# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7460 | 0 | 1.0000 | Mitigation of antimicrobial resistance genes in greywater treated at household level. Greywater often contains microorganisms carrying antimicrobial resistance genes (ARGs). Reuse of greywater thus potentially facilitates the enrichment and spread of multidrug resistance, posing a possible hazard for communities that use it. As water reuse becomes increasingly necessary, it is imperative to determine how greywater treatment impacts ARGs. In this study, we characterize ARG patterns in greywater microbial communities before and after treatment by a recirculating vertical flow constructed wetland (RVFCW). This greywater recycling method has been adopted by some small communities and households for greywater treatment; however, its ability to remove ARGs is unknown. We examined the taxonomic and ARG compositions of microbial communities in raw and treated greywater from five households using shotgun metagenomic sequencing. Total ARGs decreased in abundance and diversity in greywater treated by the RVFCW. In parallel, the microbial communities decreased in similarity in treated greywater. Potentially pathogenic bacteria associated with antimicrobial resistance and mobile genetic elements were detected in both raw and treated water, with a decreasing trend after treatment. This study indicates that RVFCW systems have the potential to mitigate antimicrobial resistance-related hazards when reusing treated greywater, but further measures need to be taken regarding persistent mobile ARGs and potential pathogens. | 2023 | 37225100 |
| 7508 | 1 | 0.9996 | Residual chlorine persistently changes antibiotic resistance gene composition and increases the risk of antibiotic resistance in sewer systems. During the COVID-19 pandemic, excessive amounts of disinfectants and their transformation products entered sewer systems worldwide, which was an extremely rare occurrence before. The stress of residual chlorine and disinfection by-products is not only likely to promote the spread of antibiotic resistance genes (ARGs), but also leads to the enrichment of chlorine-resistant bacteria that may also be resistant to antibiotics. Therefore, the potential impact of such discharge on ARG composition should be studied and the health risks should be assessed. Thus, this study combined high-throughput 16S rRNA gene amplicon sequencing and metagenomic analysis with long-term batch tests that involved two stages of stress and recovery to comprehensively evaluate the impact of residual chlorine on the microbial community and ARG compositions in sewer systems. The tests demonstrated that the disturbance of the microbial community structure by residual chlorine was reversible, but the change in ARG composition was persistent. This study found that vertical propagation and horizontal gene transfer jointly drove ARG composition succession in the biofilm, while the driving force was mainly horizontal gene transfer in the sediment. In this process, the biocide resistance gene (BRG) subtype chtR played an important role in promoting co-selection with ARGs through plasmids and integrative and conjugative elements. Moreover, it was further shown that the addition of sodium hypochlorite increased the risk of ARGs to human health, even after discontinuation of dosing, signifying that the impact was persistent. In general, this study strengthens the co-selection theory of ARGs and BRGs, and calls for improved disinfection strategies and more environmentally friendly disinfectants. | 2023 | 37738943 |
| 7513 | 2 | 0.9996 | Contribution of microplastic particles to the spread of resistances and pathogenic bacteria in treated wastewaters. Microplastic Particles (MPs) are ubiquitous pollutants widely found in aquatic ecosystems. Although MPs are mostly retained in wastewater treatment plants (WWTPs), a high number of MPs reaches the open waters potentially contributing to the spread of pathogenic bacteria and antibiotic resistance genes in the environment. Nowadays, a limited number of studies have focused on the role of MPs as carriers of potentially pathogenic and antibiotic resistant bacteria in WWTPs. Thus, an investigation on the community composition (by 16S rRNA gene amplicon sequencing) and the abundance of antibiotic and metal resistance genes (by qPCR) of the biofilm on MPs (the plastisphere) and of planktonic bacteria in treated (pre- and post-disinfection) wastewaters was performed. MPs resulted to be very similar in terms of type, color, size, and chemical composition, before and after the disinfection. The bacterial community on MPs differed from the planktonic community in terms of richness, composition, and structure of the community network. Potentially pathogenic bacteria generally showed higher abundances in treated wastewater than in the biofilm on MPs. Furthermore, among the tested resistance genes, only sul2 (a common resistance gene against sulfonamides) resulted to be more abundant in the plastisphere than in the planktonic bacterial community. Our results suggest that the wastewater plastisphere could promote the spread of pathogenic bacteria and resistance genes in aquatic environment although with a relatively lower contribution than the wastewater planktonic bacterial community. | 2021 | 34186288 |
