# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7483 | 0 | 1.0000 | Enrichment of antibiotic resistance genes (ARGs) in polyaromatic hydrocarbon-contaminated soils: a major challenge for environmental health. Polyaromatic hydrocarbons (PAHs) are widely spread ecological contaminants. Antibiotic resistance genes (ARGs) are present with mobile genetic elements (MGE) in the bacteria. There are molecular evidences that PAHs may induce the development of ARGs in contaminated soils. Also, the abundance of ARGs related to tetracycline, sulfonamides, aminoglycosides, ampicillin, and fluoroquinolones is high in PAH-contaminated environments. Genes encoding the efflux pump are located in the MGE and, along with class 1 integrons, have a significant role as a connecting link between PAH contamination and enrichment of ARGs. The horizontal gene transfer mechanisms further make this interaction more dynamic. Therefore, necessary steps to control ARGs into the environment and risk management plan of PAHs should be enforced. In this review, influence of PAH on evolution of ARGs in the contaminated soil, and its spread in the environment, has been described. The co-occurrence of antibiotic resistance and PAH degradation abilities in bacterial isolates has raised the concerns. Also, presence of ARGs in the microbiome of PAH-contaminated soil has been discussed as environmental hotspots for ARG spread. In addition to this, the possible links of molecular interactions between ARGs and PAHs, and their effect on environmental health has been explored. | 2021 | 33394421 |
| 7465 | 1 | 0.9999 | Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors. The inadequate elimination of micropollutants in wastewater treatment plants (WWTP), cause to increase in the incidence of antibiotic resistant bacterial strains. Growth of microbial pathogens in WWTP is one of the serious public health problems. The widespread and simultaneous emergence of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment with heavy metals create persistent and selective pressure for co-selection of both genes on environmental microorganisms. Co-localization of ARGs and HMRGs on the same horizontal mobile genetic elements (MGEs) allows the spreading of numerous antibiotic-resistant strains of bacteria in aquatic and terrestrial environment. The biofilm formation and colonization potential of environmental bacteria leads to the co-selection of multi-antibiotic resistance and multi-metal tolerance. Horizontal gene transfer (HGT), co-localization of both ARGs and HMRGs on the same MGEs, and the shared resistomes are important bacteria-associated ecological risks factors, which reduce the effectiveness of antibiotics against bacterial infections. | 2023 | 36805463 |
| 6482 | 2 | 0.9999 | Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils. Bioremediation represents a sustainable approach to remediating petroleum hydrocarbon contaminated soils. One aspect of sustainability includes the sourcing of nutrients used to stimulate hydrocarbon-degrading microbial populations. Organic nutrients such as animal manure and sewage sludge may be perceived as more sustainable than conventional inorganic fertilizers. However, organic nutrients often contain antibiotic residues and resistant bacteria (along with resistance genes and mobile genetic elements). This is further exacerbated since antibiotic resistant bacteria may become more abundant in contaminated soils due to co-selection pressures from pollutants such as metals and hydrocarbons. We review the issues surrounding bioremediation of petroleum-hydrocarbon contaminated soils, as an example, and consider the potential human-health risks from antibiotic resistant bacteria. While awareness is coming to light, the relationship between contaminated land and antibiotic resistance remains largely under-explored. The risk of horizontal gene transfer between soil microorganisms, commensal bacteria and/or human pathogens needs to be further elucidated, and the environmental triggers for gene transfer need to be better understood. Findings of antibiotic resistance from animal manures are emerging, but even fewer bioremediation studies using sewage sludge have made any reference to antibiotic resistance. Resistance mechanisms, including those to antibiotics, have been considered by some authors to be a positive trait associated with resilience in strains intended for bioremediation. Nevertheless, recognition of the potential risks associated with antibiotic resistant bacteria and genes in contaminated soils appears to be increasing and requires further investigation. Careful selection of bacterial candidates for bioremediation possessing minimal antibiotic resistance as well as pre-treatment of organic wastes to reduce selective pressures (e.g., antibiotic residues) are suggested to prevent environmental contamination with antibiotic-resistant bacteria and genes. | 2020 | 32236187 |
