Antibiotic resistant bacteria and resistance genes in the bottom sediment of a small stream and the potential impact of remobilization. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
739601.0000Antibiotic resistant bacteria and resistance genes in the bottom sediment of a small stream and the potential impact of remobilization. River sediments are regarded as hot spots of bacterial density and activity. Moreover, high bacterial densities and biofilm formation are known to promote horizontal gene transfer, the latter playing a vital role in the spread of antimicrobial resistance. It can thus be hypothesized that sediments act as a reservoir of antibiotic resistant bacteria (ARB) and resistance genes (ARGs), particularly in rivers receiving microbes and drug residues from treated sewage. We analyzed the phenotypic susceptibility of 782 Escherichia coli isolates against 24 antimicrobials and we measured the relative abundances of five ARGs in water and sediment extracts of a small stream. We did not find evidence for a general increase in the proportion of resistant E. coli isolated from sediments as compared to those found in stream water. For most antimicrobials, the likelihood of detecting a resistant isolate was similar in water and sediment or it was even lower in the latter compartment. The mean relative abundance of ARGs was moderately increased in sediment-borne samples. Generally, absolute abundances of resistant cells and resistance genes in the sediment exceeded the pelagic level owing to higher bacterial densities. The river bottom thus represents a reservoir of ARB and ARGs that can be mobilized by resuspension.201829982428
368010.9999Metagenomic Insights Into the Contribution of Phages to Antibiotic Resistance in Water Samples Related to Swine Feedlot Wastewater Treatment. In this study, we examined the types of antibiotic resistance genes (ARGs) possessed by bacteria and bacteriophages in swine feedlot wastewater before and after treatment using a metagenomics approach. We found that the relative abundance of ARGs in bacterial DNA in all water samples was significantly higher than that in phages DNA (>10.6-fold), and wastewater treatment did not significantly change the relative abundance of bacterial- or phage-associated ARGs. We further detected the distribution and diversity of the different types of ARGs according to the class of antibiotics to which they confer resistance, the tetracycline resistance genes were the most abundant resistance genes and phages were more likely to harbor ATP-binding cassette transporter family and ribosomal protection genes. Moreover, the colistin resistance gene mcr-1 was also detected in the phage population. When assessing the contribution of phages in spreading different groups of ARGs, β-lactamase resistance genes had a relatively high spreading ability even though the abundance was low. These findings possibly indicated that phages not only could serve as important reservoir of ARG but also carry particular ARGs in swine feedlot wastewater, and this phenomenon is independent of the environment.201830459724
368320.9999Small and large-scale distribution of four classes of antibiotics in sediment: association with metals and antibiotic resistance genes. Antibiotic chemicals and antibiotic resistance genes enter the environment via wastewater effluents as well as from runoff from agricultural operations. The relative importance of these two sources, however, is largely unknown. The relationship between the concentrations of chemicals and genes requires exploration, for antibiotics in the environment may lead to development or retention of resistance genes by bacteria. The genes that confer resistance to metal toxicity may also be important in antibiotic resistance. In this work, concentrations of 19 antibiotics (using liquid chromatography tandem mass spectrometry), 14 metals (using inductively coupled plasma-mass spectrometry), and 45 metal, antibiotic, and antibiotic-resistance associated genes (using a multiplex, microfluidic quantitative polymerase chain reaction method) were measured in 13 sediment samples from two large rivers as well as along a spatial transect in a wastewater effluent-impacted lake. Nine of the antibiotics were detected in the rivers and 13 were detected in the lake. Sixteen different resistance genes were detected. The surrounding land use and proximity to wastewater treatment plants are important factors in the number and concentrations of antibiotics detected. Correlations among antibiotic chemical concentrations, metal concentrations, and resistance genes occur over short spatial scales in a lake but not over longer distances in major rivers. The observed correlations likely result from the chemicals and resistance genes arising from the same source, and differences in fate and transport over larger scales lead to loss of this relationship.201830043816
