investigated the role of the RND system TtgABC in resistance to metal ion chelators in the soil bacterium Pseudomonas putida KT2440. We observed that the combined action of an RND inhibitor and the chelator 2,2'-bipyridyl inhibited bacterial growth. In addition, the deletion of ttgB made the strain susceptible to 2,2'-bipyridyl and natural bipyridyl derivatives such as caerulomycin A, indicating that TtgABC is required for detoxification of compounds of the bipyridyl family. Searching for the basis of growth inhibition by bipyridyls, we found reduced adenosine triphosphate (ATP) levels in the ttgB mutant compared to the wild type. Furthermore, the expression of genes related to iron acquisition and the synthesis of the siderophore pyoverdine were reduced in the mutant compared to the wild type. Investigating the possibility that 2,2'-bipyridyl in the ttgB mutant mediates iron accumulation in cells (which would cause the upregulation of genes involved in oxidative stress via the Fenton reaction), we measured the expression of genes coding for proteins involved in intracellular iron storage and the response to oxidative stress. However, none of the genes was significantly upregulated. In a further search for a possible link between 2,2'-bipyridyl and the observed phenotypes, we considered the possibility that the ion chelator limits the intracellular availability of metabolically important metal ions. In this context, we found that the addition of copper restores the growth of the ttgB mutant and the production of pyoverdine, suggesting a relationship between copper availability and iron acquisition. Taken together, the results suggest that detoxification of metal chelating compounds of the bipyridyl family produced by other bacteria or higher ordered organisms is one of the native functions of the RND efflux pump TtgABC. Without the efflux pump, these compounds may interfere with cell ion homeostasis with adverse effects on cell metabolism, including siderophore production. Finally, our results suggest that TtgABC is involved in resistance to bile salts and deoxycholate. | 2020 | 32973714 |
| 8946 | 1 | 0.9994 | Role of the CpxAR two-component signal transduction system in control of fosfomycin resistance and carbon substrate uptake. Although fosfomycin is an old antibiotic, it has resurfaced with particular interest. The antibiotic is still effective against many pathogens that are resistant to other commonly used antibiotics. We have found that fosfomycin resistance of enterohemorrhagic Escherichia coli (EHEC) O157:H7 is controlled by the bacterial two-component signal transduction system CpxAR. A cpxA mutant lacking its phosphatase activity results in constitutive activation of its cognate response regulator, CpxR, and fosfomycin resistance. We have shown that fosfomycin resistance requires CpxR because deletion of the cpxR gene in the cpxA mutant restores fosfomycin sensitivity. We have also shown that CpxR directly represses the expression of two genes, glpT and uhpT, which encode transporters that cotransport fosfomycin with their native substrates glycerol-3-phosphate and glucose-6-phosphate, and repression of these genes leads to a decrease in fosfomycin transport into the cpxA mutant. However, the cpxA mutant had an impaired growth phenotype when cultured with glycerol-3-phosphate or glucose-6-phosphate as a sole carbon substrate and was outcompeted by the parent strain, even in nutrient-rich medium. This suggests a trade-off between fosfomycin resistance and the biological fitness associated with carbon substrate uptake. We propose a role for the CpxAR system in the reversible control of fosfomycin resistance. This may be a beneficial strategy for bacteria to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin. | 2014 | 24163343 |
| 8301 | 2 | 0.9994 | Metabolic disruption impairs ribosomal protein levels, resulting in enhanced aminoglycoside tolerance. Aminoglycoside antibiotics target ribosomes and are effective against a wide range of bacteria. Here, we demonstrated that knockout strains related to energy metabolism in Escherichia coli showed increased tolerance to aminoglycosides during the mid-exponential growth phase. Contrary to expectations, these mutations did not reduce the proton motive force or aminoglycoside uptake, as there were no significant changes in metabolic indicators or intracellular gentamicin levels between wild-type and mutant strains. Our comprehensive proteomics analysis unveiled a noteworthy upregulation of proteins linked to the tricarboxylic acid (TCA) cycle in the mutant strains during the mid-exponential growth phase, suggesting that these strains compensate for the perturbation in their energy metabolism by increasing TCA cycle activity to maintain their membrane potential and ATP levels. Furthermore, our pathway enrichment analysis shed light on local network clusters displaying downregulation across all mutant strains, which were associated with both large and small ribosomal binding proteins, ribosome biogenesis, translation factor activity, and the biosynthesis of ribonucleoside monophosphates. These findings offer a plausible explanation for the observed tolerance of aminoglycosides in the mutant strains. Altogether, this research provides valuable insights into the mechanisms of aminoglycoside tolerance, paving the way for novel strategies to combat such cells. | 2024 | 39093940 |