| 6483 | 3 | 0.9999 | Soil Component: A Potential Factor Affecting the Occurrence and Spread of Antibiotic Resistance Genes. In recent years, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil have become research hotspots in the fields of public health and environmental ecosystems, but the effects of soil types and soil components on the occurrence and spread of ARGs still lack systematic sorting and in-depth research. Firstly, investigational information about ARB and ARGs contamination of soil was described. Then, existing laboratory studies about the influence of the soil component on ARGs were summarized in the following aspects: the influence of soil types on the occurrence of ARGs during natural or human activities and the control of exogenously added soil components on ARGs from the macro perspectives, the effects of soil components on the HGT of ARGs in a pure bacterial system from the micro perspectives. Following that, the similarities in pathways by which soil components affect HGT were identified, and the potential mechanisms were discussed from the perspectives of intracellular responses, plasmid activity, quorum sensing, etc. In the future, related research on multi-component systems, multi-omics methods, and microbial communities should be carried out in order to further our understanding of the occurrence and spread of ARGs in soil. | 2023 | 36830244 |
| 6402 | 4 | 0.9999 | Livestock and poultry breeding farms as a fixed and underestimated source of antibiotic resistance genes. The excessive use of antibiotics, disinfectants, and drugs in livestock and poultry breeding has resulted in a rise in the presence of antibiotic resistance genes (ARGs). Antibiotic-resistant bacteria (ARB) and ARGs have been widely found in animal feces, farm wastewater, and farm air. ARGs can not only spread across media through adsorption and migration, but also transfer resistance across bacterial genera through horizontal gene transfer. Livestock breeding has become a fixed and unavoidable source of ARGs in the environment. Existing technologies for controlling ARGs, such as composting, disinfection, and sewage treatment, are not efficient in removing ARB and ARGs from waste. Furthermore, the remaining ARGs still possess a strong capacity for dissemination. At present, antibiotics used in animal husbandry are difficult to replace in a short period of time. The growth and potential risks of resistance genes in livestock and poultry breeding sources in the receiving environment are not yet clear. In this paper, we summarize the current situation of ARGs in the livestock and poultry breeding environment. We also explain the key environmental processes, main influencing factors, and corresponding ecological risks associated with ARGs in this environment. The advantages and disadvantages of current technologies for the removal of ARGs are primarily discussed. There is a particular emphasis on clarifying the spatiotemporal evolution patterns and environmental process mechanisms of ARGs, as well as highlighting the importance and urgency of developing efficient pollution control technologies. | 2024 | 39052112 |
| 7427 | 5 | 0.9998 | A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission. Antibiotics are commonly used to prevent and control diseases in aquaculture. However, long-term/overuse of antibiotics not only leaves residues but results in the development of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Antibiotics, ARB, and ARGs are widespread in aquaculture ecosystems. However, their impacts and interaction mechanisms in biotic and abiotic media remain to be clarified. In this paper, we summarized the detection methods, present status, and transfer mechanisms of antibiotics, ARB, and ARGs in water, sediment, and aquaculture organisms. Currently, the dominant methods of detecting antibiotics, ARB, and ARGs are UPLC-MS/MS, 16S rRNA sequencing, and metagenomics, respectively. Tetracyclines, macrolides, fluoroquinolones, and sulfonamides are most frequently detected in aquaculture. Generally, antibiotic concentrations and ARG abundance in sediment are much higher than those in water. Yet, no obvious patterns in the category of antibiotics or ARB are present in organisms or the environment. The key mechanisms of resistance to antibiotics in bacteria include reducing the cell membrane permeability, enhancing antibiotic efflux, and structural changes in antibiotic target proteins. Moreover, horizontal transfer is a major pathway for ARGs transfer, including conjugation, transformation, transduction, and vesiculation. Identifying, quantifying, and summarizing the interactions and transmission mechanisms of antibiotics, ARGs, and ARB would provide useful information for future disease diagnosis and scientific management in aquaculture. | 2023 | 37235235 |