| 7506 | 3 | 0.9996 | Risk assessment and dissemination mechanism of antibiotic resistance genes in compost. In recent years, the excessive of antibiotics in livestock and poultry husbandry, stemming from extensive industry experience, has resulted in the accumulation of residual antibiotics and antibiotic resistance genes (ARGs) in livestock manure. Composting, as a crucial approach for the utilization of manure resources, has the potential to reduce the levels of antibiotics and ARGs in manure, although complete elimination is challenging. Previous studies have primarily focused on the diversity and abundance of ARGs in compost or have solely examined the correlation between ARGs and their carriers, potentially leading to a misjudgment of the actual risk associated with ARGs in compost. To address this gap, this study investigated the transfer potential of ARGs in compost and their co-occurrence with opportunistic pathogenic bacteria by extensively analyzing metagenomic sequencing data of compost worldwide. The results demonstrated that the potential risk of ARGs in compost was significantly lower than in manure, suggesting that composting effectively reduces the risk of ARGs. Further analysis showed that the microbes shifted their life history strategy in manure and compost due to antibiotic pressure and formed metabolic interactions dominated by antibiotic-resistant microbes, increasing ARG dissemination frequency. Therefore, husbandry practice without antibiotic addition was recommended to control ARG evolution, dissemination, and abatement both at the source and throughout processing. | 2023 | 37562342 |
| 7514 | 4 | 0.9995 | Early and differential bacterial colonization on microplastics deployed into the effluents of wastewater treatment plants. Microbial colonization of microplastics (MPs) in aquatic ecosystems is a well-known phenomenon; however, there is insufficient knowledge of the early colonization phase. Wastewater treatment plant (WWTP) effluents have been proposed as important pathways for MPs entry and transport in aquatic environments and are hotspots of bacterial pathogens and antibiotic resistance genes (ARGs). This study aimed at characterizing bacterial communities in the early stage of biofilm formation on seven different types of MPs deployed in two different WWTPs effluents as well as measuring the relative abundance of two ARGs (sulI and tetM) on the tested MPs. Illumina Miseq sequencing of the 16S rRNA showed significant higher diversity of bacteria on MPs in comparison with free-living bacteria in the WWTP effluents. β-diversity analysis showed that the in situ environment (sampling site) and hydrophobicity, to a lesser extent, had a role in the early bacterial colonization phase. An early colonization phase MPs-core microbiome could be identified. Furthermore, specific core microbiomes for each type of polymer suggested that each type might select early attachment of bacteria. Although the tested WWTP effluent waters contained antibiotic resistant bacteria (ARBs) harboring the sulI and tetM ARGs, MPs concentrated ARBs harboring the sulI gene but not tetM. These results highlight the relevance of the early attachment phase in the development of bacterial biofilms on different types of MP polymers and the role that different types of polymers might have facilitating the attachment of specific bacteria, some of which might carry ARGs. | 2021 | 33246729 |
| 7461 | 5 | 0.9995 | Human- and infrastructure-associated bacteria in greywater. Greywater, the wastewater from sinks, showers and laundry, is an understudied environment for bacterial communities. Most greywater studies focus on quantifying pathogens, often via proxies used in other wastewater, like faecal indicator bacteria; there is a need to identify more greywater-appropriate surrogates, like Staphylococcus sp. Sequencing-based studies have revealed distinct communities in different types of greywater as well as in different parts of greywater infrastructure, including biofilms on pipes, holding tanks and filtration systems. The use of metagenomic sequencing provides high resolution on both the taxa and genes present, which may be of interest in cases like identifying pathogens and surrogates relevant to different matrices, monitoring antibiotic resistance genes and understanding metabolic processes occurring in the system. Here, we review what is known about bacterial communities in different types of greywater and its infrastructure. We suggest that wider adoption of environmental sequencing in greywater research is important because it can describe the entire bacterial community along with its metabolic capabilities, including pathways for removal of nutrients and organic materials. We briefly describe a metagenomic dataset comparing different types of greywater samples in a college dormitory building to highlight the type of questions these methods can address. Metagenomic sequencing can help further the understanding of greywater treatment for reuse because it allows for identification of new pathogens or genes of concern. | 2021 | 33905584 |