| 8942 | 3 | 0.9994 | Indole-Induced Activities of β-Lactamase and Efflux Pump Confer Ampicillin Resistance in Pseudomonas putida KT2440. Indole, which is widespread in microbial communities, has received attention because of its effects on bacterial physiology. Pseudomonas putida and Pseudomonas aeruginosa can acquire ampicillin (Amp) resistance during growth on indole-Amp agar. Transcriptome, mutant, and inhibitor studies have suggested that Amp resistance induced by indole can be attributed to increased gene expression of ttgAB encoding two genes of RND-type multidrug efflux operons and an ampC encoding β-lactamase. Expression, enzyme activities, and mutational analyses indicated that AmpC β-lactamase is important for acquiring Amp resistance of P. putida in the presence of indole. Here, we show, for the first time, that volatile indole increased Amp-resistant cells. Consistent with results of the volatile indole assay, a low concentration of indole in liquid culture promoted growth initially, but led to mutagenesis after indole was depleted, which could not be observed at high indole concentrations. Interestingly, ttgAB and ampC gene expression levels correlate with the concentration of indole, which might explain the low number of Amp-mutated cells in high indole concentrations. The expression levels of genes involved in mutagenesis, namely rpoS, recA, and mutS, were also modulated by indole. Our data indicates that indole reduces Amp-induced heterogeneity by promoting expression of TtgABC or MexAB-OprM efflux pumps and the indole-induced β-lactamase in P. putida and P. aeruginosa. | 2017 | 28352264 |
| 753 | 4 | 0.9993 | A multidrug efflux system is involved in colony growth in Streptomyces lividans. Multidrug resistance (MDR) genes are abundant in Streptomyces genomes, and yet these bacteria are generally drug sensitive under routine laboratory conditions, indicating low or no expression of these genes. Drug-resistant mutations have been isolated that lie in regulatory genes adjacent to the MDR genes, suggesting that resistance arises by derepression. This study identified a divergently oriented pair consisting of a TetR-family regulator (ebrS) and a major facilitator-family MDR pump (ebrC) gene in Streptomyces lividans, which is widely conserved in Streptomyces species. EbrS represses transcription of ebrC as well as its own transcription. Deletion of ebrS causes overexpression of ebrC, resulting in elevated resistance to many drugs. The ebrS and ebrC promoters were used in a reporter system to test inducibility by various chemicals. Among the 15 compounds (including five EbrC target drugs) tested, none induced ebrC transcription. On the other hand, the ebrS promoter was induced by rifampicin and high concentrations of calcium and magnesium. Deletion of ebrS-ebrC did not change rifampicin sensitivity, indicating that the EbrC pump is not involved in rifampicin efflux. Moreover, deletion of ebrC caused retardation of colony growth on selected media, and the defect could be suppressed by supplementation with high concentrations of Ca(2+), Mg(2+), Na(+) or K(+). Based on these results, it is proposed that the primary biological role of most MDR systems in Streptomyces species is not removal of extrinsic drugs, but rather export of specific toxic compounds endogenously synthesized during growth. | 2007 | 17379703 |
| 667 | 5 | 0.9993 | Increased intracellular H(2)S levels enhance iron uptake in Escherichia coli. We investigated the impact of intracellular hydrogen sulfide (H(2)S) hyperaccumulation on the transcriptome of Escherichia coli. The wild-type (WT) strain overexpressing mstA, encoding 3-mercaptopyruvate sulfur transferase, produced significantly higher H(2)S levels than the control WT strain. The mstA-overexpressing strain exhibited increased resistance to antibiotics, supporting the prior hypothesis that intracellular H(2)S contributes to oxidative stress responses and antibiotic resistance. RNA-seq analysis revealed that over 1,000 genes were significantly upregulated or downregulated upon mstA overexpression. The upregulated genes encompassed those associated with iron uptake, including siderophore synthesis and iron import transporters. The mstA-overexpressing strain showed increased levels of intracellular iron content, indicating that H(2)S hyperaccumulation affects iron availability within cells. We found that the H(2)S-/supersulfide-responsive transcription factor YgaV is required for the upregulated expression of iron uptake genes in the mstA-overexpression conditions. These findings indicate that the expression of iron uptake genes is regulated by intracellular H(2)S, which is crucial for oxidative stress responses and antibiotic resistance in E. coli. IMPORTANCE: H(2)S is recognized as a second messenger in bacteria, playing a vital role in diverse intracellular and extracellular activities, including oxidative stress responses and antibiotic resistance. Both H(2)S and iron serve as essential signaling molecules for gut bacteria. However, the intricate intracellular coordination between them, governing bacterial physiology, remains poorly understood. This study unveils a close relationship between intracellular H(2)S accumulation and iron uptake activity, a relationship critical for antibiotic resistance. We present additional evidence expanding the role of intracellular H(2)S synthesis in bacterial physiology. | 2024 | 39324809 |
