# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7540 | 0 | 1.0000 | Extended chloramination significantly enriched intracellular antibiotic resistance genes in drinking water treatment plants. Chloramination and chlorination are both strong barriers that prevent the transmission of potential pathogens to humans through drinking water. However, the comparative effects of chloramination and chlorination on the occurrence of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) remain unknown. Herein, the antibiotic resistome in water before and after chloramination or chlorination was analyzed through metagenomic sequencing and then verified through quantitative real-time polymerase chain reaction (qPCR). After the treatment of 90 min, chloramination led to higher enrichment of the total relative abundance of intracellular ARGs (iARGs) in water than chlorination, whereas chlorination facilitated the release of more extracellular ARGs (eARGs) than chloramination. According to redundancy and Pearson's analyses, the total concentration of the observed iARGs in the finished water exhibited a strong positive correlation with ammonium nitrogen (NH(4)(+)-N) concentration, presenting a linear upward trend with an increase in the NH(4)(+)-N concentration. This indicated that NH(4)(+)-N is a crucial driving factor for iARG accumulation during chloramination. iARG enrichment ceases if the duration of chloramination is shortened to 40 min, suggesting that shortening the duration would be a better strategy for controlling iARG enrichment in drinking water. These findings emphasized the potential risk of antibiotic resistance after extended chloramination, shedding light on the control of transmission of antibiotic-resistant bacteria through water by optimizing disinfection procedures in DWTPs. | 2023 | 36739658 |
| 7621 | 1 | 0.9997 | Pre-chlorination in source water endows ARB with resistance to chlorine disinfection in drinking water treatment. Chlorine disinfection is widely used to ensure biosafety of drinking water. However, antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are often detected in treated drinking water. The impact of chlorine disinfection on the abundance of ARGs in drinking water is currently contradictory. Some studies suggested that chlorine disinfection could reduce the abundance of ARGs, while others had found that chlorine disinfection increased the abundance of ARGs. Pre-chlorination is widely applied in raw water to kill the algae cells in source water Pump Station. Different distances between the source water Pump Station and the drinking water treatment plants (DWTPs) resulted in different degrees of residual chlorine decay in the incoming raw water. This study found that the abundance of ARGs in drinking water would be increased during chlorine disinfection when the chlorine concentration in raw water was higher (> 0.2 mg/L). On the contrary, chlorine disinfection would decrease the abundance of ARGs in drinking water when the chlorine concentration in raw water was lower (< 0.09 mg/L). Pre-chlorination in source water with sub-lethal concentration could allow ARB to adapt to the chlorine environment in advance, endowing ARB with chlorine resistance, which resulted in ineffective removal of ARB and increased ARGs abundance during subsequent chlorine disinfection. High abundance of chlorine and antibiotics co-resistance bacteria in raw water was the main reason for the increase in ARGs abundance in chlorine treated drinking water. It should be noticed that, pre-chlorination treatment in source water would increase the difficulty of removing ARGs in subsequent chlorine disinfection process. | 2025 | 40398032 |
| 7574 | 2 | 0.9997 | Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. The emergence and spread of antibiotic resistance has posed a major threat to both human health and environmental ecosystem. Although the disinfection has been proved to be efficient to control the occurrence of pathogens, little effort is dedicated to revealing potential impacts of disinfection on transmission of antibiotic resistance genes (ARGs), particularly for free-living ARGs in final disinfected effluent of urban wastewater treatment plants (UWWTP). Here, we investigated the effects of chlorine disinfection on the occurrence and concentration of both extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in a full-scale UWWTP over a year. We reported that the concentrations of both eARGs and iARGs would be increased by the disinfection with chlorine dioxide (ClO(2)). Specifically, chlorination preferentially increased the abundances of eARGs against macrolide (ermB), tetracycline (tetA, tetB and tetC), sulfonamide (sul1, sul2 and sul3), β-lactam (ampC), aminoglycosides (aph(2')-Id), rifampicin (katG) and vancomycin (vanA) up to 3.8 folds. Similarly, the abundances of iARGs were also increased up to 7.8 folds after chlorination. In terms of correlation analyses, the abundance of Escherichia coli before chlorination showed a strong positive correlation with the total eARG concentration, while lower temperature and higher ammonium concentration were assumed to be associated with the concentration of iARGs. This study suggests the chlorine disinfection could increase the abundances of both iARGs and eARGs, thereby posing risk of the dissemination of antibiotic resistance in environments. | 2018 | 29501757 |
