Genetic compatibility and ecological connectivity drive the dissemination of antibiotic resistance genes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
748001.0000Genetic compatibility and ecological connectivity drive the dissemination of antibiotic resistance genes. The dissemination of mobile antibiotic resistance genes (ARGs) via horizontal gene transfer is a significant threat to public health globally. The flow of ARGs into and between pathogens, however, remains poorly understood, limiting our ability to develop strategies for managing the antibiotic resistance crisis. Therefore, we aim to identify genetic and ecological factors that are fundamental for successful horizontal ARG transfer. We used a phylogenetic method to identify instances of horizontal ARG transfer in ~1 million bacterial genomes. This data was then integrated with >20,000 metagenomes representing animal, human, soil, water, and wastewater microbiomes to develop random forest models that can reliably predict horizontal ARG transfer between bacteria. Our results suggest that genetic incompatibility, measured as nucleotide composition dissimilarity, negatively influences the likelihood of transfer of ARGs between evolutionarily divergent bacteria. Conversely, environmental co-occurrence increases the likelihood, especially in humans and wastewater, in which several environment-specific dissemination patterns are observed. This study provides data-driven ways to predict the spread of ARGs and provides insights into the mechanisms governing this evolutionary process.202540090954
747911.0000Metagenomic investigation reveals bacteriophage-mediated horizontal transfer of antibiotic resistance genes in microbial communities of an organic agricultural ecosystem. Antibiotic resistance has become a serious health concern worldwide. The potential impact of viruses, bacteriophages in particular, on spreading antibiotic resistance genes is still controversial due to the complexity of bacteriophage-bacterial interactions within diverse environments. In this study, we determined the microbiome profiles and the potential antibiotic resistance gene (ARG) transfer between bacterial and viral populations in different agricultural samples using a high-resolution analysis of the metagenomes. The results of this study provide compelling genetic evidence for ARG transfer through bacteriophage-bacteria interactions, revealing the inherent risks associated with bacteriophage-mediated ARG transfer across the agricultural microbiome.202337754684
748221.0000Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. The spread of antibiotic resistance genes (ARGs) poses a substantial threat to human health. Phage-mediated transduction could exacerbate ARG transmission. While several case studies exist, it is yet unclear to what extent phages encode and mobilize ARGs at the global scale and whether human impacts play a role in this across different habitats. Here, we combine 38,605 bacterial genomes, 1432 metagenomes, and 1186 metatranscriptomes across 12 contrasting habitats to explore the distribution of prophages and their cargo ARGs in natural and human-impacted environments. Worldwide, we observe a significant increase in the abundance, diversity, and activity of prophage-encoded ARGs in human-impacted habitats linked with relatively higher risk of past antibiotic exposure. This effect was driven by phage-encoded cargo ARGs that could be mobilized to provide increased resistance in heterologous E. coli host for a subset of analyzed strains. Our findings suggest that human activities have altered bacteria-phage interactions, enriching ARGs in prophages and making ARGs more mobile across habitats globally.202439333115
748130.9999The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes. Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens. IMPORTANCE: The development of antibiotic resistance threatens our modern medical achievements. The dissemination of antibiotic resistance can be largely attributed to the transfer of bacterial mobile antibiotic resistance genes (ARGs). Revealing the transfer network of these genes in bacteria and the forces driving the gene flow is of great importance for controlling and predicting the emergence of antibiotic resistance in the clinic. Here, by analyzing tens of thousands of bacterial genomes and millions of human and animal gut bacterial genes, we reveal that the transfer of mobile ARGs is mainly controlled by bacterial phylogeny but under ecological constraints. We also found that dozens of ARGs are transferred between the human and animal gut and human pathogens. This work demonstrates the whole profile of mobile ARGs and their transfer network in bacteria and provides further insight into the evolution and spread of antibiotic resistance in nature.201627613679
402740.9999Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. A global rise in antimicrobial resistance among pathogenic bacteria has proved to be a major public health threat, with the rate of multidrug-resistant bacterial infections increasing over time. The gut microbiome has been studied as a reservoir of antibiotic resistance genes (ARGs) that can be transferred to bacterial pathogens via horizontal gene transfer (HGT) of conjugative plasmids and mobile genetic elements (the gut resistome). Advances in metagenomic sequencing have facilitated the identification of resistome modulators, including live microbial therapeutics such as probiotics and fecal microbiome transplantation that can either expand or reduce the abundances of ARG-carrying bacteria in the gut. While many different gut microbes encode for ARGs, they are not uniformly distributed across, or transmitted by, various members of the microbiome, and not all are of equal clinical relevance. Both experimental and theoretical approaches in microbial ecology have been applied to understand differing frequencies of ARG horizontal transfer between commensal microbes as well as between commensals and pathogens. In this commentary, we assess the evidence for the role of commensal gut microbes in encoding antimicrobial resistance genes, the degree to which they are shared both with other commensals and with pathogens, and the host and environmental factors that can impact resistome dynamics. We further discuss novel sequencing-based approaches for identifying ARGs and predicting future transfer events of clinically relevant ARGs from commensals to pathogens.202235332832
