# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7499 | 0 | 1.0000 | Sunlight Photolysis of Extracellular and Intracellular Antibiotic Resistance Genes tetA and sul2 in Photosensitizer-Free Water. Antibiotic resistance genes (ARGs; the genetic material in bacteria that encode for resistance to antibiotics) have been found in the aquatic environment, raising concerns of an environmental transmission route. In an effort to contribute to models predicting the fate of ARGs in the environment-to design control measures, predict health risks, inform ARG surveillance activities, and prioritize policy interventions-and given the importance of sunlight in damaging DNA, we evaluated the sunlight photolysis kinetics of antibiotic-resistant bacteria (ARB) and ARGs under laboratory conditions, focusing on Escherichia coli SMS-3-5 and its ARGs tetA and sul2. Experiments were conducted in the absence of photosensitizers, and ARG decay rates were quantified by quantitative polymerase chain reaction (qPCR) with short and long amplicon targets. Long amplicon qPCR targets quantified greater photolysis rate constants, due to greater ARG coverage. After a lag phase, intracellular ARG had faster decay rates than extracellular ARG, likely due to the contribution of intracellular indirect photolysis processes. Furthermore, all ARG decay rates were significantly slower than those of E. coli. Decay rate constants and quantum yields are presented as foundational work in the development of models to describe the persistence of ARGs in sunlit, environmental waters. | 2021 | 34346694 |
| 7452 | 1 | 0.9998 | Elevation of antibiotic resistance genes at cold temperatures: implications for winter storage of sludge and biosolids. Prior research suggests that cold temperatures may stimulate the proliferation of certain antibiotic resistance genes (ARGs) and gene transfer elements during storage of biosolids. This could have important implications on cold weather storage of biosolids, as often required in northern climates until a time suitable for land application. In this study, levels of an integron-associated gene (intI1) and an ARG (sul1) were monitored in biosolids subject to storage at 4, 10 and 20°C. Both intI1 and sul1 were observed to increase during short-term storage (<2 months), but the concentrations returned to background within 4 months. The increases in concentration were more pronounced at lower temperatures than ambient temperatures. Overall, the results suggest that cold stress may induce horizontal gene transfer of integron-associated ARGs and that biosolids storage conditions should be considered prior to land application. SIGNIFICANCE AND IMPACT OF THE STUDY: Wastewater treatment plants have been identified as the hot spots for the proliferation and dissemination of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) to the environment through discharge of treated effluent to water bodies as well as application of biosolids to land. Identifying critical control points within the treatment process may aid in the development of solutions for the reduction of ARGs and ARB and curbing the spread of antibiotic resistance. This study found increases in ARGs during biosolids storage and identifies changes in operational protocols that could help reduce ARG loading to the environment when biosolids are land-applied. | 2014 | 25196177 |
| 7501 | 2 | 0.9998 | Enhanced sensitivity of extracellular antibiotic resistance genes (ARGs) to environmental concentrations of antibiotic. As emerging contaminants, antibiotics are frequently present in various environments, particularly rivers, albeit often at sublethal concentrations (ng/L∼μg/L). Assessing the risk associated with these low levels, which are far below the lethal threshold for most organisms, remains challenging. In this study, using microcosms containing planktonic bacteria and biofilm, we examined how antibiotic resistance genes (ARGs) in different physical states, including intracellular ARGs (iARGs) and extracellular ARGs (eARGs) responded to these low-level antibiotics. Our findings reveal a positive correlation between sub-lethal antibiotic exposure (ranging from 0.1 to 10 μg/L) and increased prevalence (measured as ARG copies/16s rDNA) of both iARGs and eARGs in planktonic bacteria. Notably, eARGs demonstrated greater sensitivity to antibiotic exposure compared to iARGs, with a lower threshold (0.1 μg/L for eARGs versus 1 μg/L for iARGs) for abundance increase. Moreover, ARGs in biofilms demonstrates higher sensitivity to antibiotic exposure compared to planktonic bacteria. To elucidate the underlying mechanisms, we established an integrated population dynamics-pharmacokinetics-pharmacodynamics (PD-PP) model. This model indicates that the enhanced sensitivity of eARGs is primarily driven by an increased potential for plasmid release from cells under low antibiotic concentrations. Furthermore, the accumulation of antibiotic in biofilms induces a greater sensitivity of ARG compared to the planktonic bacteria. This study provides a fresh perspective on the development of antibiotic resistance and offers an innovative approach for assessing the risk of sublethal antibiotic in the environment. | 2024 | 38797215 |
