Performance of a constructed wetland in Grand Marais, Manitoba, Canada: Removal of nutrients, pharmaceuticals, and antibiotic resistance genes from municipal wastewater. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
744801.0000Performance of a constructed wetland in Grand Marais, Manitoba, Canada: Removal of nutrients, pharmaceuticals, and antibiotic resistance genes from municipal wastewater. BACKGROUND: The discharge of complex mixtures of nutrients, organic micropollutants, and antibiotic resistance genes from treated municipal wastewater into freshwater systems are global concerns for human health and aquatic organisms. Antibiotic resistance genes (ARGs) are genes that have the ability to impart resistance to antibiotics and reduce the efficacy of antibiotics in the systems in which they are found. In the rural community of Grand Marais, Manitoba, Canada, wastewater is treated passively in a sewage lagoon prior to passage through a treatment wetland and subsequent release into surface waters. Using this facility as a model system for the Canadian Prairies, the two aims of this study were to assess: (a) the presence of nutrients, micropollutants (i.e., pesticides, pharmaceuticals), and ARGs in lagoon outputs, and (b) their potential removal by the treatment wetland prior to release to surface waters in 2012. RESULTS: As expected, concentrations of nitrogen and phosphorus species were greatest in the lagoon and declined with movement through the wetland treatment system. Pharmaceutical and agricultural chemicals were detected at concentrations in the ng/L range. Concentrations of these compounds spiked downstream of the lagoon following discharge and attenuation was observed as the effluent migrated through the wetland system. Hazard quotients calculated for micropollutants of interest indicated minimal toxicological risk to aquatic biota, and results suggest that the wetland attenuated atrazine and carbamazepine significantly. There was no significant targeted removal of ARGs in the wetland and our data suggest that the bacterial population in this system may have genes imparting antibiotic resistance. CONCLUSIONS: The results of this study indicate that while the treatment wetland may effectively attenuate excess nutrients and remove some micropollutants and bacteria, it does not specifically target ARGs for removal. Additional studies would be beneficial to determine whether upgrades to extend retention time or alter plant community structure within the wetland would optimize removal of micropollutants and ARGs to fully characterize the utility of these systems on the Canadian Prairies.201323506187
744710.9998Holistic approach to chemical and microbiological quality of aquatic ecosystems impacted by wastewater effluent discharges. Wastewater treatment plants (WWTPs) collect wastewater from various sources and use different treatment processes to reduce the load of pollutants in the environment. Since the removal of many chemical pollutants and bacteria by WWTPs is incomplete, they constitute a potential source of contaminants. The continuous release of contaminants through WWTP effluents can compromise the health of the aquatic ecosystems, even if they occur at very low concentrations. The main objective of this work was to characterize, over a period of four months, the treatment steps starting from income to the effluent and 5 km downstream to the receiving river. In this context, the efficiency removal of chemical pollutants (e.g. hormones and pharmaceuticals, including antibiotics) and bacteria was assessed in a WWTP case study by using a holistic approach. It embraces different chemical and biological-based methods, such as pharmaceutical analysis by HPLC-MSMS, growth rate inhibition in algae, ligand binding estrogen receptor assay, microbial community study by 16S and shotgun sequencing along with relative quantification of resistance genes by quantitative polymerase chain reaction. Although both, chemical and biological-based methods showed a significant reduction of the pollutant burden in effluent and surface waters compared to the influent of the WWTP, no complete removal of pollutants, pathogens and antibiotic resistance genes was observed.202235489490
744620.9998Overgrowth control of potentially hazardous bacteria during storage of ozone treated wastewater through natural competition. Improving the chemical and biological quality of treated wastewater is particularly important in world regions under water stress. In these regions, reutilization of wastewater is seen as an alternative to reduce water demand, particularly for agriculture irrigation. In a reuse scenario, the treated wastewater must have enough quality to avoid chemical and biological contamination of the receiving environment. Ozonation is among the technologies available to efficiently remove organic micropollutants and disinfect secondary effluents, being implemented in full-scale urban wastewater treatment plants worldwide. However, previous studies demonstrated that storage of ozone treated wastewater promoted