| 6412 | 6 | 0.9998 | Microplastics and Antibiotic Resistance: The Magnitude of the Problem and the Emerging Role of Hospital Wastewater. The role of microplastics (MPs) in the spread of antibiotic resistance genes (ARGs) is increasingly attracting global research attention due to their unique ecological and environmental effects. The ubiquitous use of plastics and their release into the environment by anthropic/industrial activities are the main sources for MP contamination, especially of water bodies. Because of their physical and chemical characteristics, MPs represent an ideal substrate for microbial colonization and formation of biofilm, where horizontal gene transfer is facilitated. In addition, the widespread and often injudicious use of antibiotics in various human activities leads to their release into the environment, mainly through wastewater. For these reasons, wastewater treatment plants, in particular hospital plants, are considered hotspots for the selection of ARGs and their diffusion in the environment. As a result, the interaction of MPs with drug-resistant bacteria and ARGs make them vectors for the transport and spread of ARGs and harmful microorganisms. Microplastic-associated antimicrobial resistance is an emerging threat to the environment and consequently for human health. More studies are required to better understand the interaction of these pollutants with the environment as well as to identify effective management systems to reduce the related risk. | 2023 | 37239594 |
| 6401 | 7 | 0.9998 | Antibiotics and antibiotic resistance genes in landfills: A review. Landfill are important reservoirs of antibiotics and antibiotic resistance genes (ARGs). They harbor diverse contaminants, such as heavy metals and persistent organic chemicals, complex microbial consortia, and anaerobic degradation processes, which facilitate the occurrence, development, and transfer of ARGs and antibiotic resistant bacteria (ARB). The main concern is that antibiotics and developed ARGs and ARB may transfer to the local environment via leachate and landfill leakage. In this paper, we provide an overview of established studies on antibiotics and ARGs in landfills, summarize the origins and distribution of antibiotics and ARGs, discuss the linkages among various antibiotics, ARGs, and bacterial communities as well as the influencing factors of ARGs, and evaluate the current treatment processes of antibiotics and ARGs. Finally, future research is proposed to fill the current knowledge gaps, which include mechanisms for the development and transmission of antibiotic resistance, as well as efficient treatment approaches for antibiotic resistance. | 2022 | 34597560 |
| 6431 | 8 | 0.9998 | The dynamics and transmission of antibiotic resistance associated with plant microbiomes. Antibiotic resistance genes (ARGs) have been widely found and studied in soil and water environments. However, the propagation of ARGs in plant microbiomes has attracted insufficient attention. Plant microbiomes, especially the rhizosphere microorganisms, are closely connected with water, soil, and air, which allows ARGs to spread widely in ecosystems and pose a threat to human health after entering the human body with bacteria. Therefore, it is necessary to deeply understand and explore the dynamics and the transmission of ARGs in rhizosphere microorganisms and endophytes of plants. In this review, the transmission and influencing factors of ARGs in the microorganisms associated with plants, especially the influence of root exudates on plant microbiomes, are analyzed. Notably, the role of intrinsic genes of plants in determining root exudates and their potential effects on ARGs are proposed and analyzed. The important role of phyllosphere microorganisms and endophytes in the transmission of ARGs and co-resistance of antibiotics and other substances are also emphasized. The proliferation and transmission of ARGs associated with plant microbiomes addressed in this review is conducive to revealing the fate of ARGs in plant microorganisms and alleviating ARG pollution. | 2023 | 37257204 |
| 7433 | 9 | 0.9998 | Manure as a Potential Hotspot for Antibiotic Resistance Dissemination by Horizontal Gene Transfer Events. The increasing demand for animal-derived foods has led to intensive and large-scale livestock production with the consequent formation of large amounts of manure. Livestock manure is widely used in agricultural practices as soil fertilizer worldwide. However, several antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria are frequently detected in manure and manure-amended soils. This review explores the role of manure in the persistence and dissemination of ARGs in the environment, analyzes the procedures used to decrease antimicrobial resistance in manure and the potential impact of manure application in public health. We highlight that manure shows unique features as a hotspot for antimicrobial gene dissemination by horizontal transfer events: richness in nutrients, a high abundance and diversity of bacteria populations and antibiotic residues that may exert a selective pressure on bacteria and trigger gene mobilization; reduction methodologies are able to reduce the concentrations of some, but not all, antimicrobials and microorganisms. Conjugation events are often seen in the manure environment, even after composting. Antibiotic resistance is considered a growing threat to human, animal and environmental health. Therefore, it is crucial to reduce the amount of antimicrobials and the load of antimicrobial resistant bacteria that end up in soil. | 2020 | 32823495 |