| 7502 | 3 | 0.9998 | Differential dose-response patterns of intracellular and extracellular antibiotic resistance genes under sub-lethal antibiotic exposure. Although antibiotics are one of the most significant factors contributing to the propagation of antibiotic resistance genes (ARGs), studies on the dose-response relationship at sub-lethal concentrations of antibiotics remain scarce, despite their importance for assessing the risks of antibiotics in the environment. In this study, we constructed a series of microcosms to investigate the propagation of intracellular (iARGs) and extracellular (eARGs) ARGs in both water and biofilms when exposed to antibiotics at various concentrations (1-100 μg/L) and frequencies. Results showed that eARGs were more abundant than iARGs in water, while iARGs were the dominant ARGs form in biofilms. eARGs showed differentiated dose-response relationships from iARGs. The abundance of iARGs increased with the concentration of antibiotics as enhanced selective pressure overcame the metabolic burden of antibiotic-resistant bacteria carrying ARGs. However, the abundance of eARGs decreased with increasing antibiotic concentrations because less ARGs were secreted from bacterial hosts at higher concentrations (100 μg/L). Furthermore, combined exposure to two antibiotics (tetracycline & imipenem) showed a synergistic effect on the propagation of iARGs, but an antagonistic effect on the propagation of eARGs compared to exposure to a single antibiotic. When exposed to antibiotic at a fixed total dose, one-time dosing (1 time/10 d) favored the propagation of iARGs, while fractional dosing (5 times /10 d) favored the propagation of eARGs. This study sheds light on the propagation of antibiotic resistance in the environment and can help in assessing the risks associated with the use of antibiotics. | 2023 | 37257347 |
| 7425 | 4 | 0.9998 | Antibiotic resistant bacteria and genes in wastewater treatment plants: From occurrence to treatment strategies. This study aims to discuss the following: (1) occurrence and proliferation of antibiotic resistance in wastewater treatment plants (WWTPs); (2) factors influencing antibiotic resistance bacteria and genes in WWTPs; (3) tools to assess antibiotic resistance in WWTPs; (4) environmental contamination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from WWTPs; (5) effects of ARB and ARGs from WWTPs on human health; and (6) treatment strategies. In general, resistant and multi-resistant bacteria, including Enterobacteriaceae, Pseudomonas aeruginosa, and Escherichia coli, exist in various processes of WWTPs. The existence of ARB and ARGs results from the high concentration of antibiotics in wastewater, which promote selective pressures on the local bacteria present in WWTPs. Thus, improving wastewater treatment technology and avoiding the misuse of antibiotics is critical to overcoming the threat of proliferation of ARBs and ARGs. Numerous factors can affect the development of ARB and ARGs in WWTPs. Abiotic factors can affect the bacterial community dynamics, thereby, affecting the applicability of ARB during the wastewater treatment process. Furthermore, the organic loads and other nutrients influence bacterial survival and growth. Specifically, molecular methods for the rapid characterization and detection of ARBs or their genes comprise DNA sequencing, real-time PCR, simple and multiplex PCR, and hybridization-based technologies, including micro- and macro-arrays. The reuse of effluent from WWTPs for irrigation is an efficient method to overcome water scarcity. However, there are also some potential environmental risks associated with this practice, such as increase in the levels of antibiotic resistance in the soil microbiome. Human mortality rates may significantly increase, as ARB can lead to resistance among several types of antibiotics or longer treatment times. Some treatment technologies, such as anaerobic and aerobic treatment, coagulation, membrane bioreactors, and disinfection processes, are considered potential techniques to restrict antibiotic resistance in the environment. | 2022 | 35679932 |
| 7500 | 5 | 0.9998 | Dead but Not Forgotten: How Extracellular DNA, Moisture, and Space Modulate the Horizontal Transfer of Extracellular Antibiotic Resistance Genes in Soil. Antibiotic-resistant bacteria and the spread of antibiotic resistance genes (ARGs) pose a serious risk to human and veterinary health. While many studies focus on the movement of live antibiotic-resistant bacteria to the environment, it is unclear whether extracellular ARGs (eARGs) from dead cells can transfer to live bacteria to facilitate the evolution of antibiotic resistance in nature. Here, we use eARGs from dead, antibiotic-resistant Pseudomonas stutzeri cells to track the movement of eARGs to live P. stutzeri cells via natural transformation, a mechanism of horizontal gene transfer involving the genomic