the overgrowth of potentially harmful bacteria, putting at risk its reutilization, given for instance the possibility of contaminating the food-chain. Therefore, this study was designed to assess the potential beneficial role of inoculation of ozone treated wastewater with a diverse bacterial community during storage, for the control of the overgrowth of potentially hazardous bacteria, through bacterial competition. To achieve this goal, ozone treated wastewater (TWW) was diluted with river water (RW) in the same proportion, and the resulting bacterial community (RW+TWW) was compared to that of undiluted TWW over 7 days storage. As hypothesized, in contrast to TWW, where dominance of Beta- and Gammaproteobacteria, namely Pseudomonas spp. and Acinetobacter spp., was observed upon storage for 7 days, the bacterial communities of the diluted samples (RW+TWW) were diverse, resembling those of RW. Moreover, given the high abundance of antibiotic resistance genes in RW, the concentration of these genes in RW+TWW did not differ from that of the non-ozonated controls (WW, RW and RW+WW) over the storage period. These results highlight the necessity of finding a suitable pristine diverse bacterial community to be used in the future to compete with bacteria surviving ozonation, to prevent reactivation of undesirable bacteria during storage of treated wastewater.202234902759
745230.9998Elevation of antibiotic resistance genes at cold temperatures: implications for winter storage of sludge and biosolids. Prior research suggests that cold temperatures may stimulate the proliferation of certain antibiotic resistance genes (ARGs) and gene transfer elements during storage of biosolids. This could have important implications on cold weather storage of biosolids, as often required in northern climates until a time suitable for land application. In this study, levels of an integron-associated gene (intI1) and an ARG (sul1) were monitored in biosolids subject to storage at 4, 10 and 20°C. Both intI1 and sul1 were observed to increase during short-term storage (<2 months), but the concentrations returned to background within 4 months. The increases in concentration were more pronounced at lower temperatures than ambient temperatures. Overall, the results suggest that cold stress may induce horizontal gene transfer of integron-associated ARGs and that biosolids storage conditions should be considered prior to land application. SIGNIFICANCE AND IMPACT OF THE STUDY: Wastewater treatment plants have been identified as the hot spots for the proliferation and dissemination of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) to the environment through discharge of treated effluent to water bodies as well as application of biosolids to land. Identifying critical control points within the treatment process may aid in the development of solutions for the reduction of ARGs and ARB and curbing the spread of antibiotic resistance. This study found increases in ARGs during biosolids storage and identifies changes in operational protocols that could help reduce ARG loading to the environment when biosolids are land-applied.201425196177
737840.9998Role of endogenous soil microorganisms in controlling antimicrobial resistance after the exposure to treated wastewater. The reuse of treated wastewater (TWW) for irrigation appears to be a relevant solution to the challenges of growing water demand and scarcity. However, TWW contains not only micro-pollutants including pharmaceutical residues but also antibiotic resistant bacteria. The reuse of TWW could contribute to the dissemination of antimicrobial resistance in the environment. The purpose of this study was to assess if exogenous bacteria from irrigation waters (TWW or tap water-TP) affect endogenous soil microbial communities (from 2 soils with distinct irrigation history) and key antibiotic resistance gene sul1 and mobile genetic elements intl1 and IS613. Experiments were conducted in microcosms, irrigated in one-shot, and monitored for three months. Results showed that TP or TWW exposure induced a dynamic response of soil microbial communities but with no significant increase of resistance and mobile gene abundances. However, no significant differences were observed between the two water types in the current experimental design. Despite this, the 16S rDNA analysis of the two soils irrigated for two years either with tap water or TWW resulted in soil microbial community differentiation and the identification of biomarkers from Xanthomonadaceae and Planctomycetes families for soils irrigated with TWW. Low-diversity soils were more sensitive to the addition of TWW. Indeed, TWW exposure stimulated the growth of bacterial genera known to be pathogenic, correlating with a sharp increase in the copy number of selected resistance genes (up to 3 logs). These low-diversity soils could thus enable the establishment of exogenous bacteria from TWW which was not observed with native soils. In particular, the emergence of Planctomyces, previously suggested as a biomarker of soil irrigated by TWW, was here demonstrated. Finally, this study showed that water input frequency, initial soil microbial diversity and soil history drive changes within soil endogenous communities and the antibiotic resistance gene pool.202438703836