| 7466 | 10 | 0.9998 | Effects of heavy metals on the development and proliferation of antibiotic resistance in urban sewage treatment plants. Sewage treatment plants (STPs) are considered as "hotspots" for the emergence and proliferation of antibiotic resistance. However, the impact of heavy metals contamination on dispersal of antibiotic resistance in STPs is poorly understood. This study simultaneously investigated the effect of removal of metal and antibiotic resistance as well as mobile elements at different treatment units of STPs in Delhi, India. Results showed that treatment technologies used in STPs were inefficient for the complete removal of metal and antibiotic resistance, posing an ecological risk of co-selection of antibiotic resistance. The strong correlations were observed between heavy metals, metal and antibiotic resistance, and integrons, implying that antibiotic resistance may be exacerbated in the presence of heavy metals via integrons, and that metal and antibiotic resistance share a common or closely associated mechanism. We quantified an MRG rcnA, conferring resistance to Co and Ni, and identified that it was more abundant than all MRGs, ARGs, integrons, and 16S rRNA, suggesting rcnA could be important in antibiotic resistance dissemination in the environment. The associations between heavy metals, metal and antibiotic resistance, and integrons highlight the need for additional research to better understand the mechanism of co-selection as well as to improve the removal efficacy of current treatment systems. | 2022 | 35724944 |
| 6413 | 11 | 0.9998 | Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments. Microplastics (MPs) and antibiotic resistance genes (ARGs) have become the increasing attention and global research hotpots due to their unique ecological and environmental effects. As susceptible locations for MPs and ARGs, aquaculture environments play an important role in their enrichment and transformation. In this review, we focused on the MPs, ARGs, and the effects of their interactions on the aquaculture environments. The facts that antibiotics have been widely applied in different kinds of agricultural productions (e.g., aquaculture) and that most of antibiotics enter the water environment with rainfall and residual in the aquaculture environment have been resulting in the emergence of antibiotic resistance bacteria (ARB). Moreover, the water MPs are effective carriers of the environmental microbes and ARB, making them likely to be continuously imported into the aquaculture environments. As a result, the formation of the compound pollutions may also enter the aquatic organisms through the food chains and eventually enter the human body after a long-term enrichment. Furthermore, the compound pollutions result in the joint toxic effects on the human health and the ecological environment. In summary, this review aims to emphasize the ecological effects and the potential hazards on the aquaculture environments where interactions between MPs and ARGs results, and calls for to reduce the use of the plastic products and the antibiotics in the aquaculture environments. | 2021 | 33265004 |
| 6481 | 12 | 0.9998 | Fate and effects of veterinary antibiotics in soil. Large amounts of veterinary antibiotics are applied worldwide to farm animals and reach agricultural fields by manure fertilization, where they might lead to an increased abundance and transferability of antibiotic-resistance determinants. In this review we discuss recent advances, limitations, and research needs in determining the fate of veterinary antibiotics and resistant bacteria applied with manure to soil, and their effects on the structure and function of soil microbial communities in bulk soils and the rhizosphere. The increased abundance and mobilization of antibiotic-resistance genes (ARGs) might contribute to the emergence of multi-resistant human pathogens that increasingly threaten the successful antibiotic treatment of bacterial infections. | 2014 | 24950802 |
| 6511 | 13 | 0.9998 | Resistome Study in Aquatic Environments. Since the first discovery of antibiotics, introduction of new antibiotics has been coupled with the occurrence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Rapid dissemination of ARB and ARGs in the aquatic environments has become a global concern. ARB and ARGs have been already disseminated in the aquatic environments via various routes. Main hosts of most of ARGs were found to belong to Gammaproteobacteria class, including clinically important potential pathogens. Transmission of ARGs also occurs by horizontal gene transfer (HGT) mechanisms between bacterial strains in the aquatic environments, resulting in ubiquity of ARGs. Thus, a few of ARGs and MGEs (e.g., strA, sul1, int1) have been suggested as indicators for global comparability of contamination level in the aquatic environments. With ARB and ARGs contamination, the occurrence of critical pathogens has been globally issued due to their widespread in the aquatic environments. Thus, active surveillance systems have been launched worldwide. In this review, we described advancement of methodologies for ARGs detection, and occurrence of ARB and ARGs and their dissemination in the aquatic environments. Even though numerous studies have been conducted for ARB and ARGs, there is still no clear strategy to tackle antibiotic resistance (AR) in the aquatic environments. At least, for consistent surveillance, a strict framework should be established for further research in the aquatic environments. | 2023 | 36655280 |