| 669 | 6 | 0.9993 | Manganese Efflux Achieved by MetA and MetB Affects Oxidative Stress Resistance and Iron Homeostasis in Riemerella anatipestifer. In bacteria, manganese homeostasis is controlled by import, regulation, and efflux. Here, we identified 2 Mn exporters, MetA and MetB (manganese efflux transporters A and B), in Riemerella anatipestifer CH-1, encoding a putative cation diffusion facilitator (CDF) protein and putative resistance-nodulation-division (RND) efflux pump, respectively. Compared with the wild type (WT), ΔmetA, ΔmetB, and ΔmetAΔmetB exhibited sensitivity to manganese, since they accumulated more intracellular Mn(2+) than the WT under excess manganese conditions, while the amount of iron in the mutants was decreased. Moreover, ΔmetA, ΔmetB, and ΔmetAΔmetB were more sensitive to the oxidant NaOCl than the WT. Further study showed that supplementation with iron sources could alleviate manganese toxicity and that excess manganese inhibited bacterial cell division. RNA-Seq showed that manganese stress resulted in the perturbation of iron metabolism genes, further demonstrating that manganese efflux is critical for iron homeostasis. metA transcription was upregulated under excess manganese but was not activated by MetR, a DtxR family protein, although MetR was also involved in manganese detoxification, while metB transcription was downregulated under iron depletion conditions and in fur mutants. Finally, homologues of MetA and MetB were found to be mainly distributed in members of Flavobacteriaceae. Specifically, MetB represents a novel manganese exporter in Gram-negative bacteria. IMPORTANCE Manganese is required for the function of many proteins in bacteria, but in excess, manganese can mediate toxicity. Therefore, the intracellular levels of manganese must be tightly controlled. Manganese efflux transporters have been characterized in some other bacteria; however, their homologues could not be found in the genome of Riemerella anatipestifer through sequence comparison. This indicated that other types of manganese efflux transporters likely exist. In this study, we characterized 2 transporters, MetA and MetB, that mediate manganese efflux in R. anatipestifer in response to manganese overload. MetA encodes a putative cation diffusion facilitator (CDF) protein, which has been characterized as a manganese transporter in other bacteria, while this is the first observation of a putative resistance-nodulation-division (RND) transporter contributing to manganese export in Gram-negative bacteria. In addition, the mechanism of manganese toxicity was studied by observing morphological changes and by transcriptome sequencing. Taken together, these results are important for expanding our understanding of manganese transporters and revealing the mechanism of manganese toxicity. | 2023 | 36815770 |
| 8297 | 7 | 0.9993 | Novel RpoS-Dependent Mechanisms Strengthen the Envelope Permeability Barrier during Stationary Phase. Gram-negative bacteria have effective methods of excluding toxic compounds, including a largely impermeable outer membrane (OM) and a range of efflux pumps. Furthermore, when cells become nutrient limited, RpoS enacts a global expression change providing cross-protection against many stresses. Here, we utilized sensitivity to an anionic detergent (sodium dodecyl sulfate [SDS]) to probe changes occurring to the cell's permeability barrier during nutrient limitation. Escherichia coli is resistant to SDS whether cells are actively growing, carbon limited, or nitrogen limited. In actively growing cells, this resistance depends on the AcrAB-TolC efflux pump; however, this pump is not necessary for protection under either carbon-limiting or nitrogen-limiting conditions, suggesting an alternative mechanism(s) of SDS resistance. In carbon-limited cells, RpoS-dependent pathways lessen the permeability of the OM, preventing the necessity for efflux. In nitrogen-limited but not carbon-limited cells, the loss of rpoS can be completely compensated for by the AcrAB-TolC efflux pump. We suggest that this difference simply reflects the fact that nitrogen-limited cells have access to a metabolizable energy (carbon) source that can efficiently power the efflux pump. Using a transposon mutant pool sequencing (Tn-Seq) approach, we identified three genes, sanA, dacA, and yhdP, that are necessary for RpoS-dependent