744550.9997Efficient removal of antibiotic resistance genes and of enteric bacteria from reclaimed wastewater by enhanced Soil Aquifer Treatments. Soil Aquifer Treatment (SAT) is a robust technology to increase groundwater recharge and to improve reclaimed water quality. SAT reduces dissolved organic carbon, contaminants of emerging concern, nutrients, and colloidal matter, including pathogen indicators, but little is known about its ability to reduce loads of antibiotic resistance genes (ARGs) from reclaimed waters. Here we test six pilot SAT systems to eliminate various biological hazards from the secondary effluents of a wastewater treatment plant (WWTP), equipped with reactive barriers (RBs) including different sorptive materials. Using flow cytometry, qPCR and 16S rRNA gene amplicon sequencing methods, we determined that all six SAT systems reduced total loads of bacteria by 80 to 95 % and of clinically relevant ARGs by 85 to 99.9 %. These efficiencies are similar to those reported for UV/oxidation or membrane-based tertiary treatments, which require much more energy and resources. The presence and composition of reactive barriers, the season of sampling (June 2020, October 2020, and September 2021), or the flow regime (continuous versus pulsating) did not affect ARG removal efficiency, although they did alter the microbial community composition. This suggests that an adequate design of the SAT reactive barriers may significantly increase their performance. Under a mechanistic point of view, we observed an ecological succession of bacterial groups, linked to the changing physical-chemical conditions along the SAT, and likely correlated to the removal of ARGs. We concluded that SAT is as cost-efficient technology able to dramatically reduce ARG loads and other biological hazards from WWTP secondary effluents.202439244046
742560.9997Antibiotic resistant bacteria and genes in wastewater treatment plants: From occurrence to treatment strategies. This study aims to discuss the following: (1) occurrence and proliferation of antibiotic resistance in wastewater treatment plants (WWTPs); (2) factors influencing antibiotic resistance bacteria and genes in WWTPs; (3) tools to assess antibiotic resistance in WWTPs; (4) environmental contamination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from WWTPs; (5) effects of ARB and ARGs from WWTPs on human health; and (6) treatment strategies. In general, resistant and multi-resistant bacteria, including Enterobacteriaceae, Pseudomonas aeruginosa, and Escherichia coli, exist in various processes of WWTPs. The existence of ARB and ARGs results from the high concentration of antibiotics in wastewater, which promote selective pressures on the local bacteria present in WWTPs. Thus, improving wastewater treatment technology and avoiding the misuse of antibiotics is critical to overcoming the threat of proliferation of ARBs and ARGs. Numerous factors can affect the development of ARB and ARGs in WWTPs. Abiotic factors can affect the bacterial community dynamics, thereby, affecting the applicability of ARB during the wastewater treatment process. Furthermore, the organic loads and other nutrients influence bacterial survival and growth. Specifically, molecular methods for the rapid characterization and detection of ARBs or their genes comprise DNA sequencing, real-time PCR, simple and multiplex PCR, and hybridization-based technologies, including micro- and macro-arrays. The reuse of effluent from WWTPs for irrigation is an efficient method to overcome water scarcity. However, there are also some potential environmental risks associated with this practice, such as increase in the levels of antibiotic resistance in the soil microbiome. Human mortality rates may significantly increase, as ARB can lead to resistance among several types of antibiotics or longer treatment times. Some treatment technologies, such as anaerobic and aerobic treatment, coagulation, membrane bioreactors, and disinfection processes, are considered potential techniques to restrict antibiotic resistance in the environment.202235679932