739730.9999Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs from bacteria can be mobilized by mobile genetic elements, and recent studies indicate that phages and phage-derived particles, among others, could play a role in the spread of ARGs through the environment. ARGs are abundant in the bacterial and bacteriophage fractions of water bodies and for successful transfer of the ARGs, their persistence in these environments is crucial. In this study, three ARGs (blaTEM, blaCTX-M and sul1) that naturally occur in the bacterial and phage fractions of raw wastewater were used to evaluate the persistence of ARGs at different temperatures (4 °C, 22 °C and 37 °C) and pH values (3, 7 and 9), as well as after various disinfection treatments (thermal treatment, chlorination and UV) and natural inactivation in a mesocosm. Gene copies (GC) were quantified by qPCR; then the logarithmic reduction and significance of the differences between their numbers were evaluated. The ARGs persisted for a long time with minimal reductions after all the treatments. In general, they showed greater persistence in the bacteriophage fraction than in the bacterial fraction. Comparisons showed that the ARGs persisted under conditions that reduced culturable Escherichia coli and infectious coliphages below the limit of detection. The prevalence of ARGs, particularly in the bacteriophage fraction, poses the threat of the spread of ARGs and their incorporation into a new bacterial background that could lead to the emergence of new resistant clones.201626978717
740040.9999Investigating the effects of municipal and hospital wastewaters on horizontal gene transfer. Horizontal gene transfer (HGT) plays an important role in the dissemination of antibiotic resistance genes. In sewer systems, human-associated and environmental bacteria are mixed together and exposed to many substances known to increase HGT, including various antibacterial compounds. In wastewaters, those substances are most often detected below concentrations known to induce HGT individually. Still, it is possible that such wastewaters induce HGT, for example via mixture effects. Here, a panel of antibiotics, biocides and other pharmaceuticals was measured in filter-sterilized municipal and hospital wastewater samples from Gothenburg, Sweden. The effects on HGT of the chemical mixtures in these samples were investigated by exposing a complex bacterial donor community together with a GFP-tagged E. coli recipient strain. Recipients that captured sulfonamide resistance-conferring mobile genetic elements (MGEs) from the bacterial community were enumerated and characterized by replicon typing, antibiotic susceptibility testing and long read sequencing. While exposure to municipal wastewater did not result in any detectable change in HGT rates, exposure to hospital wastewater was associated with an increase in the proportion of recipients that acquired sulfonamide resistance but also a drastic decrease in the total number of recipients. Although, concentrations were generally higher in hospital than municipal wastewater, none of the measured substances could individually explain the observed effects of hospital wastewater. The great majority of the MGEs captured were IncN plasmids, and resistance to several antibiotics was co-transferred in most cases. Taken together, the data show no evidence that chemicals present in the studied municipal wastewater induce HGT. Still, the increased relative abundance of transconjugants after exposure to hospital wastewater could have implications for the risks of both emergence and transmission of resistant bacteria.202133631686
732450.9999Microbial and Viral Communities and Their Antibiotic Resistance Genes Throughout a Hospital Wastewater Treatment System. Antibiotic resistance poses a serious threat to global public health, and antibiotic resistance determinants can enter natural aquatic systems through discharge of wastewater effluents. Hospital wastewater in particular is expected to contain high abundances of antibiotic resistance genes (ARGs) compared to municipal wastewater because it contains human enteric bacteria that may include antibiotic-resistant organisms originating from hospital patients, and can also have high concentrations of antibiotics and antimicrobials relative to municipal wastewater. Viruses also play an important role in wastewater treatment systems since they can influence the bacterial community composition through killing bacteria, facilitating transduction of genetic material between organisms, and modifying the chromosomal content of bacteria as prophages. However, little is known about the fate and connections between ARGs, viruses, and their associated bacteria in hospital wastewater systems. To address this knowledge gap, we characterized the composition and persistence of ARGs, dsDNA viruses, and bacteria from influent to effluent in a pilot-scale hospital wastewater treatment system in Israel using shotgun metagenomics. Results showed that ARGs, including genes conferring resistance to antibiotics of high clinical relevance, were detected in all sampling locations throughout the pilot-scale system, with only 16% overall depletion of ARGs per genome equivalent between influent