integration of eARGs. In sterile, antibiotic-free agricultural soil, we manipulated the eARG concentration, soil moisture, and proximity to eARGs. We found that transformation occurred in soils inoculated with just 0.25 μg of eDNA g(-1) soil, indicating that even low concentrations of soil eDNA can facilitate transformation (previous estimates suggested ∼2 to 40 μg eDNA g(-1) soil). When eDNA was increased to 5 μg g(-1) soil, there was a 5-fold increase in the number of antibiotic-resistant P. stutzeri cells. We found that eARGs were transformed under soil moistures typical of terrestrial systems (5 to 30% gravimetric water content) but inhibited at very high soil moistures (>30%). Overall, this work demonstrates that dead bacteria and their eARGs are an overlooked path to antibiotic resistance. More generally, the spread of eARGs in antibiotic-free soil suggests that transformation allows genetic variants to establish in the absence of antibiotic selection and that the soil environment plays a critical role in regulating transformation. IMPORTANCE Bacterial death can release eARGs into the environment. Agricultural soils can contain upwards of 10(9) ARGs g(-1) soil, which may facilitate the movement of eARGs from dead to live bacteria through a mechanism of horizontal gene transfer called natural transformation. Here, we track the spread of eARGs from dead, antibiotic-resistant Pseudomonas stutzeri cells to live antibiotic-susceptible P. stutzeri cells in sterile agricultural soil. Transformation increased with the abundance of eARGs and occurred in soils ranging from 5 to 40% gravimetric soil moisture but was lowest in wet soils (>30%). Transformants appeared in soil after 24 h and persisted for up to 15 days even when eDNA concentrations were only a fraction of those found in field soils. Overall, our results show that natural transformation allows eARGs to spread and persist in antibiotic-free soils and that the biological activity of eDNA after bacterial death makes environmental eARGs a public health concern. | 2022 | 35323025 |
| 7604 | 6 | 0.9998 | Combined applications of UV and chlorine on antibiotic resistance control: A critical review. Environmental health problems caused by antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) have become a global concern. ARB and ARGs have been continuously detected in various water environments, which pose a new challenge for water quality safety assurance. Disinfection is a key water treatment process to eliminate pathogenic microorganisms in water, and combined chlorine and UV processes (the UV/Cl(2) process, the UV-Cl(2) process, and the Cl(2)-UV process) are considered potential disinfection methods to control antibiotic resistance. This review documented the efficacy and mechanism of combined UV and chlorine processes for the control of antibiotic resistance, as well as the effects of chlorine dose, solution pH, UV wavelength, and water matrix on the effectiveness of the processes. There are knowledge gaps in research on the combined chlorine and UV processes for antibiotic resistance control, in particular the UV-Cl(2) process and the Cl(2)-UV process. In addition, changes in the structure of microbial communities and the distribution of ARGs, which are closely related to the spread of antibiotic resistance in the water, induced by combined processes were also addressed. Whether these changes could lead to the re-transmission of antibiotic resistance and harm human health may need to be further evaluated. | 2024 | 38072103 |
| 6493 | 7 | 0.9998 | Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review. The World Health Organization (WHO) has identified the spread of antibiotic resistance as one of the major risks to global public health. An important transfer route into the aquatic environment is the urban water cycle. In this paper the occurrence and transport of antibiotic microbial resistance in the urban water cycle are critically reviewed. The presence of antibiotic resistance in low impacted surface water is being discussed to determine background antibiotic resistance levels, which might serve as a reference for treatment targets in the absence of health-based threshold levels. Different biological, physical and disinfection/oxidation processes employed in wastewater treatment and their efficacy regarding their removal of antibiotic resistant bacteria and antibiotic resistance geness (ARGs) were evaluated. A more efficient removal of antibiotic microbial resistance abundances from wastewater effluents can be achieved by advanced treatment processes, including membrane filtration, ozonation, UV-irradiation or chlorination, to levels typically observed in urban surface water or low impacted surface water. | 2019 | 31195321 |