760970.9997Effect of Powdered Activated Carbon as Advanced Step in Wastewater Treatments on Antibiotic Resistant Microorganisms. BACKGROUND: Conventional wastewater treatment plants discharge significant amounts of antibiotic resistant bacteria and antibiotic resistance genes into natural water bodies contributing to the spread of antibiotic resistance. Some advanced wastewater treatment technologies have been shown to effectively decrease the number of bacteria. Nevertheless, there is still a lack of knowledge about the effectiveness of these treatments on antibiotic resistant bacteria and antibiotic resistant genes. To the best of our knowledge, no specific studies have considered how powdered activated carbon (PAC) treatments can act on antibiotic resistant bacteria, although it is essential to assess the impact of this wastewater treatment on the spread of antibiotic resistant bacteria. METHODS: To address this gap, we evaluated the fate and the distribution of fluorescent-tagged antibiotic/ antimycotic resistant microorganisms in a laboratory-scale model simulating a process configuration involving powdered activated carbon as advanced wastewater treatment. Furthermore, we studied the possible increase of naturally existing antibiotic resistant bacteria during the treatment implementing PAC recycling. RESULTS: The analysis of fluorescent-tagged microorganisms demonstrated the efficacy of the PAC adsorption treatment in reducing the load of both susceptible and resistant fluorescent microorganisms in the treated water, reaching a removal efficiency of 99.70%. Moreover, PAC recycling did not increase the resistance characteristics of cultivable bacteria neither in the sludge nor in the treated effluent. CONCLUSION: Results suggest that wastewater PAC treatment is a promising technology not only for the removal of micropollutants but also for its effect in decreasing antibiotic resistant bacteria release.201930727884
729780.9997Reclaimed wastewater reuse in irrigation: Role of biofilms in the fate of antibiotics and spread of antimicrobial resistance. Reclaimed wastewater associated biofilms are made up from diverse class of microbial communities that are continuously exposed to antibiotic residues. The presence of antibiotic resistance bacteria (ARB) and their associated antibiotic resistance genes (ARGs) ensures also a continuous selection pressure on biofilms that could be seen as hotspots for antibiotic resistance dissemination but can also play a role in antibiotic degradation. In this study, the antibiotic degradation and the abundance of four ARGs (qnrS, sul1, blaTEM, ermB), and two mobile genetic elements (MGEs) including IS613 and intl1, were followed in reclaimed wastewater and biofilm samples collected at the beginning and after 2 weeks of six antibiotics exposure (10 µg L(-1)). Antibiotics were partially degraded and remained above lowest minimum inhibitory concentration (MIC) for environmental samples described in the literature. The most abundant genes detected both in biofilms and reclaimed wastewater were sul1, ermB, and intl1. The relative abundance of these genes in biofilms increased during the 2 weeks of exposure but the highest values were found in control samples (without antibiotics pressure), suggesting that bacterial community composition and diversity are the driven forces for resistance selection and propagation in biofilms, rather than exposure to antibiotics. Planktonic and biofilm bacterial communities were characterized. Planktonic cells are classically defined "as free flowing bacteria in suspension" as opposed to the sessile state (the so-called biofilm): "a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to an inert or living. surface" as stated by Costerton et al. (1999). The abundance of some genera known to harbor ARG such as Streptococcus, Exiguobacterium, Acholeplasma, Methylophylaceae and Porphyromonadaceae increased in reclaimed wastewater containing antibiotics. The presence of biofilm lowered the level of these genera in wastewater but, at the opposite, could also serve as a reservoir of these bacteria to re-colonize low-diversity wastewater. It seems that maintaining a high diversity is important to limit the dissemination of antimicrobial resistance among planktonic bacteria. Antibiotics had no influence on the biofilm development monitored with optical coherence tomography (OCT). Further research is needed in order to clarify the role of inter-species communication in biofilm on antibiotic degradation and resistance development and spreading.202235841791
649390.9997Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review. The World Health Organization (WHO) has identified the spread of antibiotic resistance as one of the major risks to global public health. An important transfer route into the aquatic environment is the urban water cycle. In this paper the occurrence and transport of antibiotic microbial resistance in the urban water cycle are critically reviewed. The presence of antibiotic resistance in low impacted surface water is being discussed to determine background antibiotic resistance levels, which might serve as a reference for treatment targets in the absence of health-based threshold levels. Different biological, physical and disinfection/oxidation processes employed in wastewater treatment and their efficacy regarding their removal of antibiotic resistant bacteria and antibiotic resistance geness (ARGs) were evaluated. A more efficient removal of antibiotic microbial resistance abundances from wastewater effluents can be achieved by advanced treatment processes, including membrane filtration, ozonation, UV-irradiation or chlorination, to levels typically observed in urban surface water or low impacted surface water.201931195321