and effluent. The most common classes of ARGs detected throughout the system conferred resistance to aminoglycoside, cephalosporin, macrolide, penam, and tetracycline antibiotics. A greater proportion of total ARGs were associated with plasmid-associated genes in effluent compared to in influent. No strong associations between viral sequences and ARGs were identified in viral metagenomes from the system, suggesting that phage may not be a significant vector for ARG transfer in this system. The majority of viruses in the pilot-scale system belonged to the families Myoviridae, Podoviridae, and Siphoviridae. Gammaproteobacteria was the dominant class of bacteria harboring ARGs and the most common putative viral host in all samples, followed by Bacilli and Betaproteobacteria. In the total bacterial community, the dominant class was Betaproteobacteria for each sample. Overall, we found that a variety of different types of ARGs and viruses were persistent throughout this hospital wastewater treatment system, which can be released to the environment through effluent discharge.202032140141
731460.9999Microbial diversity and antibiotic resistance in a final effluent-receiving lake. Wastewater treatment plants have been recognised as hotspots for antibiotic resistance genes and antibiotic-resistant bacteria which enter the environment. However, the persistence of these genes and bacteria in receiving ecosystems remains poorly understood. The aim of the study was to evaluate the effect of final effluent release on microbial diversity and the antibiotic resistance gene pool in a final effluent-receiving lake. The numbers of total culturable heterotrophs and unculturable bacteria (represented as the 16S rRNA gene copy number) were significantly reduced during the treatment process. The number of ampicillin-resistant bacteria was higher in the sediment than in water samples, suggesting accumulation of ampicillin-resistant bacteria in freshwater sediments. Using an exogenous method, we captured 56 resistance plasmids which were further characterised. Next-generation sequencing revealed that the microbial phyla represented in the studied metagenomes were typical of corresponding environments. The highest relative abundance of antibiotic resistance genes was observed in the final effluent, suggesting that a considerable number of genes were released from the wastewater treatment plant. However, the lowest relative abundance and lowest diversity of the genes in the lake water, compared to the other studied metagenomes, suggest a negligible effect of treated sewage release on antibiotic resistance within water microbial communities of the lake. Furthermore, uncontrolled sewage dumping into this reservoir in the past as well as lower quality of the water upstream of the lake indicated that the wastewater treatment plant protected the studied ecosystem.201930373071
368170.9999A closer look at the antibiotic-resistant bacterial community found in urban wastewater treatment systems. The conventional biological treatment process can provide a favorable environment for the maintenance and dissemination of antibiotic-resistant bacteria and the antibiotic resistance genes (ARG) they carry. This study investigated the occurrence of antibiotic resistance in three wastewater treatment plants (WWTP) to determine the role they play in the dissemination of ARGs. Bacterial isolates resistant to tetracycline were collected, and tested against eight antibiotics to determine their resistance profiles and the prevalence of multiple antibiotic resistance. It was found that bacteria resistant to tetracycline were more likely to display resistance to multiple antibiotics compared to those isolates that were not tetracycline resistant. Polymerase chain reaction (PCR) was used to identify the tetracycline resistance determinants present within the bacterial communities of the WWTPs and receiving waters, and it was found that ARGs may not be released from the treatment process. Identification of isolates showed that there was a large diversity of species in both the tetracycline-resistant and tetracycline-sensitive populations and that the two groups were significantly different in composition. Antibiotic resistance profiles of each population showed that a large diversity of resistance patterns existed within genera suggesting that transmission of ARG may progress by both horizontal gene and vertical proliferation.201829484827