| 7547 | 3 | 0.9997 | Mechanism concerning the occurrence and removal of antibiotic resistance genes in composting product with ozone post-treatment. The soil application of composting product will probably cause the spread of antibiotic resistance genes (ARGs) to environment, thereby it is crucial to remove ARGs in composting product. Ozone was adopted for the first time as a post-treatment method to remove the ARGs in composting product in this study. Ozone treatment significantly removed the total ARGs and mobile genetic elements (MGEs) once ozonation process finished. After 10-day storage stage, although the amount of total intracellular ARGs and MGEs increased, the total extracellular ARGs and MGEs decreased in the ozone-treated compost product. Correlation analysis revealed that the reduction in intracellular 16S rRNA contributed to intracellular tetQ and tetW removal, while the variations of other ARGs after ozonation related to MGEs abundance. Network analysis suggested that the reduction of potential host bacteria, as well as the decline in NH(4)(+)-N and TOC after the ozonation, contributed to the intracellular ARGs removal. | 2021 | 33257169 |
| 7576 | 4 | 0.9997 | Spatial behavior and source tracking of extracellular antibiotic resistance genes in a chlorinated drinking water distribution system. Antibiotic resistance genes (ARGs) are receiving increasing concerns due to the antibiotic resistance crisis. Nevertheless, little is known about the spatial behavior and sources of extracellular ARGs (eARGs) in the chlorinated drinking water distribution systems (DWDSs). Here, tap water was continuously collected to reveal the occurrence of both eARGs and intracellular ARGs (iARGs) along a chlorinated DWDS. Afterward, the correlation between eARGs, eDNA-releasing communities, and communities of planktonic bacteria was further analyzed. The eARG concentration decreased significantly, whereas the proportion of vanA and bla(NDM-1) increased. Further, the diversity of the eDNA-releasing community increased markedly with increasing distance from the drinking water treatment plant (DWTP). Moreover, the dominant eDNA-releasing bacteria shifted from Acinetobacter, Pseudomonas, and Methylobacterium-Methylorubrum in finished water from the DWTP to Bacteroides, Faecalibacterium, Staphylococcus, and Parabacteroides in the DWDS. In terms of eARG source, thirty genera were significantly correlated with seven types of eARGs that resulted from the lysis of dead planktonic bacteria and detached biofilms. Conversely, the iARGs concentration increased, whereas the biodiversity of the planktonic bacteria community decreased in the sampling points along the DWDSs. Our findings provide critical insights into the spatial behavior and sources of eARGs, highlighting the health risks associated with ARGs in DWDSs. | 2022 | 34902725 |
| 7556 | 5 | 0.9997 | The fate and behavior mechanism of antibiotic resistance genes and microbial communities in anaerobic reactors treating oxytetracycline manufacturing wastewater. In this study, two parallel-operated expanded granular sludge bed (EGSB) reactors, one used to treat oxytetracycline (OTC) manufacturing wastewater with gradual increase of OTC concentration as experimental reactor and the other fed with the same wastewater without OTC as control reactor, were operated to investigate the behavior of antibiotics resistance genes (ARGs) and mobile genetic elements (MGEs) and their possible relationships with bacterial community among influent, sludge and effluent environments. Though the average absolute abundance of ARGs slightly decreased (0.26 - log), the ARGs' relative abundance normalized to 16S-rRNA gene copy numbers showed a significant upward trend in effluent (2 multiples - increase) and the absolute and relative abundances both extremely increased in anaerobic sludge, indicating that anaerobic treatment process cannot reduce ARGs efficiently, inversely can increase the risk of ARGs through the proliferation of antibiotics resistance bacteria (ARB) under the suppression of OTC. MGEs, bacterial communities and OTC concentration mainly impacted the ARGs profiles, which contributed 88.4% to the variation of ARGs. The differences and correlations of hosts in influent, effluent and sludge were further confirmed by network analysis. Overall, this study enhanced the understanding of the prevalence and transfer of ARGs in OTC production effluents during anaerobic treatment. | 2022 | 34740157 |