| 7393 | 8 | 0.9998 | Fate and distribution of determinants of antimicrobial resistance in lateral flow sand filters used for treatment of domestic wastewater. Residuals of antimicrobial products from anthropogenic uses can create a selective environment in domestic wastewater treatment systems and receiving environments and contribute to the spread of antimicrobial resistance (AMR). On-site wastewater treatment systems are widely used for domestic wastewater management in rural and remote regions, but the fate of determinants of AMR in these types of environments has received little attention. In this study, the mechanisms responsible for the attenuation of determinants of AMR in lateral flow sand filters were explored using a combination of lab, field and modeling investigations. The degradation kinetics and adsorption potential in the sand filter medium of three antibiotic resistance genes (ARGs; sul1, tetO, and ermB) and culturable bacteria resistant to sulfamethoxazole, tetracycline, and erythromycin were measured using lab experiments. The spatial distribution of ARGs and antibiotic resistant bacteria were also assessed in field scale sand filters, and mechanistic modeling was conducted to characterize filtration processes. The results indicated that the primary mechanisms responsible for AMR attenuation within the sand filters were degradation and filtration. The spatial distribution of AMR determinants illustrated that attenuation was occurring along the entire length of each filter. This study provides new insights on primary mechanisms of AMR attenuation in on-site wastewater treatment systems and supports the use of conservative design guidelines and separation distances for reducing AMR transmission. | 2021 | 33636762 |
| 7431 | 9 | 0.9998 | Antibiotic Resistant Bacteria in Municipal Wastes: Is There Reason for Concern? Recently, there has been increased concern about the presence of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG), in treated domestic wastewaters, animal manures and municipal biosolids. The concern is whether these additional sources of ARB contribute to antibiotic resistance levels in the environment, that is, "environmental antibiotic resistance." ARB and ARG occur naturally in soil and water, and it remains unclear whether the introduction of ARB in liquid and solid municipal and animal wastes via land application have any significant impact on the background levels of antibiotic resistance in the environment, and whether they affect human exposure to ARB. In this current review, we examine and re-evaluate the incidence of ARB and ARG resulting from land application activities, and offer a new perspective on the threat of antibiotic resistance to public health via exposure from nonclinical environmental sources. Based on inputs of ARBs and ARGs from land application, their fate in soil due to soil microbial ecology principles, and background indigenous levels of ARBs and ARGs already present in soil, we conclude that while antibiotic resistance levels in soil are increased temporally by land application of wastes, their persistence is not guaranteed and is in fact variable, and often contradictory based on application site. Furthermore, the application of wastes may not produce the most direct impact of ARGs and ARB on public health. Further investigation is still warranted in agriculture and public health, including continued scrutiny of antibiotic use in both sectors. | 2018 | 29505255 |
| 7397 | 10 | 0.9998 | Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs from bacteria can be mobilized by mobile genetic elements, and recent studies indicate that phages and phage-derived particles, among others, could play a role in the spread of ARGs through the environment. ARGs are abundant in the bacterial and bacteriophage fractions of water bodies and for successful transfer of the ARGs, their persistence in these environments is crucial. In this study, three ARGs (blaTEM, blaCTX-M and sul1) that naturally occur in the bacterial and phage fractions of raw wastewater were used to evaluate the persistence of ARGs at different temperatures (4 °C, 22 °C and 37 °C) and pH values (3, 7 and 9), as well as after various disinfection treatments (thermal treatment, chlorination and UV) and natural inactivation in a mesocosm. Gene copies (GC) were quantified by qPCR; then the logarithmic reduction and significance of the differences between their numbers were evaluated. The ARGs persisted for a long time with minimal reductions after all the treatments. In general, they showed greater persistence in the bacteriophage fraction than in the bacterial fraction. Comparisons showed that the ARGs persisted under conditions that reduced culturable Escherichia coli and infectious coliphages below the limit of detection. The prevalence of ARGs, particularly in the bacteriophage fraction, poses the threat of the spread of ARGs and their incorporation into a new bacterial background that could lead to the emergence of new resistant clones. | 2016 | 26978717 |