SDS resistance in carbon-limited stationary phase. Using genetic analysis, we determined that these genes are involved in two different envelope-strengthening pathways. These genes have not previously been implicated in stationary-phase stress responses. A third novel RpoS-dependent pathway appears to strengthen the cell's permeability barrier in nitrogen-limited cells. Thus, though cells remain phenotypically SDS resistant, SDS resistance mechanisms differ significantly between growth states. IMPORTANCE: Gram-negative bacteria are intrinsically resistant to detergents and many antibiotics due to synergistic activities of a strong outer membrane (OM) permeability barrier and efflux pumps that capture and expel toxic molecules eluding the barrier. When the bacteria are depleted of an essential nutrient, a program of gene expression providing cross-protection against many stresses is induced. Whether this program alters the OM to further strengthen the barrier is unknown. Here, we identify novel pathways dependent on the master regulator of stationary phase that further strengthen the OM permeability barrier during nutrient limitation, circumventing the need for efflux pumps. Decreased permeability of nutrient-limited cells to toxic compounds has important implications for designing new antibiotics capable of targeting Gram-negative bacteria that may be in a growth-limited state. | 2017 | 27821607 |
| 769 | 8 | 0.9993 | Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance. In Gram-negative bacteria, multidrug efflux pumps are responsible for the extrusion of chemicals that are deleterious for growth. Some of these efflux pumps are induced by endogenously produced effectors, while abiotic or biotic signals induce the expression of other efflux pumps. In Pseudomonas putida, the TtgABC efflux pump is the main antibiotic extrusion system that respond to exogenous antibiotics through the modulation of the expression of this operon mediated by TtgR. The plasmid-encoded TtgGHI efflux pump in P. putida plays a minor role in antibiotic resistance in the parental strain; however, its role is critical in isogenic backgrounds deficient in TtgABC. Expression of ttgGHI is repressed by the TtgV regulator that recognizes indole as an effector, although P. putida does not produce indole itself. Because indole is not produced by Pseudomonas, the indole-dependent antibiotic resistance seems to be part of an antibiotic resistance programme at the community level. Pseudomonas putida recognizes indole added to the medium or produced by Escherichia coli in mixed microbial communities. Transcriptomic analyses revealed that the indole-specific response involves activation of 43 genes and repression of 23 genes. Indole enhances not only the expression of the TtgGHI pump but also a set of genes involved in iron homeostasis, as well as genes for amino acid catabolism. In a ttgABC-deficient P. putida, background ampicillin and other bactericidal compounds lead to cell death. Co-culture of E. coli and P. putida ΔttgABC allowed growth of the P. putida mutant in the presence of ampicillin because of induction of the indole-dependent efflux pump. | 2014 | 24373097 |
| 8298 | 9 | 0.9993 | Cellular Management of Zinc in Group B Streptococcus Supports Bacterial Resistance against Metal Intoxication and Promotes Disseminated Infection. Zinc is an essential trace element for normal bacterial physiology but, divergently, can intoxicate bacteria at high concentrations. Here, we define the molecular systems for Zn detoxification in Streptococcus agalactiae, also known as group B streptococcus, and examine the effects of resistance to Zn stress on virulence. We compared the growth of wild-type bacteria and mutants deleted for the Zn exporter, czcD, and the response regulator, sczA, using Zn-stress conditions in vitro Macrophage antibiotic protection assays and a mouse model of disseminated infection were used to assess virulence. Global bacterial transcriptional responses to Zn stress were defined by RNA sequencing and quantitative reverse transcription-PCR. czcD and sczA enabled S. agalactiae to survive Zn stress, with the putative CzcD efflux system activated by SczA. Additional genes activated in response to Zn stress encompassed divalent cation transporters that contribute to regulation of Mn and Fe homeostasis. In vivo, the czcD-sczA Zn management axis supported virulence in the blood, heart, liver, and bladder. Additionally, several genes not previously linked to Zn stress in any bacterium, including, most notably, arcA for arginine deamination, also mediated resistance to Zn stress, representing a novel molecular mechanism of bacterial resistance to metal intoxication. Taken together, these findings show that S. agalactiae responds to Zn stress by sczA regulation of czcD, with additional novel mechanisms of resistance supported by arcA, encoding arginine deaminase. Cellular management of Zn stress in S. agalactiae supports virulence by facilitating bacterial survival in the host during systemic infection.IMPORTANCEStreptococcus