739580.9999Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. The impact of human activity on the selection for antibiotic resistance in the environment is largely unknown, although considerable amounts of antibiotics are introduced through domestic wastewater and farm animal waste. Selection for resistance may occur by exposure to antibiotic residues or by co-selection for mobile genetic elements (MGEs) which carry genes of varying activity. Class 1 integrons are genetic elements that carry antibiotic and quaternary ammonium compound (QAC) resistance genes that confer resistance to detergents and biocides. This study aimed to investigate the prevalence and diversity of class 1 integron and integron-associated QAC resistance genes in bacteria associated with industrial waste, sewage sludge and pig slurry. We show that prevalence of class 1 integrons is higher in bacteria exposed to detergents and/or antibiotic residues, specifically in sewage sludge and pig slurry compared with agricultural soils to which these waste products are amended. We also show that QAC resistance genes are more prevalent in the presence of detergents. Studies of class 1 integron prevalence in sewage sludge amended soil showed measurable differences compared with controls. Insertion sequence elements were discovered in integrons from QAC contaminated sediment, acting as powerful promoters likely to upregulate cassette gene expression. On the basis of this data, >1 × 10(19) bacteria carrying class 1 integrons enter the United Kingdom environment by disposal of sewage sludge each year.201121368907
740690.9999Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Increasing drug-resistant infections have drawn research interest towards examining environmental bacteria and the discovery that many factors, including elevated metal conditions, contribute to proliferation of antibiotic resistance (AR). This study examined 90 garden soils from Western Australia to evaluate predictions of antibiotic resistance genes from total metal conditions by comparing the concentrations of 12 metals and 13 genes related to tetracycline, beta-lactam and sulphonamide resistance. Relationships existed between metals and genes, but trends varied. All metals, except Se and Co, were related to at least one AR gene in terms of absolute gene numbers, but only Al, Mn and Pb were associated with a higher percentage of soil bacteria exhibiting resistance, which is a possible indicator of population selection. Correlations improved when multiple factors were considered simultaneously in a multiple linear regression model, suggesting the possibility of additive effects occurring. Soil-metal concentrations must be considered when determining risks of AR in the environment and the proliferation of resistance.201727822686
7407100.9999Impact of salmon farming in the antibiotic resistance and structure of marine bacterial communities from surface seawater of a northern Patagonian area of Chile. BACKGROUND: Aquaculture and salmon farming can cause environmental problems due to the pollution of the surrounding waters with nutrients, solid wastes and chemicals, such as antibiotics, which are used for disease control in the aquaculture facilities. Increasing antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is linked to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the primary source of antibiotics residues in the coastal waters of northern Patagonia. Here, we evaluated whether the structure and diversity of marine bacterial community, the richness of antibiotic resistance bacteria and the frequency of antibiotic resistance genes increase in communities from the surface seawater of an area with salmon farming activities, in comparison with communities from an area without major anthropogenic disturbance. RESULTS: The taxonomic structure of bacterial community was significantly different between areas with and without aquaculture production. Growth of the culturable fraction under controlled laboratory conditions showed that, in comparison with the undisturbed area, the bacterial community from salmon farms displayed a higher frequency of colonies resistant to the antibiotics used by the salmon industry. A higher adaptation to antibiotics was revealed by a greater proportion of multi-resistant bacteria isolated from the surface seawater of the salmon farming area. Furthermore, metagenomics data revealed a significant higher abundance of antibiotic resistant genes conferring resistance to 11 antibiotic families in the community from salmon farms, indicating that the proportion of bacteria carrying the resistance determinants was overall higher in salmon farms than in the undisturbed site. CONCLUSIONS: Our results revealed an association between bacterial communities and antibiotic resistance from surface seawater of a coastal area of Chile. Although the total bacterial community may appear comparable between sites, the cultivation technique allowed to expose a higher prevalence of antibiotic resistant bacteria in the salmon farming area. Moreover, we demonstrated that metagenomics (culture-independent) and phenotypic (culture-dependent) methods are complementary to evaluate the bacterial communities' risk for antibiotic resistance, and that a human-influenced environment (such as salmon farms) can potentiate bacteria to adapt to environmental stresses, such as antibiotics.202439523335