| 7471 | 14 | 0.9998 | Impact of fluoroquinolone and heavy metal pollution on antibiotic resistance maintenance in aquatic ecosystems. BACKGROUND: Freshwater pollution with compounds used during anthropogenic activities could be a major driver of antibiotic resistance emergence and dissemination in environmental settings. Fluoroquinolones and heavy metals are two widely used aquatic pollutants that show a high stability in the environment and have well-known effects on antibiotic resistance selection. However, the impact of these compounds on antibiotic resistance maintenance in aquatic ecosystems remains unknown. In this study, we used a microcosm approach to determine the persistence of two fluoroquinolones (ciprofloxacin, ofloxacin) and two heavy metals (copper and zinc) in the Rhône river over 27 days. In addition, we established links between antibiotic and metal pollution, alone and in combination, and the composition of freshwater bacterial communities, the selection of specific members and the selection and maintenance of antibiotic and metal resistance genes (ARGs and MRGs) using a metagenomics approach. RESULTS: Whereas ofloxacin was detected at higher levels in freshwater after 27 days, copper had the strongest influence on bacterial communities and antibiotic and metal resistance gene selection. In addition, heavy metal exposure selected for some ARG-harboring bacteria that contained MRGs. Our research shows a heavy metal-driven transient co-selection for fluoroquinolone resistance in an aquatic ecosystem that could be largely explained by the short-term selection of Pseudomonas subpopulations harboring both fluoroquinolone efflux pumps and copper resistance genes. CONCLUSION: This research highlights the complexity and compound-specificity of dose-response relationships in freshwater ecosystems and provides new insights into the medium-term community structure modifications induced by overall sub-inhibitory levels of antibiotic and heavy metal pollution that may lead to the selection and maintenance of antibiotic resistance in low-impacted ecosystems exposed to multiple pollutants. | 2025 | 40426239 |
| 6464 | 15 | 0.9998 | The potential contribution of aquatic wildlife to antibiotic resistance dissemination in freshwater ecosystems: A review. Antibiotic resistance (AR) is one of the major health threats of our time. The presence of antibiotics in the environment and their continuous release from sewage treatment plants, chemical manufacturing plants and animal husbandry, agriculture and aquaculture, result in constant selection pressure on microbial organisms. This presence leads to the emergence, mobilization, horizontal gene transfer and a selection of antibiotic resistance genes, resistant bacteria and mobile genetic elements. Under these circumstances, aquatic wildlife is impacted in all compartments, including freshwater organisms with partially impermeable microbiota. In this narrative review, recent advancements in terms of occurrence of antibiotics and antibiotic resistance genes in sewage treatment plant effluents source compared to freshwater have been examined, occurrence of antibiotic resistance in wildlife, as well as experiments on antibiotic exposure. Based on this current state of knowledge, we propose the hypothesis that freshwater aquatic wildlife may play a crucial role in the dissemination of antibiotic resistance within the environment. Specifically, we suggest that organisms with high bacterial density tissues, which are partially isolated from the external environment, such as fishes and amphibians, could potentially be reservoirs and amplifiers of antibiotic resistance in the environment, potentially favoring the increase of the abundance of antibiotic resistance genes and resistant bacteria. Potential avenues for further research (trophic transfer, innovative exposure experiment) and action (biodiversity eco-engineering) are finally proposed. | 2024 | 38599270 |
| 6480 | 16 | 0.9998 | Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Antibiotics play a key role in the management of infectious diseases in humans, animals, livestock, and aquacultures all over the world. The release of increasing amount of antibiotics into waters and soils creates a potential threat to all microorganisms in these environments. This review addresses issues related to the fate and degradation of antibiotics in soils and the impact of antibiotics on the structural, genetic and functional diversity of microbial communities. Due to the emergence of bacterial resistance to antibiotics, which is considered a worldwide public health problem, the abundance and diversity of antibiotic resistance genes (ARGs) in soils are also discussed. When antibiotic residues enter the soil, the main processes determining their persistence are sorption to organic particles and degradation/transformation. The wide range of DT50 values for antibiotic residues in soils shows that the processes governing persistence depend on a number of different factors, e.g., physico-chemical properties of the residue, characteristics of the soil, and climatic factors (temperature, rainfall, and humidity). The results presented in this review show that antibiotics affect soil microorganisms by changing