| 7337 | 6 | 0.9995 | Chlorine disinfection modifies the microbiome, resistome and mobilome of hospital wastewater - A nanopore long-read metagenomic approach. The aim of the present study was to analyze changes in the microbiome, resistome, and mobilome of hospital wastewater (HWW) induced by disinfection with chlorine compounds. Changes in bacterial communities and specific antibiotic resistance genes (ARGs) in HWW were determined with the use of a nanopore long-read metagenomic approach. The main hosts of ARGs in HWW were identified, and the mobility of resistance mechanisms was analyzed. Special attention was paid to the prevalence of critical-priority pathogens in the HWW microbiome, which pose the greatest threat to human health. The results of this study indicate that chlorine disinfection of HWW can induce significant changes in the structure of the total bacterial population and antibiotic resistant bacteria (ARB) communities, and that it can modify the resistome and mobilome of HWW. Disinfection favored the selection of ARGs, decreased their prevalence in HWW, while increasing their diversity. The mobility of the HWW resistome increased after disinfection. Disinfection led to the emergence of new drug resistance mechanisms in previously sensitive bacterial taxa. In conclusion, this study demonstrated that HWW disinfected with low (sublethal) concentrations of free chlorine significantly contributes to the mobility and transfer of drug resistance mechanisms (including critical mechanisms) between bacteria (including pathogens). | 2023 | 37595469 |
| 7341 | 7 | 0.9995 | Metagenomic analysis of an urban resistome before and after wastewater treatment. Determining the effect of wastewater treatment in water resistome is a topic of interest for water quality, mainly under re-use and One-Health perspectives. The resistome, the plasmidome, and the bacterial community composition of samples from influents and treated effluents from a wastewater treatment plant located in Northern Portugal were studied using metagenomic techniques. Wastewater treatment contributed to reduce the abundance of resistance genes and of plasmid replicons, coinciding with a decline in the number of intrinsic resistance genes from Enterobacteriaceae, as well as with a reduction in the relative abundance of Firmicutes and Proteobacteria after treatment. These taxons comprise bacterial pathogens, including those belonging to the ESKAPE group, which encompasses bacteria with the highest risk of acquiring antibiotic resistance, being the most relevant hosts of resistance genes acquired through horizontal gene transfer. Our results support that wastewater treatment efficiently removes the hosts of antibiotic resistance genes and, consequently, the harboured antibiotic resistance genes. Principal component analysis indicates that the resistome and the bacterial composition clustered together in influent samples, while did not cluster in final effluent samples. Our results suggest that wastewater treatment mitigates the environmental dissemination of urban resistome, through the removal of the hosts harbouring mobile resistance genes. | 2020 | 32424207 |
| 7335 | 8 | 0.9995 | Wastewater bypass is a major temporary point-source of antibiotic resistance genes and multi-resistance risk factors in a Swiss river. Untreated combined sewage (bypass) is often discharged by wastewater treatment plants to receiving rivers during stormwater events, where it may contribute to increased levels of antibiotic resistance genes (ARGs) and multi-resistance risk factors (multi-resistant bacteria and multi-resistance genomic determinants (MGDs)) in the receiving water. Other contamination sources, such as soil runoff and resuspended river sediment could also play a role during stormwater events. Here we report on stormwater event-based sampling campaigns to determine temporal dynamics of ARGs and multi-resistance risk factors in bypass, treated effluent, and the receiving river, as well as complimentary data on catchment soils and surface sediments. Both indicator ARGs (qPCR) and resistome (ARG profiles revealed by metagenomics) indicated bypass as the main contributor to the increased levels of ARGs in the river during stormwater events. Furthermore, we showed for the first time that the risk of exposure to bypass-borne multi-resistance risk factors increase under stormwater events and that many of these MGDs were plasmid associated and thus potentially mobile. In addition, elevated resistance risk factors persisted for some time (up to 22 h) in the receiving water after stormwater events, likely due to inputs from distributed overflows in the catchment. This indicates temporal dynamics should be considered when interpreting the risks of exposure to resistance from event-based contamination. We propose that reducing bypass from wastewater treatment plants may be an important intervention option for reducing dissemination of antibiotic resistance. | 2022 | 34794019 |
