# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7454 | 0 | 1.0000 | Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. United States dairy operations use antibiotics (primarily β-lactams and tetracyclines) to manage bacterial diseases in dairy cattle. Antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARG) can be found in dairy manure and may contribute to the spread of antibiotic resistance (AR). Although β-lactam residues are rarely detected in dairy manure, tetracycline residues are common and perhaps persistent. Generally, <15% of bacterial pathogen dairy manure isolates are ARB, although resistance to some antibiotics (e.g., tetracycline) can be higher. Based on available data, the prevalence of medically important ARB on dairy operations is generally static or may be declining for antibiotic-resistant Staphylococcus spp. Over 60 ARG can be found in dairy manure (including β-lactam and tetracycline resistance genes), although correlations with antibiotic usage, residues, and ARB have been inconsistent, possibly because of sampling and analytical limitations. Manure treatment systems have not been specifically designed to mitigate AR, though certain treatments have some capacity to do so. Generally, well-managed aerobic compost treatments reaching higher peak temperatures (>60°C) are more effective at mitigating antibiotic residues than static stockpiles, although this depends on the antibiotic residue and their interactions. Similarly, thermophilic anaerobic digesters operating under steady-state conditions may be more effective at mitigating antibiotic residues than mesophilic or irregularly operated digesters or anaerobic lagoons. The number of ARB may decline during composting and digestion or be enriched as the bacterial communities in these systems shift, affecting relative ARG abundance or acquire ARG during treatment. Antibiotic resistance genes often persist through these systems, although optimal management and higher operating temperature may facilitate their mitigation. Less is known about other manure treatments, although separation technologies may be unique in their ability to partition antibiotic residues based on sorption and solubility properties. Needed areas of study include determining natural levels of AR in dairy systems, standardizing and optimizing analytical techniques, and more studies of operating on-farm systems, so that treatment system performance and actual human health risks associated with levels of antibiotic residues, ARB, and ARG found in dairy manure can be accurately assessed. | 2020 | 31837779 |
| 7435 | 1 | 0.9999 | Insights into the impact of manure on the environmental antibiotic residues and resistance pool. The intensive use of antibiotics in the veterinary sector, linked to the application of manure-derived amendments in agriculture, translates into increased environmental levels of chemical residues, AR bacteria (ARB) and antibiotic resistance genes (ARG). The aim of this review was to evaluate the current evidence regarding the impact of animal farming and manure application on the antibiotic resistance pool in the environment. Several studies reported correlations between the prevalence of clinically relevant ARB and the amount and classes of antibiotics used in animal farming (high resistance rates being reported for medically important antibiotics such as penicillins, tetracyclines, sulfonamides and fluoroquinolones). However, the results are difficult to compare, due to the diversity of the used antimicrobials quantification techniques and to the different amounts and types of antibiotics, exhibiting various degradation times, given in animal feed in different countries. The soils fertilized with manure-derived products harbor a higher and chronic abundance of ARB, multiple ARG and an enriched associated mobilome, which is also sometimes seen in the crops grown on the amended soils. Different manure processing techniques have various efficiencies in the removal of antibiotic residues, ARB and ARGs, but there is only a small amount of data from commercial farms. The efficiency of sludge anaerobic digestion appears to be dependent on the microbial communities composition, the ARB/ARG and operating temperature (mesophilic vs. thermophilic conditions). Composting seems to reduce or eliminate most of antibiotics residues, enteric bacteria, ARB and different representative ARG in manure more rapidly and effectively than lagoon storage. Our review highlights that despite the body of research accumulated in the last years, there are still important knowledge gaps regarding the contribution of manure to the AMR emergence, accumulation, spread and risk of human exposure in countries with high clinical resistance rates. Land microbiome before and after manure application, efficiency of different manure treatment techniques in decreasing the AMR levels in the natural environments and along the food chain must be investigated in depth, covering different geographical regions and countries and using harmonized methodologies. The support of stakeholders is required for the development of specific best practices for prudent - cautious use of antibiotics on farm animals. The use of human reserve antibiotics in veterinary medicine and of unprescribed animal antimicrobials should be stopped and the use of antibiotics on farms must be limited. This integrated approach is needed to determine the optimal conditions for the removal of antibiotic residues, ARB and ARG, to formulate specific recommendations for livestock manure treatment, storage and handling procedures and to translate them into practical on-farm management decisions, to ultimately prevent exposure of human population. | 2022 | 36187968 |