645550.9999Bacteriophages: Underestimated vehicles of antibiotic resistance genes in the soil. Bacteriophages (phages), the most abundant biological entities on Earth, have a significant effect on the composition and dynamics of microbial communities, biogeochemical cycles of global ecosystems, and bacterial evolution. A variety of antibiotic resistance genes (ARGs) have been identified in phage genomes in different soil samples. Phages can mediate the transfer of ARGs between bacteria via transduction. Recent studies have suggested that anthropogenic activities promote phage-mediated horizontal gene transfer events. Therefore, the role of phages in the dissemination of ARGs, which are a potential threat to human health, may be underestimated. However, the contribution of phages to the transfer of ARGs is still poorly understood. Considering the growing and wide concerns of antibiotic resistance, phages should be considered a research focus in the mobile resistome. This review aimed to provide an overview of phages as vehicles of ARGs in soil. Here, we summarized the current knowledge on the diversity and abundance of ARGs in soilborne phages and analyzed the contribution of phages to the horizontal transfer of ARGs. Finally, research deficiencies and future perspectives were discussed. This study provides a reference for preventing and controlling ARG pollution in agricultural systems.202235992716
747860.9999Global analysis of the metaplasmidome: ecological drivers and spread of antibiotic resistance genes across ecosystems. BACKGROUND: Plasmids act as vehicles for the rapid spread of antibiotic resistance genes (ARGs). However, few studies of the resistome at the community level distinguish between ARGs carried by mobile genetic elements and those carried by chromosomes, and these studies have been limited to a few ecosystems. This is the first study to focus on ARGs carried by the metaplasmidome on a global scale. RESULTS: This study shows that only a small fraction of the plasmids reconstructed from 27 ecosystems representing 9 biomes are catalogued in public databases. The abundance of ARGs harboured by the metaplasmidome was significantly explained by bacterial richness. Few plasmids with or without ARGs were shared between ecosystems or biomes, suggesting that plasmid distribution on a global scale is mainly driven by ecology rather than geography. The network linking plasmids to their hosts shows that these mobile elements have thus been shared between bacteria across geographically distant environmental niches. However, certain plasmids carrying ARGs involved in human health were identified as being shared between multiple ecosystems and hosted by a wide variety of hosts. Some of these mobile elements, identified as keystone plasmids, were characterised by an enrichment in antibiotic resistance genes (ARGs) and CAS-CRISPR components which may explain their ecological success. The ARGs accounted for 9.2% of the recent horizontal transfers between bacteria and plasmids. CONCLUSIONS: By comprehensively analysing the plasmidome content of ecosystems, some key habitats have emerged as particularly important for monitoring the spread of ARGs in relation to human health. Of particular note is the potential for air to act as a vector for long-distance transport of ARGs and accessory genes across ecosystems and continents. Video Abstract.202540108678
399370.9999Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Antibiotic resistance is a growing problem which threatens modern healthcare globally. Resistance has traditionally been viewed as a clinical problem, but recently non-clinical environments have been highlighted as an important factor in the dissemination of antibiotic resistance genes (ARGs). Horizontal gene transfer (HGT) events are likely to be common in aquatic environments; integrons in particular are well suited for mediating environmental dissemination of ARGs. A growing body of evidence suggests that ARGs are ubiquitous in natural environments. Particularly, elevated levels of ARGs and integrons in aquatic environments are correlated to proximity to anthropogenic activities. The source of this increase is likely to be routine discharge of antibiotics and resistance genes, for example, via wastewater or run-off from livestock facilities and agriculture. While very high levels of antibiotic contamination are likely to select for resistant bacteria directly, the role of sub-inhibitory concentrations of antibiotics in environmental antibiotic resistance dissemination remains unclear. In vitro studies have shown that low levels of antibiotics can select for resistant mutants and also facilitate HGT, indicating the need for caution. Overall, it is becoming increasingly clear that the environment plays an important role in dissemination of antibiotic resistance; further studies are needed to elucidate key aspects of this process. Importantly, the levels of environmental antibiotic contamination at which resistant bacteria are selected for and HGT is facilitated at should be determined. This would enable better risk analyses and facilitate measures for preventing dissemination and development of antibiotic resistance in the environment.201526356096