| 7508 | 11 | 0.9997 | Residual chlorine persistently changes antibiotic resistance gene composition and increases the risk of antibiotic resistance in sewer systems. During the COVID-19 pandemic, excessive amounts of disinfectants and their transformation products entered sewer systems worldwide, which was an extremely rare occurrence before. The stress of residual chlorine and disinfection by-products is not only likely to promote the spread of antibiotic resistance genes (ARGs), but also leads to the enrichment of chlorine-resistant bacteria that may also be resistant to antibiotics. Therefore, the potential impact of such discharge on ARG composition should be studied and the health risks should be assessed. Thus, this study combined high-throughput 16S rRNA gene amplicon sequencing and metagenomic analysis with long-term batch tests that involved two stages of stress and recovery to comprehensively evaluate the impact of residual chlorine on the microbial community and ARG compositions in sewer systems. The tests demonstrated that the disturbance of the microbial community structure by residual chlorine was reversible, but the change in ARG composition was persistent. This study found that vertical propagation and horizontal gene transfer jointly drove ARG composition succession in the biofilm, while the driving force was mainly horizontal gene transfer in the sediment. In this process, the biocide resistance gene (BRG) subtype chtR played an important role in promoting co-selection with ARGs through plasmids and integrative and conjugative elements. Moreover, it was further shown that the addition of sodium hypochlorite increased the risk of ARGs to human health, even after discontinuation of dosing, signifying that the impact was persistent. In general, this study strengthens the co-selection theory of ARGs and BRGs, and calls for improved disinfection strategies and more environmentally friendly disinfectants. | 2023 | 37738943 |
| 7603 | 12 | 0.9997 | Antibiotic enhances the spread of antibiotic resistance among chlorine-resistant bacteria in drinking water distribution system. The extensive use of antibiotics leads to the occurrences of antibiotic resistance genes (ARGs) in aquatic environment. As an emerging environmental pollutant, its pollution in aquatic environment has aroused widespread concern. However, the residues of antibiotics and antibiotic resistance genes in drinking water distribution system were barely reported up to now. Here, we studied the correlation and coordination between chlorine resistance mechanism and antibiotic resistance mechanism of chlorine-resistant bacteria. Antibiotics induce the resistance of chlorine-resistant bacteria (CRB) to NaClO, so that low-dose disinfectants can not inactivate CRB. We put forward a strategy to control the growth of CRB by controlling the concentration of biodegradable dissolved organic carbon (BDOC) in the front section of the water network. Moreover, We screened two strains of chlorine-resistant bacteria with different antibiotic resistance after mixed culture, the results showed that antibiotic resistance could spread horizontally among different kinds of bacteria. Then, the non-pathogenic bacteria can be used as a carrier, causing the pathogen to become resistant to antibiotic, and ultimately pose harm to human health. Generally, the antibiotic, antibiotic resistant genes, and the chlorine disinfectants added in water treatment plants will interact with bacteria in the water supply pipe network, which causes pollution to drinking water. | 2022 | 35248560 |
| 7514 | 13 | 0.9997 | Early and differential bacterial colonization on microplastics deployed into the effluents of wastewater treatment plants. Microbial colonization of microplastics (MPs) in aquatic ecosystems is a well-known phenomenon; however, there is insufficient knowledge of the early colonization phase. Wastewater treatment plant (WWTP) effluents have been proposed as important pathways for MPs entry and transport in aquatic environments and are hotspots of bacterial pathogens and antibiotic resistance genes (ARGs). This study aimed at characterizing bacterial communities in the early stage of biofilm formation on seven different types of MPs deployed in two different WWTPs effluents as well as measuring the relative abundance of two ARGs (sulI and tetM) on the tested MPs. Illumina Miseq sequencing of the 16S rRNA showed significant higher diversity of bacteria on MPs in comparison with free-living bacteria in the WWTP effluents. β-diversity analysis showed that the in situ environment (sampling site) and hydrophobicity, to a lesser extent, had a role in the early bacterial colonization phase. An early colonization phase MPs-core microbiome could be identified. Furthermore, specific core microbiomes for each type of polymer suggested that each type might select early attachment of bacteria. Although the tested WWTP effluent waters contained antibiotic resistant bacteria (ARBs) harboring the sulI and tetM ARGs, MPs concentrated ARBs harboring the sulI gene but not tetM. These results highlight the relevance of the early attachment phase in the development of bacterial biofilms on different types of MP polymers and the role that different types of polymers might have facilitating the attachment of specific bacteria, some of which might carry ARGs. | 2021 | 33246729 |