| 8007 | 6 | 0.9997 | Distinguishing removal and regrowth potential of antibiotic resistance genes and antibiotic resistant bacteria on microplastics and in leachate after chlorination or Fenton oxidation. The prevalence of antibiotic resistance, as well as microplastics (MPs) as vectors for antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has attracting growing attention. However, the fate of ARB/ARGs on MPs treated by chlorination and Fenton oxidation were poorly understood. Herein, the removal and regrowth of ARGs/ARB on MPs and in MPs-surrounding landfill leachate (an important reservoir of MPs and ARGs) after chlorination and Fenton oxidation were comparatively analyzed. Target ARGs on MPs were reduced obviously less than that in leachate, with the largest percentages reduction of 34.0-46.3% vs. 54.3-77.6% after chlorination and 92.1-97.3% vs. > 99.9% after Fenton oxidation, and similar removal patterns were observed for ARB. Moreover, a considerable regrowth of ARGs/ARB in leachate were found after 48 h of storage at the end of chlorination (5, 10, 20 and 50 mg/L), and a greater regrowth of ARGs and ARB occurred on MPs with up to 17 and 139 fold, respectively. In contrast, Fenton oxidation achieved a reduced regrowth of target ARGs/ARB. These findings indicated that the removal of ARGs/ARB on MPs were more difficult than that in leachate, and ARGs/ARB in leachate and especially on MPs exhibited a considerable potential for rapid regrowth after chlorination. | 2022 | 35158247 |
| 7620 | 7 | 0.9997 | Higher chlorine dosage does not consistently enhance antibiotic resistance mitigation in the Cl(2)-UV process. Health problems arising from antibiotic resistance are a global concern. The Cl(2)-UV disinfection process has shown potential for controlling antibiotic resistance in water; however, the influence of disinfectant dosage on its effectiveness remains insufficiently understood. Can antibiotic resistance be controlled by simply increasing the disinfectant dosage? This study demonstrated that higher disinfectant levels improved antibiotic resistance gene (ARG) removal, with certain ARGs reaching 1.82 log removal under conventional conditions. Nevertheless, higher disinfectant dosages also led to an increase in the relative abundance of multidrug resistance genes (MRGs), aminoglycoside resistance genes (AmRGs), and fosmidomycin resistance genes (FRGs). Correlation analysis of ARGs with mobile genetic elements (MGEs) and ARG-host bacteria indicated that this enrichment was primarily driven by enhanced horizontal gene transfer (HGT). Notably, increases in UV fluence and chlorine dose had distinct impacts on the total relative abundance of ARGs: higher UV fluence reduced total relative abundance, whereas higher chlorine dose increased it. These contrasting trends are likely linked to differences in the dominant HGT pathways under each condition. Greater UV fluence tended to promote conjugative transfer among surviving bacteria, while higher chlorine dosages more effectively facilitated natural transformation. Considering both the absolute and relative abundances of ARGs, along with calculated health-risk indices for each treatment condition, the findings indicated that increasing UV fluence is more effective for controlling ARGs in water. These results provide valuable insights for optimizing the Cl(2)-UV disinfection process to better manage antibiotic resistance in aquatic environments. | 2025 | 40914041 |
| 8083 | 8 | 0.9997 | Alteration of the migration trajectory of antibiotic resistance genes by microplastics in a leachate activated sludge system. The environmental behavior of emerging contaminants of microplastics (MPs), antibiotics and antibiotic resistance genes (ARGs) in the leachate activated sludge system has been monitored and analyzed comprehensively. The results suggested that MPs could effectively alter the migration trajectory of tetracycline resistance genes (tet genes) in the leachate activated sludge system under intermittent and continuous influent conditions. After adding MPs, the total average abundance of tet genes in leachate increased from 0.74 ± 0.07 to 0.78 ± 0.07 (log(10)tet genes/log(10) 16S rRNA) and that in sludge increased from 0.65 ± 0.08 to 0.70 ± 0.06 (log(10)tet genes/log(10) 16S rRNA). Except for tetA, the abundance of tetB, tetO, tetM and tetQ on MPs increased with increasing TC concentration under both aerobic and anaerobic conditions. MPs not only significantly affect the abundance level and migration trajectory of ARGs in the leachate activated sludge system, but also remarkably improve the level of heavy metals in the ambient environment, indirectly promoting the selective effect of antibiotic-resistant bacteria (ARB) and promoting the development of antibiotic resistance (AR). In addition, MPs changed their physicochemical properties and released hazardous substances with aging to force tet genes to migrate from the leachate activated sludge system to the MPs, making AR more difficult to eliminate and persisted in wastewater treatment plants. Meanwhile, microorganisms played a driving role, making MPs serve as a niche for ARGs and ARB colonization. The co-occurrence network analysis indicated the specific distribution pattern of tet genes and microorganisms in different media, and the potential host was speculated. This study improves the understanding of the environmental behavior of emerging contaminants in leachate activated sludge system and lays a theoretical for protecting the ecological environment. | 2023 | 37321316 |