| 7455 | 2 | 0.9999 | Lagoon, Anaerobic Digestion, and Composting of Animal Manure Treatments Impact on Tetracycline Resistance Genes. Increased demand for animal protein is met by increased food animal production resulting in large quantities of manure. Animal producers, therefore, need sustainable agricultural practices to protect environmental health. Large quantities of antimicrobials are used in commercial food animal production. Consequently, antimicrobial-resistant bacteria and the resistance genes emerge and are excreted through feces. Manure management is essential for the safe disposal of animal waste. Lagoons, with or without covers, and anaerobic digesters, with the primary purpose of methane production, and composting, with the primary purpose of producing organic fertilizer, are widely used methods of manure treatment. We reviewed manure management practices and their impact on tetracycline resistance genes. Lagoons are maintained at ambient temperatures; especially uncovered lagoons are the least effective in removing tetracycline resistance genes. However, some modifications can improve the performance of lagoons: sequential use of uncovered lagoons and the use of covered lagoons resulted in a one-log reduction, while post-treatments such as biofiltration following covered lagoon treatment resulted in 3.4 log reduction. Mesophilic digestion of animal manure did not have any significant effect; only a 0.7 log reduction in tet(A) was observed in one study. While thermophilic anaerobic digesters are effective, if properly operated, they are expensive for animal producers. Aerobic thermophilic composting is a promising technology if optimized with its economic benefits. Composting of raw animal manure can result in up to a 2.5 log reduction, and postdigestion composting can reduce tetracycline resistance gene concentration by >80%. In general, manure management was not designed to mitigate antimicrobial resistance; future research is needed to optimize the economic benefits of biogas or organic fertilizer on the one hand and for the mitigation of foodborne pathogens and antimicrobial resistance on the other. | 2022 | 35326854 |
| 7392 | 3 | 0.9999 | Distribution of genetic elements associated with antibiotic resistance in treated and untreated animal husbandry waste and wastewater. Animal breeding for meat production based on swine, cattle, poultry, and aquaculture is an activity that generates several impacts on the environment, among them the spread of antibiotic resistance. There is a worldwide concern related to the massive use of antibiotics, which causes selective pressure on the microbial community, triggering bacteria that contain "antibiotic resistance genes." According to the survey here presented, antibiotic resistance-related genes such as tetracyclines (tet), erythromycin (erm), and sulfonamides (sul), as well as the genetic mobile element interferon (int), are the most reported genetic elements in qualitative and quantitative studies of swine, cattle, poultry, and aquaculture manure/wastewater. It has been observed that biological treatments based on waste composting and anaerobic digestion are effective in ARG removal, particularly for tet, bla, erm, and qnr (quinolone) genes. On the other hand, sul and intI genes were more persistent in such treatments. Tertiary treatments, such advanced oxidative processes, are suitable strategies to improve ARG reduction. In general temperature, hydraulic retention time, and penetration of sunlight are the main operational parameters for ARG reduction in treatments applied to animal waste, and therefore attention should be addressed to optimize their efficacy regarding ARG removal. Despite being reduced, the presence of ARG in treated effluents and in biosolids indicates that there is a potential risk of antibiotic resistance spread in nature, especially through the release of treated livestock waste into the environment. | 2021 | 33835340 |
| 7431 | 4 | 0.9999 | Antibiotic Resistant Bacteria in Municipal Wastes: Is There Reason for Concern? Recently, there has been increased concern about the presence of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG), in treated domestic wastewaters, animal manures and municipal biosolids. The concern is whether these additional sources of ARB contribute to antibiotic resistance levels in the environment, that is, "environmental antibiotic resistance." ARB and ARG occur naturally in soil and water, and it remains unclear whether the introduction of ARB in liquid and solid municipal and animal wastes via land application have any significant impact on the background levels of antibiotic resistance in the environment, and whether they affect human exposure to ARB. In this current review, we examine and re-evaluate the incidence of ARB and ARG resulting from land application activities, and offer a new perspective on the threat of antibiotic resistance to public health via exposure from nonclinical environmental sources. Based on inputs of ARBs and ARGs from land application, their fate in soil due to soil microbial ecology principles, and background indigenous levels of ARBs and ARGs already present in soil, we conclude that while antibiotic resistance levels in soil are increased temporally by land application of wastes, their persistence is not guaranteed and is in fact variable, and often contradictory based on application site. Furthermore, the application of wastes may not produce the most direct impact of ARGs and ARB on public health. Further investigation is still warranted in agriculture and public health, including continued scrutiny of antibiotic use in both sectors. | 2018 | 29505255 |