| 6900 | 14 | 0.9997 | Tracking the extracellular and intracellular antibiotic resistance genes across whole year in wastewater of intensive dairy farm. Monitoring the annual variation of antibiotic resistance genes (ARGs) in livestock wastewater is important for determining the high-risk period of transfer and spread of animal-derived antibiotic resistance into the environment. However, the knowledge regarding the variation patterns of ARGs, especially intracellular ARGs (iARGs) and extracellular ARGs (eARGs), over time in livestock wastewater is still unclear. Herein, we conducted a year-round study to trace the profiles of ARGs at a Chinese-intensive dairy farm, focusing on the shifts observed in different months. The results showed significant differences in the composition and variation between iARGs and eARGs. Tetracycline, sulfonamide, and macrolide resistance genes were the major types of iARGs, while cfr was the major type of eARG. The environmental adaptations of the host bacteria determine whether ARGs appear as intracellular or extracellular forms. The total abundance of ARGs was higher from April to September, which can be attributed to the favorable climatic conditions for bacterial colonization and increased antibiotic administration during this period. Integron was found to be highly correlated with most iARGs, potentially playing a role in the presence of these genes within cells and their similar transmission patterns in wastewater. The intracellular and extracellular bacterial communities were significantly different, primarily because of variations in bacterial adaptability to the high salt and anaerobic environment. The intracellular co-occurrence network indicated that some dominant genera in wastewater, such as Turicibacter, Clostridium IV, Cloacibacillus, Subdivision5_genera_incertae_sedis, Saccharibacteria_genera_incertae_sedis and Halomonas, were potential hosts for many ARGs. To the best of our knowledge, this study demonstrates, for the first time, the annual variation of ARGs at critical points in the reuse of dairy farm wastewater. It also offers valuable insights into the prevention and control of ARGs derived from animals. | 2024 | 38039853 |
| 7424 | 15 | 0.9997 | Fate of antibiotic resistance genes and antibiotic-resistant bacteria in water resource recovery facilities. Many important diseases are showing resistance to commonly used antibiotics, and the resistance is potentially caused by widespread use of antibiotics for maintaining human health and improving food production. Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) are associated with this increase, and their fate in water resource recovery facilities is an important, emerging area of research. This literature review summarizes current findings of worldwide research on the fate of ARB and ARGs in various types of treatment plants. Twenty-five published studies were reviewed which contained 215 observations in activated sludge, membrane bioreactors, anaerobic digestion, constructed wetlands, coagulation-filtration, and three types of disinfection. We found 70% decreased observations, 18% increased observations, and 12% unchanged observations of all observations in all treatment processes. Resistance genes to tetracycline were most often observed, but more studies are needed in other antibiotic resistance genes. The causes for increased abundance of ARGs and ARB are not well understood, and further studies are warranted. PRACTITIONER POINTS: Antibiotic resistance is increasing with concern that treatment plants may acclimate bacteria to antibiotics. A literature survey found 215 resistance observations with 70% decreased, 18% increased, 12% unchanged after treatment. The type of treatment process is important with activated sludge showing the greatest reductions. | 2019 | 30682226 |
| 7504 | 16 | 0.9997 | Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater: A review. Antibiotic resistance genes (ARGs) in water environment have become a global health concern. Swine wastewater is widely considered to be one of the major contributors for promoting the proliferation of ARGs in water environments. This paper comprehensively reviews and discusses the occurrence and removal of ARGs in anaerobic treatment of swine wastewater, and contributions of antibiotics to the fate of ARGs. The results reveal that ARGs' removal is unstable during anaerobic processes, which negatively associated with the presence of antibiotics. The abundance of bacteria carrying ARGs increases with the addition of antibiotics and results in the spread of ARGs. The positive relationship was found between antibiotics and the abundance and transfer of ARGs in this review. However, it is necessary to understand the correlation among antibiotics, ARGs and microbial communities, and obtain more knowledge about controlling the dissemination of ARGs in the environment. | 2020 | 31917094 |