7510100.9997Impacts of antibiotics on biofilm bacterial community and disinfection performance on simulated drinking water supply pipe wall. Overuse of antibiotics is accelerating the spread of resistance risk in the environment. In drinking water supply systems, the effect of antibiotics on the resistance of biofilm is unclear, and there have been few studies in disinfectant-containing systems. Here, we designed a series of drinking water supply reactors to investigate the effects of antibiotics on biofilm and bacteria in the water. At low concentrations, antibiotics could promote the growth of bacteria in biofilm; among the tested antibiotics (tetracycline, sulfadiazine and chloramphenicol), tetracycline had the strongest ability to promote this. And the antibiotic resistant bacteria (ARB) could inhibit the growth of bacteria in drinking water. Results have shown that antibiotics enhanced the bacterial chlorine resistance in the effluent, but reduced that in the biofilm. Furthermore, metagenomic analysis showed that antibiotics reduced the richness of biofilm communities. The dominant phyla in the biofilm were Proteobacteria, Planctomycetes, and Firmicutes. In tetracycline-treated biofilm, the dominant phylum was Planctomycetes. In sulfadiazine- and chloramphenicol-treated groups, bacteria with complex cell structures preferentially accumulated. The dominant class in biofilm in the ARB-added group was Gammaproteobacteria. The abundance of antibiotic resistant genes (ARGs) was correlated with biofilm community structure. This study shows that antibiotics make the biofilm community structure of drinking water more resistant to chlorine. ARGs may be selective for certain bacteria in the process, and there may ultimately be enhanced chlorine and antibiotic resistance of effluent bacteria in drinking water.202134256291
7424110.9997Fate of antibiotic resistance genes and antibiotic-resistant bacteria in water resource recovery facilities. Many important diseases are showing resistance to commonly used antibiotics, and the resistance is potentially caused by widespread use of antibiotics for maintaining human health and improving food production. Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) are associated with this increase, and their fate in water resource recovery facilities is an important, emerging area of research. This literature review summarizes current findings of worldwide research on the fate of ARB and ARGs in various types of treatment plants. Twenty-five published studies were reviewed which contained 215 observations in activated sludge, membrane bioreactors, anaerobic digestion, constructed wetlands, coagulation-filtration, and three types of disinfection. We found 70% decreased observations, 18% increased observations, and 12% unchanged observations of all observations in all treatment processes. Resistance genes to tetracycline were most often observed, but more studies are needed in other antibiotic resistance genes. The causes for increased abundance of ARGs and ARB are not well understood, and further studies are warranted. PRACTITIONER POINTS: Antibiotic resistance is increasing with concern that treatment plants may acclimate bacteria to antibiotics. A literature survey found 215 resistance observations with 70% decreased, 18% increased, 12% unchanged after treatment. The type of treatment process is important with activated sludge showing the greatest reductions.201930682226
7393120.9997Fate and distribution of determinants of antimicrobial resistance in lateral flow sand filters used for treatment of domestic wastewater. Residuals of antimicrobial products from anthropogenic uses can create a selective environment in domestic wastewater treatment systems and receiving environments and contribute to the spread of antimicrobial resistance (AMR). On-site wastewater treatment systems are widely used for domestic wastewater management in rural and remote regions, but the fate of determinants of AMR in these types of environments has received little attention. In this study, the mechanisms responsible for the attenuation of determinants of AMR in lateral flow sand filters were explored using a combination of lab, field and modeling investigations. The degradation kinetics and adsorption potential in the sand filter medium of three antibiotic resistance genes (ARGs; sul1, tetO, and ermB) and culturable bacteria resistant to sulfamethoxazole, tetracycline, and erythromycin were measured using lab experiments. The spatial distribution of ARGs and antibiotic resistant bacteria were also assessed in field scale sand filters, and mechanistic modeling was conducted to characterize filtration processes. The results indicated that the primary mechanisms responsible for AMR attenuation within the sand filters were degradation and filtration. The spatial distribution of AMR determinants illustrated that attenuation was occurring along the entire length of each filter. This study provides new insights on primary mechanisms of AMR attenuation in on-site wastewater treatment systems and supports the use of conservative design guidelines and separation distances for reducing AMR transmission.202133636762