| 7434 | 5 | 0.9999 | Pig manure treatment strategies for mitigating the spread of antibiotic resistance. Due to the risk of pathogenic antibiotic-resistant bacteria and their antibiotic-resistance genes transfer from livestock feces to the soil and cultivated crops, it is imperative to find effective on-farm manure treatments to minimize that hazardous potential. An introduced worldwide policy of sustainable development, focus on ecological agricultural production, and the circular economy aimed at reducing the use of artificial fertilizers; therefore, such treatment methods should also maximize the fertilization value of animal manure. The two strategies for processing pig manure are proposed in this study-storage and composting. The present study examines the changes in the physicochemical properties of treated manure, in the microbiome, and in the resistome, compared to raw manure. This is the first such comprehensive analysis performed on the same batch of manure. Our results suggest that while none of the processes eliminates the environmental risk, composting results in a faster and more pronounced reduction of mobile genetic elements harboring antibiotic resistance genes, including those responsible for multi-drug resistance. Overall, the composting process can be an efficient strategy for mitigating the spread of antibiotic resistance in the environment and reducing the risk of its transfer to crops and the food chain while providing essential fertilizer ingredients. | 2023 | 37491438 |
| 7457 | 6 | 0.9999 | Metagenomic Insights Into the Changes of Antibiotic Resistance and Pathogenicity Factor Pools Upon Thermophilic Composting of Human Excreta. In times of climate change, practicing a form of sustainable, climate-resilient and productive agriculture is of primordial importance. Compost could be one form of sustainable fertilizer, which is increasing humus, water holding capacity, and nutrient contents of soils. It could thereby strengthen agriculture toward the adverse effects of climate change, especially when additionally combined with biochar. To get access to sufficient amounts of suitable materials for composting, resources, which are currently treated as waste, such as human excreta, could be a promising option. However, the safety of the produced compost regarding human pathogens, pharmaceuticals (like antibiotics) and related resistance genes must be considered. In this context, we have investigated the effect of 140- and 154-days of thermophilic composting on the hygienization of human excreta and saw dust from dry toilets together with straw and green cuttings with and without addition of biochar. Compost samples were taken at the beginning and end of the composting process and metagenomic analysis was conducted to assess the fate of antibiotic resistance genes (ARGs) and pathogenicity factors of the microbial community over composting. Potential ARGs conferring resistance to major classes of antibiotics, such as beta-lactam antibiotics, vancomycin, the MLS(B) group, aminoglycosides, tetracyclines and quinolones were detected in all samples. However, relative abundance of ARGs decreased from the beginning to the end of composting. This trend was also found for genes encoding type III, type IV, and type VI secretion systems, that are involved in pathogenicity, protein effector transport into eukaryotic cells and horizontal gene transfer between bacteria, respectively. The results suggest that the occurrence of potentially pathogenic microorganisms harboring ARGs declines during thermophilic composting. Nevertheless, ARG levels did not decline below the detection limit of quantitative PCR (qPCR). Thresholds for the usage of compost regarding acceptable resistance gene levels are yet to be evaluated and defined. | 2022 | 35432262 |
| 6977 | 7 | 0.9999 | Tracking virulence genes and their interaction with antibiotic resistome during manure fertilization. Antibiotic resistance genes, collectively termed as antibiotic resistome, are regarded as emerging contaminants. Antibiotics resistome can be highly variable in different environments, imposing environmental safety concern and public health risk when it is in conjunction with pathogenic bacteria. However, it remains elusive how pathogenic bacteria interact with antibiotic resistome, making it challenging to assess microbial risk. Here, we examined the presence and relative abundance of bacterial virulence genes representing potential pathogens in swine manure, compost, compost-amended soil, and unamended agricultural soil in five suburban areas of Beijing, China. The absolute abundances of virulence genes were marginally significantly (p < 0.100) increased in compost-amended soils than unamended soil, revealing potential health risks in manure fertilization. The composition of potential pathogens differed by sample types and was linked to temperature, antibiotics, and heavy metals. As antibiotics can confer pathogens the resistance to clinic treatment, it was alarming to note that virulence genes tended to co-exist with antibiotic resistance genes, as shown by prevalently positive links among them. Collectively, our results demonstrate that manure fertilization in agriculture might give rise to the development of potentially antibiotic-resistant pathogens, unveiling an environmental health risk that has been frequently overlooked. | 2022 | 35810986 |