| 6883 | 9 | 0.9995 | Metagenomic insights into the profile of antibiotic resistomes in sediments of aquaculture wastewater treatment system. To meet the rapidly growing global demand for aquaculture products, large amounts of antibiotics were used in aquaculture, which might accelerate the evolution of antibiotic-resistant bacteria (ARB) and the propagation of antibiotic genes (ARGs). In our research, we revealed the ARGs profiles, their co-occurrence with mobile genetic elements (MGEs), and potential hosts in sediments of a crab pond wastewater purification system based on metagenomic analysis. The residual antibiotic seems to increase the propagation of ARGs in the crab pond, but there was no clear relationship between a given antibiotic type and the corresponding resistance genes. The effect of aquaculture on sediment was not as profound as that of other anthropogentic activities, but increased the relative abundance of sulfonamide resistance gene. A higher abundance of MGEs, especially plasmid, increased the potential ARGs dissemination risk in crab and purification ponds. Multidrug and sulfonamide resistance genes had greater potential to transfer because they were more frequently carried by MGEs. The horizontal gene transfer was likely to occur among a variety of microorganisms, and various ARGs hosts including Pseudomonas, Acinetobacter, Escherichia, and Klebsiella were identified. Bacterial community influenced the composition of ARG hosts, and Proteobacteria was the predominant hosts. Overall, our study provides novel insights into the environmental risk of ARGs in sediments of aquaculture wastewater treatment system. | 2022 | 34963542 |
| 6977 | 10 | 0.9995 | Tracking virulence genes and their interaction with antibiotic resistome during manure fertilization. Antibiotic resistance genes, collectively termed as antibiotic resistome, are regarded as emerging contaminants. Antibiotics resistome can be highly variable in different environments, imposing environmental safety concern and public health risk when it is in conjunction with pathogenic bacteria. However, it remains elusive how pathogenic bacteria interact with antibiotic resistome, making it challenging to assess microbial risk. Here, we examined the presence and relative abundance of bacterial virulence genes representing potential pathogens in swine manure, compost, compost-amended soil, and unamended agricultural soil in five suburban areas of Beijing, China. The absolute abundances of virulence genes were marginally significantly (p < 0.100) increased in compost-amended soils than unamended soil, revealing potential health risks in manure fertilization. The composition of potential pathogens differed by sample types and was linked to temperature, antibiotics, and heavy metals. As antibiotics can confer pathogens the resistance to clinic treatment, it was alarming to note that virulence genes tended to co-exist with antibiotic resistance genes, as shown by prevalently positive links among them. Collectively, our results demonstrate that manure fertilization in agriculture might give rise to the development of potentially antibiotic-resistant pathogens, unveiling an environmental health risk that has been frequently overlooked. | 2022 | 35810986 |
| 6827 | 11 | 0.9995 | Metagenomic profiles of planktonic bacteria and resistome along a salinity gradient in the Pearl River Estuary, South China. Estuarine ecosystems undergo pronounced and intricate changes due to the mixing of freshwater and saltwater. Additionally, urbanization and population growth in estuarine regions result in shifts in the planktonic bacterial community and the accumulation of antibiotic resistance genes (ARGs). The dynamic changes in bacterial communities, environmental factors, and carriage of ARGs from freshwater to seawater, as well as the complex interrelationships among these factors, have yet to be fully elucidated. Here, we conducted a comprehensive study based on metagenomic sequencing and full-length 16S rRNA sequencing, covering the entire Pearl River Estuary (PRE) in Guangdong, China. The abundance and distribution of the bacterial community, ARGs, mobile genetic elements (MGEs), and bacterial virulence factors (VFs) were analyzed on a site-by-site basis through sampling along the salinity gradient in PRE, from upstream to downstream. The structure of the planktonic bacterial community undergoes continuous changes in response to variations in estuarine salinity, with the phyla Proteobacteria and Cyanobacteria being dominant bacterial throughout the