agalactiae, also known as group B streptococcus, is an opportunistic pathogen that causes various diseases in humans and animals. This bacterium has genetic systems that enable zinc detoxification in environments of metal stress, but these systems remain largely undefined. Using a combination of genomic, genetic, and cellular assays, we show that this pathogen controls Zn export through CzcD to manage Zn stress and utilizes a system of arginine deamination never previously linked to metal stress responses in bacteria to survive metal intoxication. We show that these systems are crucial for survival of S. agalactiaein vitro during Zn stress and also enhance virulence during systemic infection in mice. These discoveries establish new molecular mechanisms of resistance to metal intoxication in bacteria; we suggest these mechanisms operate in other bacteria as a way to sustain microbial survival under conditions of metal stress, including in host environments. | 2021 | 34011683 |
| 597 | 10 | 0.9993 | Pyruvate-associated acid resistance in bacteria. Glucose confers acid resistance on exponentially growing bacteria by repressing formation of the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and consequently activating acid resistance genes. Therefore, in a glucose-rich growth environment, bacteria are capable of resisting acidic stresses due to low levels of cAMP-CRP. Here we reveal a second mechanism for glucose-conferred acid resistance. We show that glucose induces acid resistance in exponentially growing bacteria through pyruvate, the glycolysis product. Pyruvate and/or the downstream metabolites induce expression of the small noncoding RNA (sncRNA) Spot42, and the sncRNA, in turn, activates expression of the master regulator of acid resistance, RpoS. In contrast to glucose, pyruvate has little effect on levels of the cAMP-CRP complex and does not require the complex for its effects on acid resistance. Another important difference between glucose and pyruvate is that pyruvate can be produced by bacteria. This means that bacteria have the potential to protect themselves from acidic stresses by controlling glucose-derived generation of pyruvate, pyruvate-acetate efflux, or reversion from acetate to pyruvate. We tested this possibility by shutting down pyruvate-acetate efflux and found that the resulting accumulation of pyruvate elevated acid resistance. Many sugars can be broken into glucose, and the subsequent glycolysis generates pyruvate. Therefore, pyruvate-associated acid resistance is not confined to glucose-grown bacteria but is functional in bacteria grown on various sugars. | 2014 | 24795365 |
| 8308 | 11 | 0.9993 | PhoPQ Regulates Quinolone and Cephalosporin Resistance Formation in Salmonella Enteritidis at the Transcriptional Level. The two-component system (TCS) PhoPQ has been demonstrated to be crucial for the formation of resistance to quinolones and cephalosporins in Salmonella Enteritidis (S. Enteritidis). However, the mechanism underlying PhoPQ-mediated antibiotic resistance formation remains poorly understood. Here, it was shown that PhoP transcriptionally regulated an assortment of genes associated with envelope homeostasis, the osmotic stress response, and the redox balance to confer resistance to quinolones and cephalosporins in S. Enteritidis. Specifically, cells lacking the PhoP regulator, under nalidixic acid and ceftazidime stress, bore a severely compromised membrane on the aspects of integrity, fluidity, and permeability, with deficiency to withstand osmolarity stress, an increased accumulation of intracellular reactive oxygen species, and dysregulated redox homeostasis, which are unfavorable for bacterial survival. The phosphorylated PhoP elicited transcriptional alterations of resistance-associated genes, including the outer membrane porin ompF and the aconitate hydratase acnA, by directly binding to their promoters, leading to a limited influx of antibiotics and a well-maintained intracellular metabolism. Importantly, it was demonstrated that the cavity of the PhoQ sensor domain bound to and sensed quinolones/cephalosporins via the crucial surrounding residues, as their mutations abrogated the binding and PhoQ autophosphorylation. This recognition mode promoted signal transduction that activated PhoP, thereby modulating the transcription of downstream genes to accommodate cells to antibiotic stress. These findings have revealed how bacteria employ a specific TCS to sense antibiotics and combat them, suggesting PhoPQ as a potential drug target with which to surmount S. Enteritidis. IMPORTANCE The prevalence of quinolone and cephalosporin-resistant S. Enteritidis is of increasing clinical concern. Thus, it is imperative to identify novel therapeutic targets with which to treat S. Enteritidis-associated infections. The PhoPQ two-component system is conserved across a variety of Gram-negative pathogens, by which bacteria adapt to a range of environmental stimuli. Our earlier work has demonstrated the importance of PhoPQ in the resistance formation in S. Enteritidis to quinolones and cephalosporins. In the current work, we identified a global profile of genes that are regulated by PhoP under antibiotic stresses, with a focus on how PhoP regulated downstream genes, either positively or negatively. Additionally, we established that PhoQ sensed quinolones and cephalosporins in a manner of directly binding to them. These identified genes and pathways that are mediated by PhoPQ represent promising targets for the development of a drug potentiator with which to neutralize antibiotic resistance in S. Enteritidis. | 2023 | 37184399 |