their enzyme activity and ability to metabolize different carbon sources, as well as by altering the overall microbial biomass and the relative abundance of different groups (i.e., Gram-negative bacteria, Gram-positive bacteria, and fungi) in microbial communities. Studies using methods based on analyses of nucleic acids prove that antibiotics alter the biodiversity of microbial communities and the presence of many types of ARGs in soil are affected by agricultural and human activities. It is worth emphasizing that studies on ARGs in soil have resulted in the discovery of new genes and enzymes responsible for bacterial resistance to antibiotics. However, many ambiguous results indicate that precise estimation of the impact of antibiotics on the activity and diversity of soil microbial communities is a great challenge. | 2019 | 30906284 |
| 6432 | 17 | 0.9998 | Antibiotic resistance genes in the coastal atmosphere under varied weather conditions: Distribution, influencing factors, and transmission mechanisms. Antibiotic resistance genes (ARGs) have escalated to levels of concern worldwide as emerging environmental pollutants. Increasing evidence suggests that non-antibiotic antimicrobial substances expedite the spread of ARGs. However, the drivers and mechanisms involved in the generation and spread of ARGs in the atmosphere remain inadequately elucidated. Co-occurrence networks, mantel test analysis, and partial least squares path modeling were used to analyze the symbiotic relationships of ARGs with meteorological conditions, atmospheric pollutants, water-soluble inorganic ions, bacteria, mobile genetic elements (MGEs), antibacterial biocide and metal resistance genes, and to identify the direct drivers of ARGs. The types and abundance of ARGs exhibited different seasonal distribution. Specifically, the types exhibited a strong alignment with the diversity of air masses terrestrial sources, while the abundance displayed a significant positive correlation with both biocide resistance genes (BRGs) and metal resistance genes (MRGs). The contribution of bacterial communities and MGEs to the generation and spread of ARGs was constrained by the low levels of antibiotics in the atmosphere and the existence of "viral intermediates". Conversely, antibacterial biocides and metals influenced mutation rates, cellular SOS responses, and oxidative stress of bacteria, consequently facilitating the generation and spread of ARGs. Moreover, the co-selection among their derivatives, resistance genes, ensured a stable presence of ARGs. The research highlighted the significant impact of residual antimicrobial substances on both the generation and spread of ARGs. Elucidating the sources of aerosols and the co-selection mechanism linking with ARGs, BRGs, and MRGs were crucial for preserving the stability of ARGs in the atmosphere. | 2025 | 39824332 |
| 7504 | 18 | 0.9998 | Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater: A review. Antibiotic resistance genes (ARGs) in water environment have become a global health concern. Swine wastewater is widely considered to be one of the major contributors for promoting the proliferation of ARGs in water environments. This paper comprehensively reviews and discusses the occurrence and removal of ARGs in anaerobic treatment of swine wastewater, and contributions of antibiotics to the fate of ARGs. The results reveal that ARGs' removal is unstable during anaerobic processes, which negatively associated with the presence of antibiotics. The abundance of bacteria carrying ARGs increases with the addition of antibiotics and results in the spread of ARGs. The positive relationship was found between antibiotics and the abundance and transfer of ARGs in this review. However, it is necessary to understand the correlation among antibiotics, ARGs and microbial communities, and obtain more knowledge about controlling the dissemination of ARGs in the environment. | 2020 | 31917094 |
| 7430 | 19 | 0.9998 | Sources of Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARGs) in the Soil: A Review of the Spreading Mechanism and Human Health Risks. Soil is an essential part of our ecosystem and plays a crucial role as a nutrient source, provides habitat for plants and other organisms. Overuse of antibiotics has accelerated the development and dissemination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). ARB and ARGs are recognized as emerging environmental contaminants causing soil pollution and serious risks to public health. ARB and ARGs are discharged into soils through several pathways. Application of manure in agriculture is one of the primary sources of ARB and ARGs dissemination in the soil. Different sources of contamination by ARB and ARGs were reviewed and analyzed as well as dissemination mechanisms in the soil. The effects of ARB and ARGs on soil bacterial community were evaluated. Furthermore, the impact of different sources of manure on soil microbial diversity as well as the effect of antibiotics on the development of ARB and ARGs in soils was analyzed. Human health risk assessments associated with the spreading of ARB and ARGs in soils were investigated. Finally, recommendations and mitigation strategies were proposed. | 2021 | 33948742 |