7340110.9999High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. Antibiotic resistance among bacteria is a growing problem worldwide, and wastewater treatment plants have been considered as one of the major contributors to the dissemination of antibiotic resistance to the environment. There is a lack of comprehensive quantitative molecular data on extensive numbers of antibiotic resistance genes (ARGs) in different seasons with a sampling strategy that would cover both incoming and outgoing water together with the excess sludge that is removed from the process. In order to fill that gap we present a highly parallel quantitative analysis of ARGs and horizontal gene transfer potential over four seasons at an urban wastewater treatment plant using a high-throughput qPCR array. All analysed transposases and two-thirds of primer sets targeting ARGs were detected in the wastewater. The relative abundance of most of the genes was highest in influent and lower in effluent water and sludge. The resistance profiles of the samples cluster by sample location with a shift from raw influent through the final effluents and dried sludge to the sediments. Wastewater discharge enriched only a few genes, namely Tn25 type transposase gene and clinical class 1 integrons, in the sediment near the discharge pipe, but those enriched genes may indicate a potential for horizontal gene transfer.201626832203
3339120.9999Examining the taxonomic distribution of tetracycline resistance in a wastewater plant. Microbial communities serve as reservoirs of antibiotic resistance genes (ARGs) and facilitate the dissemination of these genes to bacteria that infect humans. Relatively little is known about the taxonomic distribution of bacteria harboring ARGs in these reservoirs and the avenues of transmission due to the technical hurdles associated with characterizing the contents of complex microbial populations and the assignment of genes to particular genomes. Focusing on the array of tetracycline resistance (Tc(r)) genes in the primary and secondary phases of wastewater treatment, 17 of the 22 assayed Tc(r) genes were detected in at least one sample. We then applied emulsion, paired isolation, and concatenation PCR (epicPCR) to link tetracycline resistance genes to specific bacterial hosts. Whereas Tc(r) genes tend to vary in their distributions among bacterial taxa according to their modes of action, there were numerous instances in which a particular Tc(r) gene was associated with a host that was distantly related to all other bacteria bearing the same gene, including several hosts not previously identified. Tc(r) genes are far less host-restricted than previously assumed, indicating that complex microbial communities serve as settings where ARGs are spread among divergent bacterial phyla.202438317688
3677130.9999Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan. Antibiotics are commonly used in swine feed to treat and prevent disease, as well as to promote growth. Antibiotics released into the environment via wastewater could accelerate the emergence of antibiotic-resistant bacteria and resistance genes in the surrounding environment. In this study, we quantified the occurrence of sulfonamides, sulfonamide-resistant microorganisms and resistance genes in the wastewater from a swine farm in northern Taiwan and its surrounding natural water bodies and soils. Sulfonamide levels were similar in the receiving downstream and upstream river water. However, the prevalence of sulfonamide-resistant bacteria and resistance genes, as analyzed by cultivation-dependent and -independent molecular approaches, was significantly greater in the downstream compared to the upstream river water samples. Barcoded-pyrosequencing revealed a highly diverse bacterial community structure in each sample. However, the sequence identity of the sulfonamide resistance gene sul1 in the wastewater and downstream environment samples was nearly identical (99-100%). The sul1 gene, which is genetically linked to class 1 integrons, was dominant in the downstream water bodies and soils. In conclusion, the increased prevalence of sulfonamide resistance genes in the wastewater from a swine farm, independent of the persistent presence of sulfonamides, could be a potential source of resistant gene pools in the surrounding environment.201424637153
7105140.9999Estimating the contribution of bacteriophage to the dissemination of antibiotic resistance genes in pig feces. The transfer of antibiotic resistance genes (ARGs) in the environment is a threat to both human and animal health. However, the contribution of bacteriophages to the dissemination of resistance genes via transduction is rarely explored. In this study, we screened pig feces from three commercial farms in China for 32 clinically relevant ARG types to assess the presence of the ARG population in bacteria and bacteriophage and further to estimate the contribution of bacteriophages to the dissemination of antibiotic resistance. We found that bacteriophage DNA contained 35.5% of the target ARG types and sul1, bla(TEM) and ermB were found in 100% of the phage DNA samples. The most abundant genes in the bacterial population were ermB and fexA whereas ermB was the most abundant in bacteriophage. In contrast, floR was the least abundant ARG in both populations. Also, the ratio index of the abundance of ARGs in bacteriophage and bacteria was firstly used in this study as an estimator of bacteriophage ability to transmit ARGs. The ratio for qnrA was the greatest (about 10(-1)) and differed from the most abundant bacteriophage ARG ermB. In addition, fexA had the lowest ratio value (about 10(-6)) and not floR. These results illustrate that ARGs abundance and detection rates used alone probably be not suitable for comprehensively judging the contribution of bacteriophage to the dissemination of antibiotic resistance. A more suitable model is the application of three indices; occurrence rate, absolute abundance in bacteriophage and the ratio value as warning and monitoring tools for environmental ARG assessments in bacteriophages.201829573711