| 7555 | 9 | 0.9997 | Deciphering the factors influencing the discrepant fate of antibiotic resistance genes in sludge and water phases during municipal wastewater treatment. The discrepant fate of antibiotic resistance genes (ARGs) in sludge and water phases was investigated in a municipal wastewater treatment plant, and a lab-scale A(2)O-MBR was operated to provide background value of ARGs. The influencing factors of ARGs including microbial community, co-selection from heavy metals, biomass and horizontal gene transfer were concerned. Results showed that iA(2)O (inversed A(2)O) showed better ARGs reduction, and longer SRT (sludge retention time) increased ARGs relative abundance while reduced the gene copies of ARGs in the effluent, but significantly increased the ARGs in sludge phase. Compared to background value, the most enriched ARG was tetX in water phase, while it was intI1 in sludge phase. There existed higher abundance of multi-resistant bacteria in sludge phase, and microbial community determined the fate of ARGs in both water and sludge phase, while the direct effects from horizontal gene transfer should not be overlooked especially in water phase. | 2018 | 29909361 |
| 7020 | 10 | 0.9996 | Microbiome, resistome and mobilome of chlorine-free drinking water treatment systems. Drinking water treatment plants (DWTPs) are designed to remove physical, chemical, and biological contaminants. However, until recently, the role of DWTPs in minimizing the cycling of antibiotic resistance determinants has got limited attention. In particular, the risk of selecting antibiotic-resistant bacteria (ARB) is largely overlooked in chlorine-free DWTPs where biological processes are applied. Here, we combined high-throughput quantitative PCR and metagenomics to analyze the abundance and dynamics of microbial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) across the treatment trains of two chlorine-free DWTPs involving dune-based and reservoir-based systems. The microbial diversity of the water increased after all biological unit operations, namely rapid and slow sand filtration (SSF), and granular activated carbon filtration. Both DWTPs reduced the concentration of ARGs and MGEs in the water by circa 2.5 log gene copies mL(-1), despite their relative increase in the disinfection sub-units (SSF in dune-based and UV treatment in reservoir-based DWTPs). The total microbial concentration was also reduced (2.5 log units), and none of the DWTPs enriched for bacteria containing genes linked to antibiotic resistance. Our findings highlight the effectiveness of chlorine-free DWTPs in supplying safe drinking water while reducing the concentration of antibiotic resistance determinants. To the best of our knowledge, this is the first study that monitors the presence and dynamics of antibiotic resistance determinants in chlorine-free DWTPs. | 2023 | 36989799 |
| 7024 | 11 | 0.9996 | Fate of antibiotic resistant E. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge. Antibiotic resistant bacteria (ARB) and their genes (ARGs) have become recognised as significant emerging environmental pollutants. ARB and ARGs in sewage sludge can be transmitted back to humans via the food chain when sludge is recycled to agricultural land, making sludge treatment key to control the release of ARB and ARGs to the environment. This study investigated the fate of antibiotic resistant Escherichia coli and a large set of antibiotic resistance genes (ARGs) during full scale anaerobic digestion (AD) of sewage sludge at two U.K. wastewater treatment plants and evaluated the impact of thermal hydrolysis (TH) pre-treatment on their abundance and diversity. Absolute abundance of 13 ARGs and the Class I integron gene intI1 was calculated using single gene quantitative (q) PCR. High through-put qPCR analysis was also used to determine the relative abundance of 370 ARGs and mobile genetic elements (MGEs). Results revealed that TH reduced the absolute abundance of all ARGs tested and intI1 by 10-12,000 fold. After subsequent AD, a rebound effect was seen in many ARGs. The fate of ARGs during AD without pre-treatment was variable. Relative abundance of most ARGs and MGEs decreased or fluctuated, with the exception of macrolide resistance genes, which were enriched at both plants, and tetracyline and glycopeptide resistance genes which were enriched in the plant employing TH. Diversity of ARGs and MGEs decreased in both plants during sludge treatment. Principal coordinates analysis revealed that ARGs are clearly distinguished according to treatment step, whereas MGEs in digested sludge cluster according to site. This study provides a comprehensive within-digestor analysis of the fate of ARGs, MGEs and antibiotic resistant E. coli and highlights the effectiveness of AD, particularly when TH is used as a pre-treatment, at reducing the abundance of most ARGs and MGEs in sludgeand preventing their release into the environment. | 2020 | 33259486 |
