# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 736 | 0 | 1.0000 | Resistance Is Not Futile: The Role of Quorum Sensing Plasticity in Pseudomonas aeruginosa Infections and Its Link to Intrinsic Mechanisms of Antibiotic Resistance. Bacteria use a cell-cell communication process called quorum sensing (QS) to orchestrate collective behaviors. QS relies on the group-wide detection of extracellular signal molecules called autoinducers (AI). Quorum sensing is required for virulence and biofilm formation in the human pathogen Pseudomonas aeruginosa. In P. aeruginosa, LasR and RhlR are homologous LuxR-type soluble transcription factor receptors that bind their cognate AIs and activate the expression of genes encoding functions required for virulence and biofilm formation. While some bacterial signal transduction pathways follow a linear circuit, as phosphoryl groups are passed from one carrier protein to another ultimately resulting in up- or down-regulation of target genes, the QS system in P. aeruginosa is a dense network of receptors and regulators with interconnecting regulatory systems and outputs. Once activated, it is not understood how LasR and RhlR establish their signaling hierarchy, nor is it clear how these pathway connections are regulated, resulting in chronic infection. Here, we reviewed the mechanisms of QS progression as it relates to bacterial pathogenesis and antimicrobial resistance and tolerance. | 2022 | 35744765 |
| 9169 | 1 | 0.9997 | Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Bacteria use a cell-to-cell communication activity termed "quorum sensing" to coordinate group behaviors in a cell density dependent manner. Quorum sensing influences the expression profile of diverse genes, including antibiotic tolerance and virulence determinants, via specific chemical compounds called "autoinducers". During quorum sensing, Gram-negative bacteria typically use an acylated homoserine lactone (AHL) called autoinducer 1. Since the first discovery of quorum sensing in a marine bacterium, it has been recognized that more than 100 species possess this mechanism of cell-to-cell communication. In addition to being of interest from a biological standpoint, quorum sensing is a potential target for antimicrobial chemotherapy. This unique concept of antimicrobial control relies on reducing the burden of virulence rather than killing the bacteria. It is believed that this approach will not only suppress the development of antibiotic resistance, but will also improve the treatment of refractory infections triggered by multi-drug resistant pathogens. In this paper, we review and track recent progress in studies on AHL inhibitors/modulators from a biological standpoint. It has been discovered that both natural and synthetic compounds can disrupt quorum sensing by a variety of means, such as jamming signal transduction, inhibition of signal production and break-down and trapping of signal compounds. We also focus on the regulatory elements that attenuate quorum sensing activities and discuss their unique properties. Understanding the biological roles of regulatory elements might be useful in developing inhibitor applications and understanding how quorum sensing is controlled. | 2013 | 23720655 |
| 9167 | 2 | 0.9997 | Bioactive proteins from Solanaceae as quorum sensing inhibitors against virulence in Pseudomonas aeruginosa. Cell-to-cell communication or quorum sensing (QS) is a generic event in bacteria that is used to coordinate gene expression among local populations. The phenomenon of QS depends on the fact that presence of sufficient bacteria ascertains a threshold level of autoinducer concentration that allows bacteria to sense a critical cell mass and to activate or repress target genes. Thus, QS has been an attractive target for the development of anti-infective strategies that are not based on the use of antibiotics. Several anti-QS approaches have been demonstrated including natural products from plant-based secondary metabolites. However, the role of plant bioactive proteins as an anti-QS peptide is yet to be deciphered. Against a backdrop of ever-increasing antibiotic resistant pathogens, there is a strong need for development of alternative therapeutic strategies. Thus, our hypothesis is that bioactive proteins from the plant family Solanaceae are quorum quenching molecules that can be exploited to develop a therapeutic strategy against virulence. We presume that bioactive proteins will inactivate or inhibit or degrade QS signals from bacteria to prevent cell-to-cell communication and thus inhibit development of virulence in Pseudomonas aeruginosa. Further, the use of proteins as quorum quenchers will delay the bacteria to develop resistance against these quenching molecules. | 2015 | 25777471 |
| 9168 | 3 | 0.9997 | Novel approaches to bacterial infection therapy by interfering with bacteria-to-bacteria signaling. The growing challenge of antimicrobial resistance and the paucity of novel antibiotics underscore the importance of developing novel therapeutics. Bacterial cell-to-cell signaling constitutes a novel drug target. Quorum sensing (QS) is a cell-to-cell signaling mechanism that refers to the ability of bacteria to respond to chemical hormone-like molecules called autoinducers. QS is responsible for controlling a plethora of virulence genes in several bacterial pathogens. Antagonists to autoinducers will intercept bacterial intercellular communication, hindering their ability to act in a coordinated manner to express virulence traits. Moreover, since QS is not involved directly in essential processes, such as bacterial growth, one can reason that inhibition of QS will not yield a selective pressure for the development of resistance. | 2007 | 17402841 |