entire region. The diversity and abundance of ARGs and MGEs gradually decreased with the direction of water flow. A large number of ARGs were carried by potentially pathogenic bacteria, especially in Alpha-proteobacteria and Beta-proteobacteria. Multi-drug resistance genes have the highest abundance and subtypes in PRE. In addition, ARGs are more linked to some MGEs than to specific bacterial taxa and disseminate mainly by HGT and not by vertical transfer in the bacterial communities. Various environmental factors, such as salinity and nutrient concentrations, have a significantly impact on the community structure and distribution of bacteria. In conclusion, our results represent a valuable resource for further investigating the intricate interplay between environmental factors and anthropogenic disturbances on bacterial community dynamics. Moreover, they contribute to a better understanding of the relative impact of these factors on the dissemination of ARGs. | 2023 | 37211102 |
| 6815 | 12 | 0.9995 | Bacterial community succession and the enrichment of antibiotic resistance genes on microplastics in an oyster farm. Microplastics can be colonized by microorganisms and form plastisphere. However, knowledge of bacterial community succession and the enrichment of antibiotic resistance genes (ARGs) and pathogens on microplastics in aquaculture environments is limited. Here, we conducted a 30-day continuous exposure experiment at an oyster farm. Results showed that the alpha-diversity of communities on most microplastics continuously increased and was higher than in planktonic communities after 14 days. Microplastics could selectively enrich certain bacteria from water which can live a sessile lifestyle and promote colonization by other bacteria. The composition and function of plastisphere communities were distinct from those in the surrounding water and influenced by polymer type and exposure time. Microplastics can enrich ARGs (sul1, qnrS and bla(TEM)) and harbor potential pathogens (e.g., Pseudomonas aeruginosa). Therefore, microplastic pollution may pose a critical threat to aquaculture ecosystems and human health. Our study provides further insight into the ecological risks of microplastics. | 2023 | 37611336 |
| 7342 | 13 | 0.9995 | Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant. The increased antibiotic resistance among microorganisms has resulted into growing interest for investigating the wastewater treatment plants (WWTPs) as they are reported to be the major source in the dissemination of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment. In this study, we investigated the prevalence and persistence of ARGs and HMRGs as well as bacterial diversity and mobile genetic elements (MGEs) in influent and effluent at the WWTP in Gwangju, South Korea, using high-throughput sequencing based metagenomic approach. A good number of broad-spectrum of resistance genes (both ARG and HMRG) were prevalent and likely persistent, although large portion of them were successfully removed at the wastewater treatment process. The relative abundance of ARGs and MGEs was higher in effluent as compared to that of influent. Our results suggest that the resistance genes with high abundance and bacteria harbouring ARGs and MGEs are likely to persist more through the treatment process. On analyzing the microbial community, the phylum Proteobacteria, especially potentially pathogenic species belonging to the genus Acinetobacter, dominated in WWTP. Overall, our study demonstrates that many ARGs and HMRGs may persist the treatment processes in WWTPs and their association to MGEs may contribute to the dissemination of resistance genes among microorganisms in the environment. | 2018 | 29858829 |
| 7338 | 14 | 0.9995 | Sensitivity and consistency of long- and short-read metagenomics and epicPCR for the detection of antibiotic resistance genes and their bacterial hosts in wastewater. Wastewater surveillance is a powerful tool to assess the risks associated with antibiotic resistance in communities. One challenge is selecting which analytical tool to deploy to measure risk indicators, such as antibiotic resistance genes (ARGs) and their respective bacterial hosts. Although metagenomics is frequently used for analyzing ARGs, few studies have compared the performance of long-read and short-read metagenomics in identifying which bacteria harbor ARGs in wastewater. Furthermore, for ARG host detection, untargeted metagenomics has not been compared to targeted methods such as epicPCR. Here, we 1) evaluated long-read and short-read metagenomics as well as epicPCR for detecting ARG hosts in wastewater, and 2) investigated the host range of ARGs across the wastewater treatment plant (WWTP) to evaluate host proliferation. Results highlighted long-read revealed a wider range of ARG hosts compared to short-read metagenomics. Nonetheless, the ARG host range detected by long-read metagenomics only represented a subset of the hosts detected by epicPCR. The ARG-host linkages across the influent and effluent of the WWTP were characterized. Results showed the ARG-host phylum linkages were relatively consistent across the WWTP, whereas new ARG-host species linkages appeared in the WWTP effluent. The ARG-host linkages of several clinically relevant species found in the effluent were identified. | 2024 | 38490149 |