| 7619 | 12 | 0.9996 | Removal of antibiotic resistance genes in an algal-based wastewater treatment system employing Galdieria sulphuraria: A comparative study. In this study, we compared removal of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in two wastewater treatment systems fed with the same primary effluent: a conventional wastewater treatment system (consisting of a trickling filter followed by an activated sludge process) versus an algal-based system, employing an extremophilic alga, Galdieria sulphuraria. Our results demonstrated that the algal system can reduce concentrations of erythromycin- and sulfamethoxazole-resistant bacteria in the effluent more effectively than the conventional treatment system. A decreasing trend of total bacteria and ARGs was observed in both the treatment systems. However, the relative ratio of most ARGs (qnrA, qnrB, qnrS, sul1) and intI1 in the surviving bacteria increased in the conventional system; whereas, the algal system reduced more of the relative abundance of qnrA, qnrS, tetW and intⅠ1 in the surviving bacteria. The role of bacteriophages in horizontal gene transfer (HGT) of ARGs in the two systems was indicated by a positive correlation between ARG absolute abundance in bacteriophage and ARG relative abundance in the bacteria. Four of the five detectable genes (qnrS, tetW, sul1 and intI1) were significantly reduced in the algal system in bacteriophage phase which signified a decrease in phage-mediated ARG transfer in the algal system. Results of this study demonstrate the feasibility of the algal-based wastewater treatment system in decreasing ARGs and ARB and in minimizing the spread of antibiotic resistance to the environment. | 2020 | 31810689 |
| 7573 | 13 | 0.9996 | Chlorine and UV combination sequence: Effects on antibiotic resistance control and health risks of ARGs. The effective control of antibiotic resistance in aquatic environments is urgent. The combined chlorine and UV processes (Cl(2)-UV, UV/Cl(2), and UV-Cl(2)) are considered potential control processes for controlling antibiotic resistance. This study compared the effectiveness of these three processes in real water bodies and the potential health risks associated with antibiotic resistance genes (ARGs) after treatments. The removal of various antibiotic-resistant bacteria (ARB) and ARGs by the combined processes was analysed. The UV/Cl(2) process was less effective than the others in inactivating β-lactam-resistant bacteria (BRB) and sulfamethoxazole-resistant bacteria (SRB), which are more challenging to remove, though its performance might improve with increased UV fluence. Nevertheless, the UV/Cl(2) process showed an advantage in removing ARGs. The absolute abundance of aminoglycoside resistance genes (AmRGs), sulfonamide resistance genes (SRGs), macrolide resistance genes (MRGs), and multidrug efflux-associated ARGs detected after the UV/Cl(2) process was relatively low, and this process outperformed the others in removing a greater number of ARGs. Additionally, certain ARGs and bacterial genera were found to be enriched after the combined processes, with lower and more similar abundance levels of ARGs and genera observed after UV/Cl(2) and UV-Cl(2) processes compared to the Cl(2)-UV process. Health risk assessments indicated that the Cl(2)-UV process posed the highest risk, followed by UV/Cl(2) and UV-Cl(2) processes. Overall, the UV/Cl(2) process may offer the most practical advantages for controlling antibiotic resistance. | 2025 | 39708685 |