| 7389 | 8 | 0.9998 | Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. The emerging environmental spread of antibiotic-resistance genes (ARGs) and their subsequent acquisition by clinically relevant microorganisms is a major threat to public health. Animal manure has been recognized as an important reservoir of ARGs; however, the dissemination of manure-derived ARGs and the impacts of manure application on the soil resistome remain obscure. Here, we conducted a microcosm study to assess the temporal succession of total bacteria and a broad spectrum of ARGs in two contrasting soils following manure application from cattle that had not been treated with antibiotics. High-capacity quantitative PCR detected 52 unique ARGs across all the samples, with β-lactamase as the most dominant ARG type. Several genes of soil indigenous bacteria conferring resistance to β-lactam, which could not be detected in manure, were found to be highly enriched in manure-treated soils, and the level of enrichment was maintained over the entire course of 140 days. The enriched β-lactam resistance genes had significantly positive relationships with the relative abundance of the integrase intI1 gene, suggesting an increasing mobility potential in manure-treated soils. The changes in ARG patterns were accompanied by a significant effect of cattle manure on the total bacterial community compositions. Our study indicates that even in the absence of selective pressure imposed by agricultural use of antibiotics, manure application could still strongly impact the abundance, diversity and mobility potential of a broad spectrum of soil ARGs. Our findings are important for reliable prediction of ARG behaviors in soil environment and development of appropriate strategies to minimize their dissemination. | 2016 | 26712351 |
| 7433 | 9 | 0.9998 | Manure as a Potential Hotspot for Antibiotic Resistance Dissemination by Horizontal Gene Transfer Events. The increasing demand for animal-derived foods has led to intensive and large-scale livestock production with the consequent formation of large amounts of manure. Livestock manure is widely used in agricultural practices as soil fertilizer worldwide. However, several antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria are frequently detected in manure and manure-amended soils. This review explores the role of manure in the persistence and dissemination of ARGs in the environment, analyzes the procedures used to decrease antimicrobial resistance in manure and the potential impact of manure application in public health. We highlight that manure shows unique features as a hotspot for antimicrobial gene dissemination by horizontal transfer events: richness in nutrients, a high abundance and diversity of bacteria populations and antibiotic residues that may exert a selective pressure on bacteria and trigger gene mobilization; reduction methodologies are able to reduce the concentrations of some, but not all, antimicrobials and microorganisms. Conjugation events are often seen in the manure environment, even after composting. Antibiotic resistance is considered a growing threat to human, animal and environmental health. Therefore, it is crucial to reduce the amount of antimicrobials and the load of antimicrobial resistant bacteria that end up in soil. | 2020 | 32823495 |
| 7452 | 10 | 0.9998 | Elevation of antibiotic resistance genes at cold temperatures: implications for winter storage of sludge and biosolids. Prior research suggests that cold temperatures may stimulate the proliferation of certain antibiotic resistance genes (ARGs) and gene transfer elements during storage of biosolids. This could have important implications on cold weather storage of biosolids, as often required in northern climates until a time suitable for land application. In this study, levels of an integron-associated gene (intI1) and an ARG (sul1) were monitored in biosolids subject to storage at 4, 10 and 20°C. Both intI1 and sul1 were observed to increase during short-term storage (<2 months), but the concentrations returned to background within 4 months. The increases in concentration were more pronounced at lower temperatures than ambient temperatures. Overall, the results suggest that cold stress may induce horizontal gene transfer of integron-associated ARGs and that biosolids storage conditions should be considered prior to land application. SIGNIFICANCE AND IMPACT OF THE STUDY: Wastewater treatment plants have been identified as the hot spots for the proliferation and dissemination of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) to the environment through discharge of treated effluent to water bodies as well as application of biosolids to land. Identifying critical control points within the treatment process may aid in the development of solutions for the reduction of ARGs and ARB and curbing the spread of antibiotic resistance. This study found increases in ARGs during biosolids storage and identifies changes in operational protocols that could help reduce ARG loading to the environment when biosolids are land-applied. | 2014 | 25196177 |