400880.9999Impacts of mobile genetic elements on antimicrobial resistance genes in gram-negative pathogens: Current insights and genomic approaches. Antimicrobial resistance threatens to take 10 million lives per year by 2050. It is a recognised global health crisis and understanding the historic and current spread of resistance determinants is important for informing surveillance and control measures. The 'inheritance' of resistance is difficult to track because horizontal transfer is common. Antimicrobial resistance genes (ARGs) spread rapidly between bacteria, plasmids and chromosomes due to different mobile genetic elements (MGEs). This movement can increase the range of species carrying an ARG, simplify acquisition of multi-resistance, or otherwise alter the selective advantage associated with carriage of the ARG. MGE activity is therefore a significant factor in understanding routes of ARG dissemination. Characterising the combinations of MGEs contributing to the movement of individual ARGs is crucial. Each MGE category has unique genetic characteristics, and distinct impacts on the location and expression of associated ARGs. Here, the ways in which MGEs can meaningfully associate with ARGs are discussed. Approaches for extracting information about MGE associations from bacterial genome sequences are also considered. Accurate and informative annotations of the genetic contexts of relevant ARGs provide crucial insight into the presence of MGEs and their locations relative to ARGs. Combining this genomic information with knowledge about relevant biological processes allows more accurate conclusions to be drawn about transmission and dissemination of ARGs.202641005125
399690.9999Antibiotic resistance gene spread due to manure application on agricultural fields. The usage of antibiotics in animal husbandry has promoted the development and abundance of antibiotic resistance in farm environments. Manure has become a reservoir of resistant bacteria and antibiotic compounds, and its application to agricultural soils is assumed to significantly increase antibiotic resistance genes and selection of resistant bacterial populations in soil. The genome location of resistance genes is likely to shift towards mobile genetic elements such as broad-host-range plasmids, integrons, and transposable elements. Horizontal transfer of these elements to bacteria adapted to soil or other habitats supports their environmental transmission independent of the original host. The human exposure to soil-borne resistance has yet to be determined, but is likely to be severely underestimated.201121546307
7467100.9999Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. The high frequency of antibiotic resistance is a global public health concern. More seriously, widespread metal pressure in the environment may facilitate the proliferation of antibiotic resistance via coselection of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs). Given the lack of comprehensive understanding of the ARG and MRG coselection, in this study both abundance relationship and genetic linkage between ARGs and MRGs were rigorously investigated by performing a genomic analysis of a large complete genome collection. Many more ARGs were enriched in human-associated bacteria compared with those subjected to less anthropogenic interference. The signatures of ARG and MRG co-occurrence were much more frequent and the distance linkages between ARGs and MRGs were much more intimate in human pathogens than those less human-associated bacteria. Moreover, the co-occurrence structures in the habitat divisions were significantly different, which could be attributed to their distinct gene transfer potentials. More exogenous ARGs and MRGs on the genomes of human pathogens indicated the importance of recent resistance acquisition in resistome development of human commensal flora. Overall, the study emphasizes the potential risk associated with ARG and MRG coselection of both environmental and medical relevance.201727959344
4007110.9999Detecting horizontal gene transfer among microbiota: an innovative pipeline for identifying co-shared genes within the mobilome through advanced comparative analysis. Horizontal gene transfer (HGT) is a key driver in the evolution of bacterial genomes. The acquisition of genes mediated by HGT may enable bacteria to adapt to ever-changing environmental conditions. Long-term application of antibiotics in intensive agriculture is associated with the dissemination of antibiotic resistance genes among bacteria with the consequences causing public health concern. Commensal farm-animal-associated gut microbiota are considered the reservoir of the resistance genes. Therefore, in this study, we identified known and not-yet characterized mobilized genes originating from chicken and porcine fecal samples using our innovative pipeline followed by network analysis to provide appropriate visualization to support proper interpretation.202438099617