| 7539 | 14 | 0.9996 | Effect of booster disinfection on the prevalence of microbial antibiotic resistance and bacterial community in a simulated drinking water distribution system. Booster disinfection was often applied to control the microorganism's growth in long-distance water supply systems. The effect of booster disinfection on the changing patterns of antibiotic resistance and bacterial community was investigated by a simulated water distribution system (SWDS). The results showed that the antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) were initially removed after dosing disinfectants (chlorine and chloramine), but then increased with the increasing water age. However, the relative abundance of ARGs significantly increased after booster disinfection both in buck water and biofilm, then decreased along the pipeline. The pipe materials and disinfectant type also affected the antibiotic resistance. Chlorine was more efficient in controlling microbes and ARGs than chloramine. Compared with UPVC and PE pipes, SS pipes had the lowest total bacteria, ARB concentration, and ARB percentage, mainly due to higher disinfectant residuals and a smoother surface. The significant correlation (r(s) = 0.77, p < 0.001) of the 16S rRNA genes was observed between buck water and biofilm, while the correlations of targeted ARGs were found to be weak. Bray-Curtis similarity index indicated that booster disinfection significantly changed the biofilm bacterial community and the disinfectant type also had a marked impact on the bacterial community. At the genus level, the relative abundance of Pseudomonas, Sphingomonas, and Methylobacterium significantly increased after booster disinfection. Mycobacterium increased after chloramination while decreased after chlorination, indicating Mycobacterium might resist chloramine. Pseudomonas, Methylobacterium, and Phreatobacter were found to correlate well with the relative abundance of ARGs. These results highlighted antibiotic resistance shift and bacterial community alteration after booster disinfection, which may be helpful in controlling potential microbial risk in drinking water. | 2024 | 37949160 |
| 7023 | 15 | 0.9996 | Metagenomic absolute quantification of antibiotic resistance genes and virulence factor genes-carrying bacterial genomes in anaerobic digesters. Sewage treatment works have been considered as hotspots for the dissemination of antibiotic resistance genes (ARGs). Anaerobic digestion (AD) has emerged as a promising approach for controlling the spread of ARGs while destroying biomass in sludge. Evaluating the impact of AD on ARG removal relies on the absolute quantification of ARGs. In this study, we quantified the ARG concentrations in both full-scale and lab-scale AD systems using a cellular spike-ins based absolute quantification approach. Results demonstrated that AD effectively removed 68 ± 18 %, 55 ± 12 %, and 57 ± 19 % of total ARGs in semi-continuous AD digesters, with solid retention times of 15, 20, and 25 days, respectively. The removal efficiency of total ARGs increased as the AD process progressed in the batch digesters over 40 days. A significant negative correlation was observed between digestion time and the concentrations of certain ARG types, such as beta-lactam, sulfonamide, and tetracycline. However, certain potential pathogenic antibiotic resistant bacteria (PARB) and multi-resistant high-risk ARGs-carrying populations robustly persisted throughout the AD process, regardless of the operating conditions. This study highlighted the influence of the AD process and its operating parameters on ARG removal, and revealed the broad spectrum and persistence of PARB in AD systems. These findings provided critical insights for the management of microbial hazards. | 2024 | 38359594 |
| 7577 | 16 | 0.9996 | Microplastics can selectively enrich intracellular and extracellular antibiotic resistant genes and shape different microbial communities in aquatic systems. Microplastics (MPs), as emerging contaminants, are posing potential risks to environment, and animal and human health. The ubiquitous presence of MPs in natural ecosystems provides favorable platform to selectively adsorb antibiotic resistant genes (ARGs) and bacteria (ARB) and bacterial assemblages, especially in wastewater which is hotspot for MPs, ARGs and ARB. In this study, the selective capture of intracellular ARGs (iARGs), extracellular ARGs (eARGs), and bacterial assemblages by MPs with different materials (i.e. polyethylene, polyvinylchloride, and polyethylene terephthalate) and sizes (200 μm and 100 μm) was investigated. The results showed that iARGs (i.e. i-TetA, i-TetC, i-TetO, i-sul1), integron-integrase gene (intI1), and eARGs (i.e. e-TetA and e-bla(TEM)) were selectively enriched on MPs. Relative abundances of i-sul1, i-TetA, and intI1 were generally higher than that of i-TetC and i-TetO on all MPs. Moreover, MPs also have strong effects on the formation of microflora in wastewater, which resulted in different bacterial communities and functions in the wastewater and on the MPs. These findings suggested that MPs could affect the selective enrichment of ARB and ARGs in water environment. | 2022 | 35101514 |