| 6496 | 17 | 0.9997 | Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants. The main goal of this manuscript is to review different treatment strategies and mechanisms for combating the antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in the wastewater environment. The high amount of antibiotics is released into the wastewater that may promote selection of ARB and ARGs which find their way into natural environments. Emerging microbial pathogens and increasing antibiotic resistance among them is a global public health issue. The propagation and spread of ARB and ARGs in the environment may result in an increase of antibiotic resistant microbial pathogens which is a worldwide environmental and public health concern. A proper treatment of wastewater is essential before its discharge into rivers, lake, or sewage system to prevent the spread of ARB and ARGs into the environment. This review discusses various treatment options applied for combating the spread of ARB and ARGs in wastewater treatment plants (WWTPs). It was reported that low-energy anaerobic-aerobic treatment reactors, constructed wetlands, and disinfection processes have shown good removal efficiencies. Nanomaterials and biochar combined with other treatment methods and coagulation process are very recent strategies regarding ARB and ARGs removal and need more investigation and research. Based on current studies a wide-ranging removal efficiency of ARGs can be achieved depending on the type of genes present and treatment processes used, still, there are gaps that need to be further investigated. In order to find solutions to control dissemination of antibiotic resistance in the environment, it is important to (1) study innovative strategies in large scale and over a long time to reach an actual evaluation, (2) develop risk assessment studies to precisely understand occurrence and abundance of ARB/ARGs so that their potential risks to human health can be determined, and (3) consider operating and environmental factors that affect the efficiency of each treatment mechanism. | 2017 | 29387043 |
| 7392 | 18 | 0.9997 | Distribution of genetic elements associated with antibiotic resistance in treated and untreated animal husbandry waste and wastewater. Animal breeding for meat production based on swine, cattle, poultry, and aquaculture is an activity that generates several impacts on the environment, among them the spread of antibiotic resistance. There is a worldwide concern related to the massive use of antibiotics, which causes selective pressure on the microbial community, triggering bacteria that contain "antibiotic resistance genes." According to the survey here presented, antibiotic resistance-related genes such as tetracyclines (tet), erythromycin (erm), and sulfonamides (sul), as well as the genetic mobile element interferon (int), are the most reported genetic elements in qualitative and quantitative studies of swine, cattle, poultry, and aquaculture manure/wastewater. It has been observed that biological treatments based on waste composting and anaerobic digestion are effective in ARG removal, particularly for tet, bla, erm, and qnr (quinolone) genes. On the other hand, sul and intI genes were more persistent in such treatments. Tertiary treatments, such advanced oxidative processes, are suitable strategies to improve ARG reduction. In general temperature, hydraulic retention time, and penetration of sunlight are the main operational parameters for ARG reduction in treatments applied to animal waste, and therefore attention should be addressed to optimize their efficacy regarding ARG removal. Despite being reduced, the presence of ARG in treated effluents and in biosolids indicates that there is a potential risk of antibiotic resistance spread in nature, especially through the release of treated livestock waste into the environment. | 2021 | 33835340 |
| 7599 | 19 | 0.9997 | Antibiotic resistant bacteria survived from UV disinfection: Safety concerns on genes dissemination. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are the emerging contaminants leading to a serious worldwide health problem. Although disinfection like ultraviolet (UV) irradiation could remove part of ARB and ARGs, there still are residual ARB and ARGs in the effluent of wastewater treatment plants. Conjugative transfer is main concern of the risk of ARGs and little is known about the effects of UV disinfection on the transfer ability of the non-inactivated ARB in the effluent which will enter the environment. Hence the influences of UV irradiation and reactivation on ARB conjugative transfer ability were studied under laboratory condition, focusing on the survival bacteria from UV irradiation and the reactivated bacteria, as well as their descendants. The experimental results imply that even 1 mJ/cm(2) UV disinfection can significantly decrease the conjugative transfer frequency of the survival bacteria. However, viable but not culturable state cells induced by UV can reactivate through both photoreactivation and dark repair and retain the same level of transfer ability as the untreated strains. This finding is essential for re-considering about the post safety of UV irradiated effluent and microbial safety control strategies were required. | 2019 | 30851534 |