7465120.9999Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors. The inadequate elimination of micropollutants in wastewater treatment plants (WWTP), cause to increase in the incidence of antibiotic resistant bacterial strains. Growth of microbial pathogens in WWTP is one of the serious public health problems. The widespread and simultaneous emergence of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment with heavy metals create persistent and selective pressure for co-selection of both genes on environmental microorganisms. Co-localization of ARGs and HMRGs on the same horizontal mobile genetic elements (MGEs) allows the spreading of numerous antibiotic-resistant strains of bacteria in aquatic and terrestrial environment. The biofilm formation and colonization potential of environmental bacteria leads to the co-selection of multi-antibiotic resistance and multi-metal tolerance. Horizontal gene transfer (HGT), co-localization of both ARGs and HMRGs on the same MGEs, and the shared resistomes are important bacteria-associated ecological risks factors, which reduce the effectiveness of antibiotics against bacterial infections.202336805463
3997130.9999Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. The high and sometimes inappropriate use of antibiotics has accelerated the development of antibiotic resistance, creating a major challenge for the sustainable treatment of infections world-wide. Bacterial communities often respond to antibiotic selection pressure by acquiring resistance genes, i.e. mobile genetic elements that can be shared horizontally between species. Environmental microbial communities maintain diverse collections of resistance genes, which can be mobilized into pathogenic bacteria. Recently, exceptional environmental releases of antibiotics have been documented, but the effects on the promotion of resistance genes and the potential for horizontal gene transfer have yet received limited attention. In this study, we have used culture-independent shotgun metagenomics to investigate microbial communities in river sediments exposed to waste water from the production of antibiotics in India. Our analysis identified very high levels of several classes of resistance genes as well as elements for horizontal gene transfer, including integrons, transposons and plasmids. In addition, two abundant previously uncharacterized resistance plasmids were identified. The results suggest that antibiotic contamination plays a role in the promotion of resistance genes and their mobilization from environmental microbes to other species and eventually to human pathogens. The entire life-cycle of antibiotic substances, both before, under and after usage, should therefore be considered to fully evaluate their role in the promotion of resistance.201121359229
7468140.9999Enrofloxacin-induced transfer of multiple-antibiotic resistance genes and emergence of novel resistant bacteria in red swamp crayfish guts and pond sediments. Antibiotic resistance genes (ARGs) can be transferred from environmental microbes to human pathogens, thus leading to bacterial infection treatment failures. The aquaculture polluted by over-used antibiotics is considered as a notorious reservoir of ARGs. However, the origin, diachronic changes, and mobility of ARGs under antibiotic exposure in aquaculture systems remain elusive. Our findings showed that enrofloxacin application also increased the relative abundance of various ARGs in addition to quinolone-resistance genes and induced ARG dissemination in crayfish gut and sediment bacteria. Further investigation indicated that the transposase-mediated recombination was the major driver of horizontal gene transfer (HGT) of ARGs under antibiotic stress. Notably, enrofloxacin application also induced the generation of some metagenome-assembled genomes (MAGs) carrying multiple ARGs, which were identified as novel species. Additionally, Enterobacteriaceae constituted a mobile ARG pool in aquaculture. Therefore, aquaculture provides potential wide environmental pathways for generation and spread of antibiotic resistance. Our findings of ARG temporal variations and dissemination pattern in aquaculture with artificial use of antibiotics are critical to the management of antibiotic resistance, which is of great ecosystem and health implications.202336356515
3974150.9998Detection of multidrug resistant pathogenic bacteria and novel complex class 1 integrons in campus atmospheric particulate matters. Recent advances provided overwhelming evidence that atmospheric particulate matters carry a substantial amount of antibiotic resistance genes (ARGs). It has also been documented that polluted air facilitates transmission of bacterial pathogenesis and antimicrobial resistance (AMR). These investigations generally used culture-independent approaches which reveal sophisticated microbiomic and resistomic compositions in particulate matters, while culture-dependent methods directly demonstrating presence of live, functional bacteria has not been fully applied. In recent years, efforts undertaken worldwide managed to reduce air particulate matter pollution, leading to cleaner air in many parts of world, including China. Whether atmospheric particulate matters may still function as vehicles for pathogenic bacteria and AMR in improving air conditions is turning into an interesting question to address. In attempt to answer this question, a culture-dependent approach is used to find out the putative role of atmospheric particulate matters in relatively 'clean' air to transmit pathogenic bacteria and AMR in this work. By harvesting particulate matters in an unindustrialized and less-polluted university campus, culturing and identifying bacteria in particulate matters, and characterizing pathogenesis and AMR properties of these bacteria, interesting findings were made that even in relatively 'clean' air, antibiotic-resistant pathogenic bacteria are prevalent; and that mobile genetic elements including integrons are widespread. In particular, in air samples collected, multidrug-resistant hemolytic Bacillus strains that may pose significant health threat could be identified. Complex class 1 integrons, two of which carry novel antibiotic resistant gene cassette arrays, were also found for the first time in airborne bacteria, suggesting the danger of horizontal transfer of AMR in air. In conclusion, using culture-dependent methods, this work shows that atmospheric particulate matters are viable vehicles for the transmission of bacterial pathogenesis and AMR, and that even in relatively 'clean' air, the threat of airborne antibiotic-resistant pathogens is significant.202336155039