| 7032 | 17 | 0.9996 | Free Radicals on Aging Microplastics Regulated the Prevalence of Antibiotic Resistance Genes in the Aquatic Environment: New Insight into the Effect of Microplastics on the Spreading of Biofilm Resistomes. The spread of antibiotic resistance genes (ARGs) by microplastics has received a great concern in coexisting "hotspots". Despite most microplastics suffering from natural aging, little is known about the effect of aging microplastics (A-MPs) on ARGs dissemination. Here, we demonstrated significant suppression of A-MPs on ARGs dissemination in natural rivers. Although ARGs and mobile genetic elements (MGEs) were effectively enriched on A-MPs, the relative abundance of ARGs and MGEs on A-MPs as well as in receiving water decreased by approximately 21.4% to 42.3% during a period of 30 days of dissemination. Further investigation revealed that (•)OH was consistently generated on A-MPs with a maximum value of 0.2 μmol/g. Importantly, scavenging of (•)OH significantly increased the relative abundance of ARGs and MGEs both on A-MPs and in receiving water 1.4-29.1 times, indicating the vital role of (•)OH in suppressing ARGs dissemination. Microbial analysis revealed that (•)OH inhibited the potential antibiotic-resistant bacteria in surface biofilms, such as Pseudomonas and Acinetobacter (with a decrease of 68.8% and 89.3%). These results demonstrated that (•)OH was extensively produced on A-MPs, which greatly reduced both the vertical and horizontal gene transfer of ARGs. This study provided new insights into the dissemination of ARGs through microplastics in natural systems. | 2025 | 40359213 |
| 7936 | 18 | 0.9996 | Impact of uranium on antibiotic resistance in activated sludge. The emergence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment is well established as a human health crisis. The impact of radioactive heavy metals on ecosystems and ultimately on human health has become a global issue, especially for the regions suffering various nuclear activities or accidents. However, whether the radionuclides can affect the fate of antibiotic resistance in bacteria remains poorly understood. Here, the dynamics of ARB, three forms of ARGs-intracellular ARGs (iARGs), adsorbed extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs)-and microbial communities were investigated following exposure to uranium (U), a representative radioactive heavy metal. The results showed that 90-d of U exposure at environmentally relevant concentrations of 0.05 mg/L or 5 mg/L significantly increased the ARB concentration in activated sludge (p < 0.05). Furthermore, 90-d of U exposure slightly elevated the absolute abundance of aeARGs (except tetO) and sulfonamide iARGs, but decreased tetracycline iARGs. Regarding feARGs, the abundance of tetC, tetO, and sul1 decreased after 90-d of U stress, whereas sul2 showed the opposite trend. Partial least-squares path model analysis revealed that the abundance of aeARGs and iARGs under U stress was predominantly driven by increased cell membrane permeability/intI1 abundance and cell membrane permeability/reactive oxygen species concentration, respectively. Conversely, the changes in feARGs abundance depended on the composition of the microbial community and the expression of efflux pumps. Our findings shed light on the variations of ARGs and ARB in activated sludge under U exposure, providing a more comprehensive understanding of antibiotic resistance risks aggravated by radioactive heavy metal-containing wastewater. | 2024 | 38278272 |
| 7549 | 19 | 0.9996 | Fate of antibiotic resistance genes during sludge anaerobic fermentation: Roles of different sludge pretreatment. Excess sludge, the primary by-product of wastewater treatment plants, is the source and sink of antibiotic resistance genes (ARGs). Sludge pretreatments are an indispensable pathway to improve the resource recovery and harmfulness for anaerobic digestion sludge. However, fewer studies have compared the effects of different pretreatment technologies on the distribution of ARGs during anaerobic sludge digestion. Here, this study established seven anaerobic digesters, and four typical ARGs and one integrase gene of class 1 integron (intI1) regarded as the representative mobile genetic elements (MGEs) were examined during the whole anaerobic digestion process. It was found anaerobic digestion could effectively remove ARGs with about 70.86% removal rate of total ARGs. Among these pretreatments, the reduce efficiency of ARGs was the highest in 50 °C pretreatment, followed by oxidant, and the last was acid-alkaline. The microbial community analysis demonstrated the microbial community structure, including ARGs hosts and antibiotic resistant bacteria, was significantly changed and influenced by high temperature pretreatment. In addition, high temperature and K(2)S(2)O(8) observably decrease the level of ROS production. Macro transcriptome analysis indicated that sludge pretreatment, except for 50 °C pretreatment, up-regulated the genes relevant to lyases and transferase, but down-regulated the genes responsible for peroxidase, antioxidant enzymes and T4SS gene. This study emphasized and compared the different sludge pretreatments on the fate of ARGs in anaerobic sludge, and highlighted concerns regarding the environmental and health risks to our society. | 2024 | 39393457 |