| 6884 | 15 | 0.9995 | The changes in antibiotic resistance genes during 86 years of the soil ripening process without anthropogenic activities. This study aimed to reveal the baseline of natural variations in antibiotic resistance genes (ARGs) in soil without anthropogenic activities over the decades. Nine soil samples with different time of soil formation were taken from the Yancheng Wetland National Nature Reserve, China. ARGs and mobile genetic elements (MGEs) were characterized using metagenomic analysis. A total of 196 and 192 subtypes of ARGs were detected in bulk soil and rhizosphere, respectively. The diversity and abundance of ARGs were stable during 69 years probably due to the alkaline pH soil environment but not due to antibiotics. Increases in ARGs after 86 years were probably attributed to more migrant birds inhabited compared with other sampling sites. Multidrug was the most abundant type, and largely shared by soil samples. It was further shown that soil samples could not be clearly distinguished, suggesting a slow process of succession of ARGs in the mudflat. The variation partitioning analysis revealed that the ARG profile was driven by the comprehensive effects exhibited by the bacterial community, MGEs, and environmental factors. Besides, pathogenic bacteria containing ARGs mediated by migrant birds in the area with 86 years of soil formation history nearing human settlements needed special attention. This study revealed the slow variations in ARGs in the soil ripening process without anthropogenic activities over decades, and it provided information for assessing the effect of human activities on the occurrence and dissemination of ARGs. | 2021 | 33228990 |
| 7378 | 16 | 0.9995 | Role of endogenous soil microorganisms in controlling antimicrobial resistance after the exposure to treated wastewater. The reuse of treated wastewater (TWW) for irrigation appears to be a relevant solution to the challenges of growing water demand and scarcity. However, TWW contains not only micro-pollutants including pharmaceutical residues but also antibiotic resistant bacteria. The reuse of TWW could contribute to the dissemination of antimicrobial resistance in the environment. The purpose of this study was to assess if exogenous bacteria from irrigation waters (TWW or tap water-TP) affect endogenous soil microbial communities (from 2 soils with distinct irrigation history) and key antibiotic resistance gene sul1 and mobile genetic elements intl1 and IS613. Experiments were conducted in microcosms, irrigated in one-shot, and monitored for three months. Results showed that TP or TWW exposure induced a dynamic response of soil microbial communities but with no significant increase of resistance and mobile gene abundances. However, no significant differences were observed between the two water types in the current experimental design. Despite this, the 16S rDNA analysis of the two soils irrigated for two years either with tap water or TWW resulted in soil microbial community differentiation and the identification of biomarkers from Xanthomonadaceae and Planctomycetes families for soils irrigated with TWW. Low-diversity soils were more sensitive to the addition of TWW. Indeed, TWW exposure stimulated the growth of bacterial genera known to be pathogenic, correlating with a sharp increase in the copy number of selected resistance genes (up to 3 logs). These low-diversity soils could thus enable the establishment of exogenous bacteria from TWW which was not observed with native soils. In particular, the emergence of Planctomyces, previously suggested as a biomarker of soil irrigated by TWW, was here demonstrated. Finally, this study showed that water input frequency, initial soil microbial diversity and soil history drive changes within soil endogenous communities and the antibiotic resistance gene pool. | 2024 | 38703836 |
| 7454 | 17 | 0.9995 | Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. United States dairy operations use antibiotics (primarily β-lactams and tetracyclines) to manage bacterial diseases in dairy cattle. Antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARG) can be found in dairy manure and may contribute to the spread of antibiotic resistance (AR). Although β-lactam residues are rarely detected in dairy manure, tetracycline residues are common and perhaps persistent. Generally, <15% of bacterial pathogen dairy manure isolates are ARB, although resistance to some antibiotics (e.g., tetracycline) can be higher. Based on available data, the prevalence of medically important ARB on dairy operations is generally static or may be declining for