| 7506 | 11 | 0.9998 | Risk assessment and dissemination mechanism of antibiotic resistance genes in compost. In recent years, the excessive of antibiotics in livestock and poultry husbandry, stemming from extensive industry experience, has resulted in the accumulation of residual antibiotics and antibiotic resistance genes (ARGs) in livestock manure. Composting, as a crucial approach for the utilization of manure resources, has the potential to reduce the levels of antibiotics and ARGs in manure, although complete elimination is challenging. Previous studies have primarily focused on the diversity and abundance of ARGs in compost or have solely examined the correlation between ARGs and their carriers, potentially leading to a misjudgment of the actual risk associated with ARGs in compost. To address this gap, this study investigated the transfer potential of ARGs in compost and their co-occurrence with opportunistic pathogenic bacteria by extensively analyzing metagenomic sequencing data of compost worldwide. The results demonstrated that the potential risk of ARGs in compost was significantly lower than in manure, suggesting that composting effectively reduces the risk of ARGs. Further analysis showed that the microbes shifted their life history strategy in manure and compost due to antibiotic pressure and formed metabolic interactions dominated by antibiotic-resistant microbes, increasing ARG dissemination frequency. Therefore, husbandry practice without antibiotic addition was recommended to control ARG evolution, dissemination, and abatement both at the source and throughout processing. | 2023 | 37562342 |
| 6878 | 12 | 0.9998 | Reduction in antimicrobial resistance in a watershed after closure of livestock farms. Natural environments play a crucial role in transmission of antimicrobial resistance (AMR). Development of methods to manage antibiotic resistance genes (ARGs) in natural environments are usually limited to the laboratory or field scale, partially due to the complex dynamics of transmission between different environmental compartments. Here, we conducted a nine-year longitudinal profiling of ARGs at a watershed scale, and provide evidence that restrictions on livestock farms near water bodies significantly reduced riverine ARG abundance. Substantial reductions were revealed in the relative abundance of genes conferring resistance to aminoglycosides (42%), MLSB (36%), multidrug (55%), tetracyclines (53%), and other gene categories (59%). Additionally, improvements in water quality were observed, with distinct changes in concentrations of dissolved reactive phosphorus, ammonium, nitrite, pH, and dissolved oxygen. Antibiotic residues and other pharmaceuticals and personal care products (PPCPs) maintain at a similarly low level. Microbial source tracking demonstrates a significant decrease in swine fecal indicators, while human fecal pollution remains unchanged. These results suggest that the reduction in ARGs was due to a substantial reduction in input of antibiotic resistant bacteria and genes from animal excreta. Our findings highlight the watershed as a living laboratory for understanding the dynamics of AMR, and for evaluating the efficacy of environmental regulations, with implications for reducing environmental risks associated with AMR on a global scale. | 2024 | 38925006 |
| 7456 | 13 | 0.9998 | Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances. Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids. | 2017 | 27932039 |
| 7453 | 14 | 0.9998 | Long-term application of Swedish sewage sludge on farmland does not cause clear changes in the soil bacterial resistome. The widespread practice of applying sewage sludge to arable land makes use of nutrients indispensable for crops and reduces the need for inorganic fertilizer, however this application also provides a potential route for human exposure to chemical contaminants and microbial pathogens in the sludge. A recent concern is that such practice could promote environmental selection and dissemination of antibiotic resistant bacteria or resistance genes. Understanding the risks of sludge amendment in relation to antibiotic resistance development is important for sustainable agriculture, waste treatment and infectious disease management. To assess such risks, we took advantage of an agricultural field trial in southern Sweden, where land used for growing different crops has been amended with sludge every four years since 1981. We sampled raw, semi-digested and digested and stored sludge together with soils from the experimental plots before and two weeks after the most recent amendment in 2017. Levels of selected antimicrobials and bioavailable metals were determined and microbial effects were evaluated using both culture-independent metagenome sequencing