3682150.9999Concentration of facultative pathogenic bacteria and antibiotic resistance genes during sewage treatment and in receiving rivers. Whereas the hygienic condition of drinking and bathing water by law must be monitored by culture-based methods, for quantification of microbes and antibiotic resistance in soil or the aquatic environment, often molecular genetic assays are used. For comparison of both methods, knowledge of their correlation is necessary. Therefore the population of total bacteria, Escherichia coli, enterococci and staphylococci during sewage treatment and in receiving river water was compared by agar plating and quantitative polymerase chain reaction (qPCR) assays. In parallel, all samples were investigated for clinically relevant antibiotic resistance genes. Whereas plating and qPCR data for total bacteria correlated well in sewage after primary treatment, qPCR data of river water indicated higher cell numbers for E. coli. It is unknown if these cells are 'only' not growing under standard conditions or if they are dead. Corresponding to the amount of non-culturable cells, the 'breakpoints' for monitoring water quality should be adapted. The abundances of clinically relevant antibiotic resistance genes in river water were in the same order of magnitude or even higher than in treated sewage. For estimation of the health risk it is important to investigate which species carry respective genes and whether these genes are disseminated via gene transfer.201627789876
3844160.9999Effects of Nutrient Level and Growth Rate on the Conjugation Process That Transfers Mobile Antibiotic Resistance Genes in Continuous Cultures. Bacteria in the effluent of wastewater treatment plants (WWTPs) can transfer antibiotic resistance genes (ARGs) to the bacteria in receiving water through conjugation; however, there is a lack of quantitative assessment of this phenomenon in continuous cultures. Our objective was to determine the effects of background nutrient levels in river water column and growth rates of bacteria on the conjugation frequency of ARGs from effluent bacteria to river bacteria, as well as on the resulting resistance level (i.e., MICs) of the river bacteria. Chemostats were employed to simulate the discharge points of WWTPs into rivers, where effluent bacteria (donor cells) meet river bacteria (recipient cells). Both donor and recipient cells were Escherichia coli cells, and the donor cells were constructed by filter mating with bacteria in the effluent of a local WWTP. Results showed that higher bacterial growth rate (0.45 h(-1) versus 0.15 h(-1)) led to higher conjugation frequencies (10(-4) versus 10(-6) transconjugant per recipient). The nutrient level also significantly affected the conjugation frequency, albeit to a lesser extent than the growth rate. The MIC against tetracycline increased from 2 mg/L in the recipient to 64 to 128 mg/L in transconjugants. In comparison, the MIC only increased to as high as 8 mg/L in mutants. Whole-genome sequencing showed that the tet-containing plasmid in both the donor and the transconjugant cells also occur in other fecal bacterial genera. The quantitative information obtained from this study can inform hazard identification related to the proliferation of wastewater-associated ARGs in surface water. IMPORTANCE WWTPs have been regarded as an important hot spot of ARGs. The discharge point of WWTP effluent, where ARGs may be horizontally transferred from bacteria of treated wastewater to bacteria of receiving water, is an important interface between the human-dominated ecosystem and the natural environment. The use of batch cultures in previous studies cannot adequately simulate the nutrient conditions and growth rates in receiving water. In this study, chemostats were employed to simulate the continuous growth of bacteria in receiving water. Furthermore, the experimental setup allowed for separate investigations on the effects of nutrient levels (i.e., simulating background nutrients in river water) and bacterial growth rates on conjugation frequencies and resulting resistance levels. The study generates statistically sound ecological data that can be used to estimate the risk of wastewater-originated ARGs as part of the One Health framework.202236094214