3999160.9998Plasmid-Mediated Transfer of Antibiotic Resistance Genes in Soil. Due to selective pressure from the widespread use of antibiotics, antibiotic resistance genes (ARGs) are found in human hosts, plants, and animals and virtually all natural environments. Their migration and transmission in different environmental media are often more harmful than antibiotics themselves. ARGs mainly move between different microorganisms through a variety of mobile genetic elements (MGEs), such as plasmids and phages. The soil environment is regarded as the most microbially active biosphere on the Earth's surface and is closely related to human activities. With the increase in human activity, soils are becoming increasingly contaminated with antibiotics and ARGs. Soil plasmids play an important role in this process. This paper reviews the current scenario of plasmid-mediated migration and transmission of ARGs in natural environments and under different antibiotic selection pressures, summarizes the current methods of plasmid extraction and analysis, and briefly introduces the mechanism of plasmid splice transfer using the F factor as an example. However, as the global spread of drug-resistant bacteria has increased and the knowledge of MGEs improves, the contribution of soil plasmids to resistance gene transmission needs to be further investigated. The prevalence of multidrug-resistant bacteria has also made the effective prevention of the transmission of resistance genes through the plasmid-bacteria pathway a major research priority.202235453275
4028170.9998Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Infections caused by antibiotic-resistant bacteria are a major threat to public health. The pathogens causing these infections can acquire antibiotic resistance genes in a process termed horizontal gene transfer (HGT). HGT is a common event in the human gut microbiome, that is, the microbial ecosystem of the human intestinal tract. HGT in the gut microbiome can occur via different mechanisms of which transduction and conjugation have been best characterised. Novel bioinformatic tools and experimental approaches have been developed to determine the association of antibiotic resistance genes with their microbial hosts and to quantify the extent of HGT in the gut microbiome. Insights from studies into HGT in the gut microbiome may lead to the development of novel interventions to minimise the spread of antibiotic resistance genes among commensals and opportunistic pathogens.202032143027
6402180.9998Livestock and poultry breeding farms as a fixed and underestimated source of antibiotic resistance genes. The excessive use of antibiotics, disinfectants, and drugs in livestock and poultry breeding has resulted in a rise in the presence of antibiotic resistance genes (ARGs). Antibiotic-resistant bacteria (ARB) and ARGs have been widely found in animal feces, farm wastewater, and farm air. ARGs can not only spread across media through adsorption and migration, but also transfer resistance across bacterial genera through horizontal gene transfer. Livestock breeding has become a fixed and unavoidable source of ARGs in the environment. Existing technologies for controlling ARGs, such as composting, disinfection, and sewage treatment, are not efficient in removing ARB and ARGs from waste. Furthermore, the remaining ARGs still possess a strong capacity for dissemination. At present, antibiotics used in animal husbandry are difficult to replace in a short period of time. The growth and potential risks of resistance genes in livestock and poultry breeding sources in the receiving environment are not yet clear. In this paper, we summarize the current situation of ARGs in the livestock and poultry breeding environment. We also explain the key environmental processes, main influencing factors, and corresponding ecological risks associated with ARGs in this environment. The advantages and disadvantages of current technologies for the removal of ARGs are primarily discussed. There is a particular emphasis on clarifying the spatiotemporal evolution patterns and environmental process mechanisms of ARGs, as well as highlighting the importance and urgency of developing efficient pollution control technologies.202439052112
4102190.9998Forces shaping the antibiotic resistome. Antibiotic resistance has become a problem of global scale. Resistance arises through mutation or through the acquisition of resistance gene(s) from other bacteria in a process called horizontal gene transfer (HGT). While HGT is recognized as an important factor in the dissemination of resistance genes in clinical pathogens, its role in the environment has been called into question by a recent study published in Nature. The authors found little evidence of HGT in soil using a culture-independent functional metagenomics approach, which is in contrast to previous work from the same lab showing HGT between the environment and human microbiome. While surprising at face value, these results may be explained by the lack of selective pressure in the environment studied. Importantly, this work suggests the need for careful monitoring of environmental antibiotic pollution and stringent antibiotic stewardship in the fight against resistance.201425213620