7392130.9997Distribution of genetic elements associated with antibiotic resistance in treated and untreated animal husbandry waste and wastewater. Animal breeding for meat production based on swine, cattle, poultry, and aquaculture is an activity that generates several impacts on the environment, among them the spread of antibiotic resistance. There is a worldwide concern related to the massive use of antibiotics, which causes selective pressure on the microbial community, triggering bacteria that contain "antibiotic resistance genes." According to the survey here presented, antibiotic resistance-related genes such as tetracyclines (tet), erythromycin (erm), and sulfonamides (sul), as well as the genetic mobile element interferon (int), are the most reported genetic elements in qualitative and quantitative studies of swine, cattle, poultry, and aquaculture manure/wastewater. It has been observed that biological treatments based on waste composting and anaerobic digestion are effective in ARG removal, particularly for tet, bla, erm, and qnr (quinolone) genes. On the other hand, sul and intI genes were more persistent in such treatments. Tertiary treatments, such advanced oxidative processes, are suitable strategies to improve ARG reduction. In general temperature, hydraulic retention time, and penetration of sunlight are the main operational parameters for ARG reduction in treatments applied to animal waste, and therefore attention should be addressed to optimize their efficacy regarding ARG removal. Despite being reduced, the presence of ARG in treated effluents and in biosolids indicates that there is a potential risk of antibiotic resistance spread in nature, especially through the release of treated livestock waste into the environment.202133835340
7454140.9997Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. United States dairy operations use antibiotics (primarily β-lactams and tetracyclines) to manage bacterial diseases in dairy cattle. Antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARG) can be found in dairy manure and may contribute to the spread of antibiotic resistance (AR). Although β-lactam residues are rarely detected in dairy manure, tetracycline residues are common and perhaps persistent. Generally, <15% of bacterial pathogen dairy manure isolates are ARB, although resistance to some antibiotics (e.g., tetracycline) can be higher. Based on available data, the prevalence of medically important ARB on dairy operations is generally static or may be declining for antibiotic-resistant Staphylococcus spp. Over 60 ARG can be found in dairy manure (including β-lactam and tetracycline resistance genes), although correlations with antibiotic usage, residues, and ARB have been inconsistent, possibly because of sampling and analytical limitations. Manure treatment systems have not been specifically designed to mitigate AR, though certain treatments have some capacity to do so. Generally, well-managed aerobic compost treatments reaching higher peak temperatures (>60°C) are more effective at mitigating antibiotic residues than static stockpiles, although this depends on the antibiotic residue and their interactions. Similarly, thermophilic anaerobic digesters operating under steady-state conditions may be more effective at mitigating antibiotic residues than mesophilic or irregularly operated digesters or anaerobic lagoons. The number of ARB may decline during composting and digestion or be enriched as the bacterial communities in these systems shift, affecting relative ARG abundance or acquire ARG during treatment. Antibiotic resistance genes often persist through these systems, although optimal management and higher operating temperature may facilitate their mitigation. Less is known about other manure treatments, although separation technologies may be unique in their ability to partition antibiotic residues based on sorption and solubility properties. Needed areas of study include determining natural levels of AR in dairy systems, standardizing and optimizing analytical techniques, and more studies of operating on-farm systems, so that treatment system performance and actual human health risks associated with levels of antibiotic residues, ARB, and ARG found in dairy manure can be accurately assessed.202031837779