antibiotic-resistant Staphylococcus spp. Over 60 ARG can be found in dairy manure (including β-lactam and tetracycline resistance genes), although correlations with antibiotic usage, residues, and ARB have been inconsistent, possibly because of sampling and analytical limitations. Manure treatment systems have not been specifically designed to mitigate AR, though certain treatments have some capacity to do so. Generally, well-managed aerobic compost treatments reaching higher peak temperatures (>60°C) are more effective at mitigating antibiotic residues than static stockpiles, although this depends on the antibiotic residue and their interactions. Similarly, thermophilic anaerobic digesters operating under steady-state conditions may be more effective at mitigating antibiotic residues than mesophilic or irregularly operated digesters or anaerobic lagoons. The number of ARB may decline during composting and digestion or be enriched as the bacterial communities in these systems shift, affecting relative ARG abundance or acquire ARG during treatment. Antibiotic resistance genes often persist through these systems, although optimal management and higher operating temperature may facilitate their mitigation. Less is known about other manure treatments, although separation technologies may be unique in their ability to partition antibiotic residues based on sorption and solubility properties. Needed areas of study include determining natural levels of AR in dairy systems, standardizing and optimizing analytical techniques, and more studies of operating on-farm systems, so that treatment system performance and actual human health risks associated with levels of antibiotic residues, ARB, and ARG found in dairy manure can be accurately assessed. | 2020 | 31837779 |
| 6876 | 18 | 0.9995 | Resistome and microbiome shifts in catfish rearing water: the influence of temperature and antibiotic treatments. The increasing reliance on aquaculture for sustainable protein production highlights the need for responsible antibiotic use to manage bacterial infections, particularly in intensive farming systems. This study investigated the effects of three FDA-approved antibiotics (Aquaflor®, Romet®, Terramycin®) at common fish bacterial disease outbreak temperatures (20 °C, 25 °C, and 30 °C) on the microbiome and resistome of aquaculture water using a catfish model system. Metagenomic analyses evaluated the abundance, diversity, and mobility of antimicrobial resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). The impact of temperature on Aquaflor- and Romet-induced changes in ARG abundance, richness, and resistome composition followed a U-shaped trend, with the least effect observed at 25 °C. Of the three antibiotics tested, Terramycin exerted the most significant influence on the water microbiome and resistome, enriching tetracycline resistance genes and co-selecting for floR, sul, and dfrA genes. Temperature also induced notable shifts in the ARB population, with Mantel tests revealing strong correlations between ARG profiles and changes in the overall bacterial community and ARB populations. While certain ARG classes consistently remained associated with specific host phyla, others shifted, highlighting the potential for horizontal gene transfer (HGT) as a critical mechanism for disseminating resistance genes like tet(C), particularly after antibiotic treatment. This is further supported by the observed reduction in plasmid numbers following treatment, which coincided with increased HGT events. Our findings highlight the pivotal role of temperature in influencing resistome dynamics, emphasizing the importance of accounting for environmental factors when applying antibiotics to effectively mitigate antimicrobial resistance in aquaculture systems. | 2025 | 40578104 |
| 6981 | 19 | 0.9995 | Decline in the Relative Abundance of Antibiotic Resistance Genes in Long-Term Fertilized Soil and Its Driving Factors. The changes in antibiotic resistance genes (ARGs) in long-term fertilized soil remain controversial. We aimed to analyze the variation characteristics of ARGs in long-term fertilized soil using metagenomic sequencing. The relative abundance of ARGs did not increase significantly after 7 years of fertilization. However, a clear decline in the relative abundance of ARGs was observed compared to the data from the 4th year. Microbial adaptation strategies in response to changes in the ARG abundance were associated with shifts in microbiome composition and function. Among these, bacterial abundance was the primary driving factor. Additionally, total heavy metal content might serve as the most significant co-selective pressure influencing ARG number. We believe that increasing the selective pressure from heavy metals and antibiotics might result in the loss of certain microbial species and a decrease in ARG abundance. This study provides novel insights into the variations of soil resistance genes under long-term fertilization. | 2025 | 40785530 |