7315170.9999Seasonal variability of the correlation network of antibiotics, antibiotic resistance determinants, and bacteria in a wastewater treatment plant and receiving water. Sewage treatment plants are an essential source of antibiotics, antibiotic resistance determinants, and bacteria in environmental waters. However, it is still unclear whether they can maintain a relatively stable relationship in wastewater and environmental waters. This study analyzed the removal capacity of the above three pollutants in the sewage treatment plant in summer and their impact on environmental waters, and then examines the relationship between the three contaminants in the wastewater and environmental waters in summer and winter based on our previous study. The results found that the removal capacity of bacteria in summer was poor, the concentration of fluoroquinolone in the effluent was higher than that in influent, and the abundance of intI1, tetW, qnrB, and ermB increased after wastewater treatment. Proteobacteria and Bacteroides were the main bacteria that constitute the correlation network between bacteria, and they existed stably in summer and winter. However, fluoroquinolones occupied a significant position in the determinant network of antibiotics and antibiotic resistance in summer and winter. There are fewer correlation between antibiotics and antibiotics resistance determinants in winter. Interestingly, the relationship between bacteria, antibiotics, and antibiotic resistance determinants was a mainly positive correlation in summer and negative correlation in winter. This study analyzed the relationship between bacteria, antibiotics, and antibiotic resistance determinants that were stable in the wastewater and environmental waters and pointed out the direction for subsequent targeted seasonal control of novel pollutants in wastewater and environmental waters.202235642820
7391180.9999Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters. Antibiotic resistance has become a widely concerned issue due to the huge risk on the ecological environment and human health. China has the highest production and consumption of antibiotics than other countries. Thus, antibiotic resistance genes (ARGs) have been detected in various environmental settings (e.g., surface water, wastewater, sediment) in China. The occurrence of ARGs in these matrixes was summarized and discussed in this review. Sulfonamide resistance genes and tetracycline resistance genes were the most frequently detected ARGs in China. According to the abundance of these two classes of ARGs in the natural environment, sulfonamide resistance genes seem to be more stable than tetracycline resistance genes. Furthermore, the relationships between ARGs and antibiotics, antibiotic resistance bacteria (ARB), heavy metals, and environmental parameters (e.g., pH, organics) were also investigated. Specifically, relative abundance of total ARGs was found to correlate well with concentration of total antibiotics in aqueous phase but not in the solid phase (soil, sediment, sludge, and manure). As for relationship between ARGs and ARB, metals, and environmental parameters in different media, due to complex and variable environment, some exhibit positive correlation, some negative, while others no correlation at all. Three potential risks are discussed in the text: transmission to human, synergistic effect of different ARGs, and variability of ARGs. However, due to the complexity of the environment, more work is needed to establish a quantitative approach of ARG risk assessment, which can provide a theoretical support for the management of antibiotics and the protection of human health.201829948704
7429190.9999Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities. Antibiotic resistance is an emerging global health crisis, driven largely by overuse and misuse of antibiotics. However, there are examples in which the production of these antimicrobial agents has polluted the environment with active antibiotic residues, selecting for antibiotic resistant bacteria and the genes they carry. In this work, we have used shotgun metagenomics to investigate the taxonomic structure and resistance gene composition of sludge communities in a treatment plant in Croatia receiving wastewater from production of the macrolide antibiotic azithromycin. We found that the total abundance of antibiotic resistance genes was three times higher in sludge from the treatment plant receiving wastewater from pharmaceutical production than in municipal sludge from a sewage treatment plant in Zagreb. Surprisingly, macrolide resistance genes did not have higher abundances in the industrial sludge, but genes associated with mobile genetic elements such as integrons had. We conclude that at high concentrations of antibiotics, selection may favor taxonomic shifts towards intrinsically resistant species or strains harboring chromosomal resistance mutations rather than acquisition of mobile resistance determinants. Our results underscore the need for regulatory action also within Europe to avoid release of antibiotics into the environment.201931301473