| 9163 | 4 | 0.9997 | Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. Compounds that can override communication signals have been found in the marine environment. Using Pseudomonas aeruginosa PAO1 as an example of an opportunistic human pathogen, we show that a synthetic derivate of natural furanone compounds can act as a potent antagonist of bacterial quorum sensing. We employed GeneChip microarray technology to identify furanone target genes and to map the quorum sensing regulon. The transcriptome analysis showed that the furanone drug specifically targeted quorum sensing systems and inhibited virulence factor expression. Application of the drug to P.aeruginosa biofilms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune response. | 2003 | 12881415 |
| 9165 | 5 | 0.9997 | Regulatory Mechanisms and Physiological Impacts of Quorum Sensing in Gram-Negative Bacteria. The Quorum sensing (QS) system is a widely existing communication mechanism, which regulates bacterial community behaviors and the expression of specific genes. The most common pathogenic bacteria in clinical infections are gram-negative bacteria, and QS plays an important regulatory role in the production of virulence factors and development of antibiotic resistance. This article reviews the QS systems of gram-negative bacteria and provides an overview of how they regulate their physiological functions. | 2024 | 39654694 |
| 9166 | 6 | 0.9996 | Mechanisms of Inhibition of Quorum Sensing as an Alternative for the Control of E. coli and Salmonella. Quorum sensing (QS) is a process of cell-cell communication for bacteria such as E. coli and Salmonella that cause foodborne diseases, with the production, release, and detection of autoinducer (AI) molecules that participate in the regulation of virulence genes. All of these proteins are useful in coordinating collective behavior, the expression of virulence factors, and the pathogenicity of Gram-negative bacteria. In this work, we review the natural or synthetic inhibitor molecules of QS that inactivate the autoinducer and block QS regulatory proteins in E. coli and Salmonella. Furthermore, we describe mechanisms of QS inhibitors (QSIs) that act as competitive inhibitors, being a useful tool for preventing virulence gene expression through the downregulation of AI-2 production pathways and the disruption of signal uptake. In addition, we showed that QSIs have negative regulatory activity of genes related to bacterial biofilm formation on clinical artifacts, which confirms the therapeutic potential of QSIs in the control of infectious pathogens. Finally, we discuss resistance to QSIs, the design of next-generation QSIs, and how these molecules can be leveraged to provide a new antivirulence therapy to combat diseases caused by E. coli or Salmonella. | 2022 | 35630329 |
| 9164 | 7 | 0.9996 | Quorum quenching: role of nanoparticles as signal jammers in Gram-negative bacteria. Quorum sensing (QS) is a cell density dependent regulatory process that uses signaling molecules to manage the expression of virulence genes and biofilm formation. The study of QS inhibitors has emerged as one of the most fascinating areas of research to discover novel antimicrobial agents. Compounds that block QS have become candidates as unusual antimicrobial agents, as they are leading players in the regulation of virulence of drug-resistant pathogens. Metal and metal oxide nanoparticles offer novel alternatives to combat antibiotic resistance in Gram-negative bacteria aiming their capacity as QS inhibitors. This review provides an insight into the quorum quenching potential of metal and metal oxide nanoparticles by targeting QS regulated virulence of Gram-negative bacteria. | 2019 | 30539663 |
| 8242 | 8 | 0.9996 | New antibacterial targets: Regulation of quorum sensing and secretory systems in zoonotic bacteria. Quorum sensing (QS) is a communication mechanism that controls bacterial communication and can influence the transcriptional expression of multiple genes through one or more signaling molecules, thereby coordinating the population response of multiple bacterial pathogens. Secretion systems (SS) play an equally important role in bacterial information exchange, relying on the secretory systems to secrete proteins that act as virulence factors to promote adhesion to host cells. Eight highly efficient SS have been described, all of which are involved in the secretion or transfer of virulence factors, and the effector proteins they secrete play a key role in the virulence and pathogenicity of bacteria. It has been shown that many bacterial SS are directly or indirectly regulated by QS and thus influence bacterial virulence and antibiotic resistance. This review describes the relationship between QS and SS of several common zoonotic pathogenic bacteria and outlines the molecular mechanisms of how QS systems regulate SS, to provide a theoretical basis for the study of bacterial pathogenicity and the development of novel antibacterial drugs. | 2023 | 37343493 |