7444150.9997Microbiome and Resistome Profiles along a Sewage-Effluent-Reservoir Trajectory Underline the Role of Natural Attenuation in Wastewater Stabilization Reservoirs. Antibiotic-resistant bacteria and antibiotic resistance gene (ARGs) loads dissipate through sewage treatment plants to receiving aquatic environments, but the mechanisms that mitigate the spread of these ARGs are not well understood due to the complexity of full-scale systems and the difficulty of source tracking in downstream environments. To overcome this problem, we targeted a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR), whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs and receiving aquatic ecosystems. We analyzed a large set of physicochemical measurements, concomitant with the cultivation of total and cefotaxime-resistant Escherichia coli, microbial community analyses, and quantitative PCR (qPCR)/digital droplet PCR (ddPCR) quantification of selected ARGs and mobile genetic elements (MGEs). The MABR removed most of the sewage-derived organic carbon and nitrogen, and simultaneously, E. coli, ARG, and MGE levels dropped by approximately 1.5- and 1.0-log unit mL(-1), respectively. Similar levels of E. coli, ARGs, and MGEs were removed in the reservoir, but interestingly, unlike in the MABR, the relative abundance (normalized to 16S rRNA gene-inferred total bacterial abundance) of these genes also decreased. Microbial community analyses revealed the substantial shifts in bacterial and eukaryotic community composition in the reservoir relative to the MABR. Collectively, our observations lead us to conclude that the removal of ARGs in the MABR is mainly a consequence of treatment-facilitated biomass removal, whereas in the stabilization reservoir, mitigation is linked to natural attenuation associated with ecosystem functioning, which includes abiotic parameters, and the development of native microbiomes that prevent the establishment of wastewater-derived bacteria and associated ARGs. IMPORTANCE Wastewater treatment plants are sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can contaminate receiving aquatic environments and contribute to antibiotic resistance. We focused on a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR) that treated raw sewage, whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs. We evaluated ARB and ARG dynamics across the raw-sewage-MABR-effluent trajectory, concomitant with evaluation of microbial community composition and physicochemical parameters, in an attempt to identify mechanisms associated with ARB and ARG dissipation. We found that removal of ARB and ARGs in the MABR was primarily associated with bacterial death or sludge removal, whereas in the reservoir it was attributed to the inability of ARBs and associated ARGs to colonize the reservoir due to a dynamic and persistent microbial community. The study demonstrates the importance of ecosystem functioning in removing microbial contaminants from wastewater.202337199629
6494160.9997Performance Efficiency of Conventional Treatment Plants and Constructed Wetlands towards Reduction of Antibiotic Resistance. Domestic and industrial wastewater discharges harbor rich bacterial communities, including both pathogenic and commensal organisms that are antibiotic-resistant (AR). AR pathogens pose a potential threat to human and animal health. In wastewater treatment plants (WWTP), bacteria encounter environments suitable for horizontal gene transfer, providing an opportunity for bacterial cells to acquire new antibiotic-resistant genes. With many entry points to environmental components, especially water and soil, WWTPs are considered a critical control point for antibiotic resistance. The primary and secondary units of conventional WWTPs are not designed for the reduction of resistant microbes. Constructed wetlands (CWs) are viable wastewater treatment options with the potential for mitigating AR bacteria, their genes, pathogens, and general pollutants. Encouraging performance for the removal of AR (2-4 logs) has highlighted the applicability of CW on fields. Their low cost of construction, operation and maintenance makes them well suited for applications across the globe, especially in developing and low-income countries. The present review highlights a better understanding of the performance efficiency of conventional treatment plants and CWs for the elimination/reduction of AR from wastewater. They are viable alternatives that can be used for secondary/tertiary treatment or effluent polishing in combination with WWTP or in a decentralized manner.202235052991
7608170.9997Evaluation of a constructed wetland for wastewater treatment: Addressing emerging organic contaminants and antibiotic resistant bacteria. The occurrence of emerging organic contaminants (EOCs) in wastewaters and the inability of the conventional wastewater treatments plants to deal with them have been pointed out several times over the last few years. As a result, remnants of those compounds released into the aquatic environment present a potential risk for public health. Constructed wetlands (CWs) have been proposed as environmentally friendly, low-cost alternative systems with satisfactory results for different types of contaminants. This study aimed to evaluate the efficiency of a CW system, planted with the halophyte Juncus acutus, to eliminate bisphenol A (BPA) and two antibiotics, namely ciprofloxacin (CIP) and sulfamethoxazole (SMX) under different operating conditions. The behavior of Escherichia coli and enterococcal populations in terms of changes in their resistance profile for the selected antibiotics and the abundance of two resistance genes (qnrA and sul1) were also examined. BPA and CIP were significantly removed by