and conventional culturing. Antimicrobials or bioavailable metals (Cu and Zn) did not accumulate to levels of concern for environmental selection of antibiotic resistance, and no coherent signs, neither on short or long time scales, of enrichment of antibiotic-resistant bacteria or resistance genes were found in soils amended with digested and stored sewage sludge in doses up to 12 metric tons per hectare. Likewise, only very few and slight differences in microbial community composition were observed after sludge amendment. Taken together, the current study does not indicate risks of sludge amendment related to antibiotic resistance development under the given conditions. Extrapolations should however be done with care as sludge quality and application practices vary between regions. Hence, the antibiotic concentrations and resistance load of the sludge are likely to be higher in regions with larger antibiotic consumption and resistance burden than Sweden. | 2020 | 32036119 |
| 7388 | 15 | 0.9998 | Poultry manure-derived microorganisms as a reservoir and source of antibiotic resistance genes transferred to soil autochthonous microorganisms. Animal husbandry is increasing yearly due to the growing demand for meat and livestock products, among other reasons. To meet these demands, prophylactic antibiotics are used in the livestock industry (i.e., poultry farming) to promote health and stimulate animal growth. However, antibiotics are not fully metabolized by animals, and they are evacuated to the environment with excreta. Animal manure is used as fertilizer to reduce the volume of waste generated in the livestock sector. However, manure often contains microorganisms harboring antibiotic resistance genes (ARGs). Then, the microbiome of manure applicate to the soil may contribute to the spread of antibiotic resistance in the environment, including autochthonous soil-dwelling microorganisms. The present study was conducted during the crops growing season in Poland (May to September 2019) to determine the influence of poultry manure as well as poultry manure supplemented with selected antibiotics on the diversity of the soil microbiome in treatments that had not been previously fertilized with manure and the ability of antibiotic-resistant bacteria to transfer ARGs to other soil bacteria. Antibiotic concentrations were elevated at the beginning of the study and decreased over time. Poultry manure induced significant changes in the structure of microbial communities in soil; the diversity of the soil microbiome decreased, and the abundance of bacterial genera Bradyrhizobium, Streptomyces, and Pseudomonas, which are characteristic of the analyzed manure, increased. Over time, soil microbial diversity was restored to the state observed before the application of manure. Genes conferring resistance to multiple drugs as well as genes encoding resistance to bacitracin and aminoglycosides were the most frequently identified ARGs in the analyzed bacteria, including on mobile genetic elements. Multidrug resistance was observed in 17 bacterial taxa, whereas ARGs were identified in 32 bacterial taxa identified in the soil microbiome. The results of the study conclude that the application of poultry manure supplemented with antibiotics initially affects soil microbiome and resistome diversity but finally, the soil shows resilience and returns to its original state after time, with most antibiotic resistance genes disappearing. This phenomenon is of great importance in sustainable soil health after manure application. | 2023 | 37832303 |
| 6976 | 16 | 0.9998 | Unveiling the critical role of overlooked consumer protist-bacteria interactions in antibiotic resistance gene dissemination in urban sewage systems. Antibiotic resistance genes (ARGs) are emerging contaminants of significant concern due to their role in facilitating the spread of antibiotic resistance, especially high-risk ARGs, which are characterized by high human accessibility, gene mobility, pathogenicity, and clinical availability. Studies have shown that cross-domain interactions, such as those between consumer protists (consumers) and bacteria, can influence bacterial diversity, distribution, and function through top-down control. The consumers-bacteria interactions may also affect the occurrence and distribution of ARGs, yet this has been scarcely explored in field investigations. We conducted a city-scale investigation of ARGs, protists, and bacterial communities across each unit of the urban sewage system (USS), including 49 sewage pumping stations (SW), as well as influent (IF), activated sludge (AS), and effluent (EF) from seven wastewater treatment plants. Interestingly, consumers-bacteria interactions, as indicated by indices of bipartite relevance networks (i.e., connectedness and cohesion), increased from SW and IF to AS and EF. Structural equation modelling (SEM) revealed that consumers-bacteria interactions had a greater influence on the abundance of total ARGs and high-risk ARGs than seasonal or environmental factors. Notably, the total effects of consumers-bacteria interactions in SEM were significant (P < 0.05) and comparable in both IF and EF, even with the decrease in ARG abundance from IF to EF. This suggests a potential risk of ARG spread to the environment, facilitated by consumer protists in the EF. Additionally, the relevance network also demonstrated an increasing trend in the relationships between consumer protists and potential hosts of high-risk ARGs from raw sewage (SW and IF) to AS and EF. Overall, this study emphasizes the importance of integrating multitrophic microbial interactions to better understand and mitigate the dissemination of ARGs in sewage systems. | 2025 | 39662352 |