| 9170 | 9 | 0.9996 | It is the time for quorum sensing inhibition as alternative strategy of antimicrobial therapy. Multiple drug resistance poses a significant threat to public health worldwide, with a substantial increase in morbidity and mortality rates. Consequently, searching for novel strategies to control microbial pathogenicity is necessary. With the aid of auto-inducers (AIs), quorum sensing (QS) regulates bacterial virulence factors through cell-to-cell signaling networks. AIs are small signaling molecules produced during the stationary phase. When bacterial cultures reach a certain level of growth, these molecules regulate the expression of the bound genes by acting as mirrors that reflect the inoculum density.Gram-positive bacteria use the peptide derivatives of these signaling molecules, whereas Gram-negative bacteria use the fatty acid derivatives, and the majority of bacteria can use both types to modulate the expression of the target gene. Numerous natural and synthetic QS inhibitors (QSIs) have been developed to reduce microbial pathogenesis. Applications of QSI are vital to human health, as well as fisheries and aquaculture, agriculture, and water treatment. Video Abstract. | 2023 | 37316831 |
| 9171 | 10 | 0.9996 | Small molecules modulating AHL-based quorum sensing to attenuate bacteria virulence and biofilms as promising antimicrobial drugs. Clinically significant antibiotic resistance is one of the greatest challenges of the twenty-first century. Yet new antibiotics are currently being developed at a much slower pace than our growing need for such drugs. Instead of focusing on conventional therapeutics that target in vitro bacterial viability, an alternative therapy is to target virulence factors and biofilms. Such anti-virulence strategies have attracted more and more attention recently, for it would add both supplement and diversity to our current antimicrobial library. This approach has several potential advantages including imposing less evolutionary pressure on the development of antibiotic resistance, increasing the antibacterial targets and preserving the host endogenous microbiome. Quorum sensing is an intercellular communication process in bacterial communities, which can regulate coordinated expression of virulence factors and biofilms. N-Acyl homoserine lactones (AHLs) are autoinducers generated by a variety of Gram-negative bacteria. These signals combining with their cognate LuxR-type receptors trigger the expression of virulence genes. In this critical review, we summarize various structural types of small molecules targeting AHL-based quorum sensing to attenuate bacteria virulence factors and biofilms. | 2014 | 24164200 |
| 8317 | 11 | 0.9996 | The Quorum Sensing Auto-Inducer 2 (AI-2) Stimulates Nitrogen Fixation and Favors Ethanol Production over Biomass Accumulation in Zymomonas mobilis. Autoinducer 2 (or AI-2) is one of the molecules used by bacteria to trigger the Quorum Sensing (QS) response, which activates expression of genes involved in a series of alternative mechanisms, when cells reach high population densities (including bioluminescence, motility, biofilm formation, stress resistance, and production of public goods, or pathogenicity factors, among others). Contrary to most autoinducers, AI-2 can induce QS responses in both Gram-negative and Gram-positive bacteria, and has been suggested to constitute a trans-specific system of bacterial communication, capable of affecting even bacteria that cannot produce this autoinducer. In this work, we demonstrate that the ethanologenic Gram-negative bacterium Zymomonas mobilis (a non-AI-2 producer) responds to exogenous AI-2 by modulating expression of genes involved in mechanisms typically associated with QS in other bacteria, such as motility, DNA repair, and nitrogen fixation. Interestingly, the metabolism of AI-2-induced Z. mobilis cells seems to favor ethanol production over biomass accumulation, probably as an adaptation to the high-energy demand of N(2) fixation. This opens the possibility of employing AI-2 during the industrial production of second-generation ethanol, as a way to boost N(2) fixation by these bacteria, which could reduce costs associated with the use of nitrogen-based fertilizers, without compromising ethanol production in industrial plants. | 2021 | 34073173 |
| 9160 | 12 | 0.9995 | Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS) to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs), as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs) to block the action of AIs and quorum quenching (QQ) enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in various animal models and are now considered in the development of new medical devices against bacterial infections, including dressings, and catheters for enlarging the therapeutic arsenal against bacteria. | 2018 | 29563876 |
| 8311 | 13 | 0.9995 | Perturbation of Quorum Sensing after the Acquisition of Bacteriophage Resistance Could Contribute to Novel Traits in Vibrio alginolyticus. Bacteria employ a wide range of molecular mechanisms to confer resistance to bacteriophages, and these mechanisms are continuously being discovered and characterized. However, there are instances where certain bacterial species, despite lacking these known mechanisms, can still develop bacteriophage resistance through intricate metabolic adaptation strategies, potentially involving mutations in transcriptional regulators or phage receptors. Vibrio species have been particularly useful for studying the orchestrated metabolic responses of Gram-negative marine bacteria in various challenges. In a previous study, we demonstrated that Vibrio alginolyticus downregulates the expression of specific receptors and transporters