| 761 | 12 | 0.9993 | Copper-responsive gene regulation in bacteria. Copper is an essential cofactor of various enzymes, but free copper is highly toxic to living cells. To maintain cellular metabolism at different ambient copper concentrations, bacteria have evolved specific copper homeostasis systems that mostly act as defence mechanisms. As well as under free-living conditions, copper defence is critical for virulence in pathogenic bacteria. Most bacteria synthesize P-type copper export ATPases as principal defence determinants when copper concentrations exceed favourable levels. In addition, many bacteria utilize resistance-nodulation-cell division (RND)-type efflux systems and multicopper oxidases to cope with excess copper. This review summarizes our current knowledge on copper-sensing transcriptional regulators, which we assign to nine different classes. Widespread one-component regulators are CueR, CopY and CsoR, which were initially identified in Escherichia coli, Enterococcus hirae and Mycobacterium tuberculosis, respectively. CueR activates homeostasis gene expression at elevated copper concentrations, while CopY and CsoR repress their target genes under copper-limiting conditions. Besides these one-component systems, which sense the cytoplasmic copper status, many Gram-negative bacteria utilize two-component systems, which sense periplasmic copper concentrations. In addition to these well-studied transcriptional factors, copper control mechanisms acting at the post-transcriptional and the post-translational levels will be discussed. | 2012 | 22918892 |
| 8813 | 13 | 0.9992 | Enhancing Escherichia coli abiotic stress resistance through ornithine lipid formation. Escherichia coli is a common host for biotechnology and synthetic biology applications. During growth and fermentation, the microbes are often exposed to stress conditions, such as variations in pH or solvent concentrations. Bacterial membranes play a key role in response to abiotic stresses. Ornithine lipids (OLs) are a group of membrane lipids whose presence and synthesis have been related to stress resistance in bacteria. We wondered if this stress resistance could be transferred to bacteria not encoding the capacity to form OLs in their genome, such as E. coli. In this study, we engineered different E. coli strains to produce unmodified OLs and hydroxylated OLs by expressing the synthetic operon olsFC. Our results showed that OL formation improved pH resistance and increased biomass under phosphate limitation. Transcriptome analysis revealed that OL-forming strains differentially expressed stress- and membrane-related genes. OL-producing strains also showed better growth in the presence of the ionophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP), suggesting reduced proton leakiness in OL-producing strains. Furthermore, our engineered strains showed improved heterologous violacein production at phosphate limitation and also at low pH. Overall, this study demonstrates the potential of engineering the E. coli membrane composition for constructing robust hosts with an increased abiotic stress resistance for biotechnology and synthetic biology applications. KEY POINTS: • Ornithine lipid production in E. coli increases biomass yield under phosphate limitation. • Engineered strains show an enhanced production phenotype under low pH stress. • Transcriptome analysis and CCCP experiments revealed reduced proton leakage. | 2024 | 38587638 |
| 8967 | 14 | 0.9992 | Distinct transcriptomic response of S. coelicolor to ciprofloxacin in a nutrient-rich environment. With the rising threat of anti-microbial resistance (AMR), there is an urgent need to enhance efficacy of existing antibiotics. Understanding the myriad mechanisms through which bacteria evade these drugs would be of immense value to designing novel strategies against them. Streptomyces coelicolor A3(2) M145 belongs to the actinomyctes species that are responsible for more than two-thirds of antibiotics. This group of bacteria therefore encodes for various mechanisms that can resist both endogenous and non-endogenous antibiotics. In an earlier study, we had studied the transcriptomic response of these bacteria to ciprofloxacin, when cultured in a minimal media. In this work, we investigate why the minimum inhibitory concentration of the drug increases by fourfold when the bacteria are grown in a nutrient-rich media. Through transcriptomic, biochemical, and microscopic studies, we show that S. coelicolor responds to ciprofloxacin