| 7385 | 17 | 0.9998 | Soil-specific responses in the antibiotic resistome of culturable Acinetobacter spp. and other non-fermentative Gram-negative bacteria following experimental manure application. Acinetobacter spp. and other non-fermenting Gram-negative bacteria (NFGNB) represent an important group of opportunistic pathogens due to their propensity for multiple, intrinsic, or acquired antimicrobial resistance (AMR). Antimicrobial resistant bacteria and their genes can spread to the environment through livestock manure. This study investigated the effects of fresh manure from dairy cows under antibiotic prophylaxis on the antibiotic resistome and AMR hosts in microcosms using pasture soil. We specifically focused on culturable Acinetobacter spp. and other NFGNB using CHROMagar Acinetobacter. We conducted two 28-days incubation experiments to simulate natural deposition of fresh manure on pasture soil and evaluated the effects on antibiotic resistance genes (ARGs) and bacterial hosts through shotgun metagenomics. We found that manure application altered the abundance and composition of ARGs and their bacterial hosts, and that the effects depended on the soil source. Manure enriched the antibiotic resistome of bacteria only in the soil where native bacteria had a low abundance of ARGs. Our study highlights the role of native soil bacteria in modulating the consequences of manure deposition on soil and confirms the potential of culturable Acinetobacter spp. and other NFGNB to accumulate AMR in pasture soil receiving fresh manure. | 2023 | 37977851 |
| 7424 | 18 | 0.9998 | Fate of antibiotic resistance genes and antibiotic-resistant bacteria in water resource recovery facilities. Many important diseases are showing resistance to commonly used antibiotics, and the resistance is potentially caused by widespread use of antibiotics for maintaining human health and improving food production. Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) are associated with this increase, and their fate in water resource recovery facilities is an important, emerging area of research. This literature review summarizes current findings of worldwide research on the fate of ARB and ARGs in various types of treatment plants. Twenty-five published studies were reviewed which contained 215 observations in activated sludge, membrane bioreactors, anaerobic digestion, constructed wetlands, coagulation-filtration, and three types of disinfection. We found 70% decreased observations, 18% increased observations, and 12% unchanged observations of all observations in all treatment processes. Resistance genes to tetracycline were most often observed, but more studies are needed in other antibiotic resistance genes. The causes for increased abundance of ARGs and ARB are not well understood, and further studies are warranted. PRACTITIONER POINTS: Antibiotic resistance is increasing with concern that treatment plants may acclimate bacteria to antibiotics. A literature survey found 215 resistance observations with 70% decreased, 18% increased, 12% unchanged after treatment. The type of treatment process is important with activated sludge showing the greatest reductions. | 2019 | 30682226 |
| 7393 | 19 | 0.9998 | Fate and distribution of determinants of antimicrobial resistance in lateral flow sand filters used for treatment of domestic wastewater. Residuals of antimicrobial products from anthropogenic uses can create a selective environment in domestic wastewater treatment systems and receiving environments and contribute to the spread of antimicrobial resistance (AMR). On-site wastewater treatment systems are widely used for domestic wastewater management in rural and remote regions, but the fate of determinants of AMR in these types of environments has received little attention. In this study, the mechanisms responsible for the attenuation of determinants of AMR in lateral flow sand filters were explored using a combination of lab, field and modeling investigations. The degradation kinetics and adsorption potential in the sand filter medium of three antibiotic resistance genes (ARGs; sul1, tetO, and ermB) and culturable bacteria resistant to sulfamethoxazole, tetracycline, and erythromycin were measured using lab experiments. The spatial distribution of ARGs and antibiotic resistant bacteria were also assessed in field scale sand filters, and mechanistic modeling was conducted to characterize filtration processes. The results indicated that the primary mechanisms responsible for AMR attenuation within the sand filters were degradation and filtration. The spatial distribution of AMR determinants illustrated that attenuation was occurring along the entire length of each filter. This study provides new insights on primary mechanisms of AMR attenuation in on-site wastewater treatment systems and supports the use of conservative design guidelines and separation distances for reducing AMR transmission. | 2021 | 33636762 |