the CW, with an overall removal of 76.2% and 93.9% respectively and with the plants playing a vital role. In contrast, SMX was not significantly eliminated. Moreover, fluctuations in the antibiotic resistance profile of bacteria were observed. Treatment processes affected the response of the two selected bacterial indicators, depending on the conditions employed in each case. Furthermore, increased levels of resistance genes were monitored in the system effluent. This study indicates that CWs, as tertiary wastewater treatment systems, may demonstrate high removal rates for some but not all EOCs. This implies that each EOC identified in the feed stream should be tested assiduously by analyzing the final effluents before their reuse or discharge into water bodies.201931146037
7455180.9997Lagoon, Anaerobic Digestion, and Composting of Animal Manure Treatments Impact on Tetracycline Resistance Genes. Increased demand for animal protein is met by increased food animal production resulting in large quantities of manure. Animal producers, therefore, need sustainable agricultural practices to protect environmental health. Large quantities of antimicrobials are used in commercial food animal production. Consequently, antimicrobial-resistant bacteria and the resistance genes emerge and are excreted through feces. Manure management is essential for the safe disposal of animal waste. Lagoons, with or without covers, and anaerobic digesters, with the primary purpose of methane production, and composting, with the primary purpose of producing organic fertilizer, are widely used methods of manure treatment. We reviewed manure management practices and their impact on tetracycline resistance genes. Lagoons are maintained at ambient temperatures; especially uncovered lagoons are the least effective in removing tetracycline resistance genes. However, some modifications can improve the performance of lagoons: sequential use of uncovered lagoons and the use of covered lagoons resulted in a one-log reduction, while post-treatments such as biofiltration following covered lagoon treatment resulted in 3.4 log reduction. Mesophilic digestion of animal manure did not have any significant effect; only a 0.7 log reduction in tet(A) was observed in one study. While thermophilic anaerobic digesters are effective, if properly operated, they are expensive for animal producers. Aerobic thermophilic composting is a promising technology if optimized with its economic benefits. Composting of raw animal manure can result in up to a 2.5 log reduction, and postdigestion composting can reduce tetracycline resistance gene concentration by >80%. In general, manure management was not designed to mitigate antimicrobial resistance; future research is needed to optimize the economic benefits of biogas or organic fertilizer on the one hand and for the mitigation of foodborne pathogens and antimicrobial resistance on the other.202235326854
7349190.9997Bacterial and DNA contamination of a small freshwater waterway used for drinking water after a large precipitation event. Sewage contamination of freshwater occurs in the form of raw waste or as effluent from wastewater treatment plants (WWTP's). While raw waste (animal and human) and under-functioning WWTP's can introduce live enteric bacteria to freshwater systems, most WWTP's, even when operating correctly, do not remove bacterial genetic material from treated waste, resulting in the addition of bacterial DNA, including antibiotic resistance genes, into water columns and sediment of freshwater systems. In freshwater systems with both raw and treated waste inputs, then, there will be increased interaction between live sewage-associated bacteria (untreated sewage) and DNA contamination (from both untreated and treated wastewater effluent). To evaluate this understudied interaction between DNA and bacterial contamination in the freshwater environment, we conducted a three-month field-based study of sewage-associated bacteria and genetic material in water and sediment in a freshwater tributary of the Hudson River (NY, USA) that supplies drinking water and receives treated and untreated wastewater discharges from several municipalities. Using both DNA and culture-based bacterial analyses, we found that both treated and untreated sewage influences water and sediment bacterial communities in this tributary, and water-sediment exchanges of enteric bacteria and genetic material. Our results also indicated that the treated sewage effluent on this waterway serves as a concentrated source of intI1 (antibiotic resistance) genes, which appear to collect in the sediments below the outfall along with fecal indicator bacteria. Our work also captured the environmental impact of a large rain event that perturbed bacterial populations in sediment and water matrices, independently from the outflow. This study suggests that large precipitation events are an important cause of bacterial and DNA contamination for freshwater tributaries, with runoff from the surrounding environment being an important factor.202540096758