in a concentration-dependent manner. While, sub-inhibitory concentration of the drug primarily causes oxidative stress, the inhibitory concentration of ciprofloxacin evokes a more severe genome-wide response in the cell, which ranges from the familiar upregulation of the SOS response and DNA repair pathways to the widespread alterations in the central metabolism pathway to accommodate the increased needs of nucleotides and other precursors. Further, the upregulation of peptidoglycan synthesis genes, along with microscopy images, suggest alterations in the cell morphology to increase fitness of the bacteria during the antibiotic stress. The data also points to the enhanced efflux activity in cells cultured in rich media that contributes significantly towards reducing intracellular drug concentration and thus promotes survival. | 2018 | 30327831 |
| 798 | 15 | 0.9992 | Involvement of the SCO3366 efflux pump from S. coelicolor in rifampicin resistance and its regulation by a TetR regulator. Overexpression of efflux pumps represents a key mechanism of resistance in bacteria. Soil bacteria such as Streptomyces harbour a vast array of efflux genes that are transcriptionally silent under laboratory conditions. However, dissemination of many of these genes into clinical pathogens via horizontal gene transfer results in conferring resistance to multiple drugs. In this study, we have identified the role of a MFS transporter, SCO3366 from Streptomyces coelicolor, in governing multidrug resistance. Overexpression and knockout studies revealed that SCO3366 provides resistance to several structurally unrelated drugs including ciprofloxacin, chloramphenicol, rifampicin and EtBr, with rifampicin being the major substrate. Beyond multidrug resistance, SCO3366 was efficient in providing tolerance towards oxidative stress. A combinatorial mechanism of increased oxidative stress tolerance decreased intracellular drug levels and decreased permeability act synergistically to provide resistance towards rifampicin. Shedding light on the regulation of SCO3366, we find the pump to be directly regulated by the TetR regulator SCO3367 in a negative manner and the repression was found to be relieved in presence of different compounds recognized as substrates of SCO3366. KEY POINTS: • First reported rifampicin efflux pump in Streptomyces coelicolor • Resistance to rifampicin is the result of a synergistic action of increased efflux with increased oxidative stress tolerance and decreased permeability, which can potentially arise in clinically relevant bacteria • SCO3366-SCO3367 to be a novel system that operates to protect the bacteria under varied environmental stress conditions. | 2022 | 35194656 |
| 8340 | 16 | 0.9992 | Iron-Induced Respiration Promotes Antibiotic Resistance in Actinomycete Bacteria. The bacterial response to antibiotics eliciting resistance is one of the key challenges in global health. Despite many attempts to understand intrinsic antibiotic resistance, many of the underlying mechanisms still remain elusive. In this study, we found that iron supplementation promoted antibiotic resistance in Streptomyces coelicolor. Iron-promoted resistance occurred specifically against bactericidal antibiotics, irrespective of the primary target of antibiotics. Transcriptome profiling revealed that some genes in the central metabolism and respiration were upregulated under iron-replete conditions. Iron supported the growth of S. coelicolor even under anaerobic conditions. In the presence of potassium cyanide, which reduces aerobic respiration of cells, iron still promoted respiration and antibiotic resistance. This suggests the involvement of a KCN-insensitive type of respiration in the iron effect. This phenomenon was also observed in another actinobacterium, Mycobacterium smegmatis. Taken together, these findings provide insight into a bacterial resistance strategy that mitigates the activity of bactericidal antibiotics whose efficacy accompanies oxidative damage by switching the respiration mode. IMPORTANCE A widely investigated mode of antibiotic resistance occurs via mutations and/or by horizontal acquisition of resistance genes. In addition to this acquired resistance, most bacteria exhibit intrinsic resistance as an inducible and adaptive response to different classes of antibiotics. Increasing attention has been paid recently to intrinsic resistance mechanisms because this may provide novel therapeutic targets that help rejuvenate the efficacy of the current antibiotic regimen. In this study, we demonstrate that iron promotes the intrinsic resistance of aerobic actinomycetes Streptomyces coelicolor and Mycobacterium smegmatis against bactericidal antibiotics. A surprising role of iron to increase respiration, especially in a mode of using less oxygen, appears a fitting strategy to cope with bactericidal antibiotics known to kill bacteria through oxidative damage. This provides new insights into developing antimicrobial treatments based on the availability of iron and oxygen. | 2022 | 35357210 |
| 9037 | 17 | 0.9992 | Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance. BACKGROUND: Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear. RESULTS: To investigate the contribution of efflux pumps to intrinsic drug resistance of B. cenocepacia J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes BCAS0591-BCAS0593, BCAL1674-BCAL1676, and BCAL2822-BCAL2820. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of rnd-3 also included BCAL1672, encoding a putative TetR regulator. The B. cenocepacia rnd-3 and rnd-4 mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the rnd-3 and rnd-4 mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the rnd-1 operon had no detectable phenotypes under the conditions assayed. CONCLUSION: Two of the three inactivated RND efflux pumps in B. cenocepacia J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in B. cenocepacia is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic bacterium. | 2009 | 19761586 |
| 8305 | 18 | 0.9992 | Light Modulates Metabolic Pathways and Other Novel Physiological Traits in the Human Pathogen Acinetobacter baumannii. Light sensing in chemotrophic bacteria has been relatively recently ascertained. In the human pathogen Acinetobacter baumannii, light modulates motility, biofilm formation, and virulence through the blue-light-sensing-using flavin (BLUF) photoreceptor BlsA. In addition, light can induce a reduction in susceptibility to certain antibiotics, such as minocycline and tigecycline, in a photoreceptor-independent manner. In this work, we identified new traits whose expression levels are modulated by light in this pathogen, which comprise not only important determinants related to pathogenicity and antibiotic resistance but also metabolic pathways, which represents a novel concept for chemotrophic bacteria. Indeed, the phenylacetic acid catabolic pathway and trehalose biosynthesis were modulated by light, responses that completely depend on BlsA. We further show that tolerance to some antibiotics and modulation of antioxidant enzyme levels are also influenced by light, likely contributing to bacterial persistence in adverse environments. Also, we present evidence indicating that surfactant production is modulated by light. Finally, the expression of whole pathways and gene clusters, such as genes involved in lipid metabolism and genes encoding components of the type VI secretion system, as well as efflux pumps related to antibiotic resistance, was differentially induced by light. Overall, our results indicate that light modulates global features of the A. baumannii lifestyle.IMPORTANCE The discovery that nonphototrophic bacteria respond to light constituted a novel concept in microbiology. In this context, we demonstrated that light could modulate aspects related to bacterial virulence, persistence, and resistance to antibiotics in the human pathogen Acinetobacter baumannii In this work, we present the novel finding that light directly regulates metabolism in this chemotrophic bacterium. Insights into the mechanism show the involvement of the photoreceptor BlsA. In addition, tolerance to antibiotics and catalase levels are also influenced by light, likely contributing to bacterial persistence in adverse environments, as is the expression of the type VI secretion system and efflux pumps. Overall, a profound influence of light on the lifestyle of A. baumannii is suggested to occur. | 2017 | 28289081 |
| 776 | 19 | 0.9992 | Exploring functional interplay amongst Escherichia coli efflux pumps. Bacterial efflux pumps exhibit functional interplay that can translate to additive or multiplicative effects on resistance to antimicrobial compounds. In diderm bacteria, two different efflux pump structural types - single-component inner membrane efflux pumps and cell envelope-spanning multicomponent systems - cooperatively export antimicrobials with cytoplasmic targets from the cell. Harnessing our recently developed efflux platform, which is built upon an extensively efflux-deficient strain of Escherichia coli, here we explore interplay amongst a panel of diverse E. coli efflux pumps. Specifically, we assessed the effect of simultaneously expressing two efflux pump-encoding genes on drug resistance, including single-component inner membrane efflux pumps (MdfA, MdtK and EmrE), tripartite complexes (AcrAB, AcrAD, MdtEF and AcrEF), and the acquired TetA(C) tetracycline resistance pump. Overall, the expression of two efflux pump-encoding genes from the same structural type did not enhance resistance levels regardless of the antimicrobial compound or efflux pump under investigation. In contrast, a combination of the tripartite efflux systems with single-component pumps sharing common substrates provided multiplicative increases to antimicrobial resistance levels. In some instances, resistance was increased beyond the product of resistance provided by the two pumps individually. In summary, the developed efflux platform enables the isolation of efflux pump function, facilitating the identification of interactions between efflux pumps. | 2022 | 36318669 |