in its membrane, which may enable the bacterium to evade infection by lytic bacteriophages. In our current study, our objective was to explore how the development of bacteriophage resistance in Vibrio species disrupts the quorum-sensing cascade, subsequently affecting bacterial physiology and metabolic capacity. Using a real-time quantitative PCR (rt-QPCR) platform, we examined the expression pattern of quorum-sensing genes, auto-inducer biosynthesis genes, and cell density regulatory proteins in phage-resistant strains. Our results revealed that bacteriophage-resistant bacteria downregulate the expression of quorum-sensing regulatory proteins, such as LuxM, LuxN, and LuxP. This downregulation attenuates the normal perception of quorum-sensing peptides and subsequently diminishes the expression of cell density regulatory proteins, including LuxU, aphA, and LuxR. These findings align with the diverse phenotypic traits observed in the phage-resistant strains, such as altered biofilm formation, reduced planktonic growth, and reduced virulence. Moreover, the transcriptional depletion of aphA, the master regulator associated with low cell density, was linked to the downregulation of genes related to virulence. This phenomenon appears to be phage-specific, suggesting a finely tuned metabolic adaptation driven by phage-host interaction. These findings contribute to our understanding of the role of Vibrio species in microbial marine ecology and highlight the complex interplay between phage resistance, quorum sensing, and bacterial physiology. | 2023 | 37764117 |
| 8284 | 14 | 0.9995 | Redox signaling in human pathogens. In recent studies of human bacterial pathogens, oxidation sensing and regulation have been shown to impact very diverse pathways that extend beyond inducing antioxidant genes in the bacteria. In fact, some redox-sensitive regulatory proteins act as major regulators of bacteria's adaptability to oxidative stress, an ability that originates from immune host response as well as antibiotic stress. Such proteins play particularly important roles in pathogenic bacteria S. aureus, P. aeruginosa, and M. tuberculosis in part because reactive oxygen species and reactive nitrogen species present significant challenges for pathogens during infection. Herein, we review recent progress toward the identification and understanding of oxidation sensing and regulation in human pathogens. The newly identified redox switches in pathogens are a focus of this review. We will cover several reactive oxygen species-sensing global regulators in both gram-positive and gram-negative pathogenic bacteria in detail. The following discussion of the mechanisms that these proteins employ to sense redox signals through covalent modification of redox active amino acid residues or associated metalloprotein centers will provide further understanding of bacteria pathogenesis, antibiotic resistance, and host-pathogen interaction. | 2011 | 20578795 |
| 737 | 15 | 0.9995 | Possible mechanisms of Pseudomonas aeruginosa-associated lung disease. Pseudomonas aeruginosa is an opportunistic bacterium causing lung injury in immunocompromised patients correlated with high morbidity and mortality. Many bacteria, including P. aeruginosa, use extracellular signals to synchronize group behaviors, a process known as quorum sensing (QS). In the P. aeruginosa complex QS system controls expression of over 300 genes, including many involved in host colonization and disease. P. aeruginosa infection elicits a complex immune response due to a large number of immunogenic factors present in the bacteria or released during infection. Here, we focused on the mechanisms by which P. aeruginosa triggers lung injury and inflammation, debating the possible ways that P. aeruginosa evades the host immune system, which leads to immune suppression and resistance. | 2016 | 26652129 |
| 8241 | 16 | 0.9995 | Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. N-acyl homoserine lactones (AHLs) belong to the class of bacterial quorum sensing signal molecules involved in distance signal transduction between Gram-negative bacteria colonizers of the rhizosphere, as well as bacteria and plants. AHLs synchronize the activity of genes from individual cells, allowing the bacterial population to act as a multicellular organism, and establish a symbiotic or antagonistic relationship with the host plant. Although the effect of AHLs on plants has been studied for more than ten years, the mechanisms of plant perception of AHL signals are not fully understood. The specificity of the reactions caused by AHL indicates the existence of appropriate mechanisms for their perception by plants. In the current review, we summarize available data on the molecular mechanisms of AHL-signal perception in plants, its effect on plant growth, development, and stress resistance. We describe the latest research demonstrating direct (on plants) and indirect (on rhizosphere microflora) effects of AHLs, as well as the prospects of using these compounds in biotechnology to increase plant resistance to biotic and abiotic stresses. | 2022 | 34937124 |
| 9159 | 17 | 0.9995 | Quorum sensing inhibitors (QSIs): a patent review (2019-2023). INTRODUCTION: The collective behavior of bacteria is regulated by Quorum Sensing (QS), in which bacteria release chemical signals and express virulence genes in a cell density-dependent manner. Quorum Sensing inhibitors (QSIs) are a large class of natural and synthetic compounds that have the potential to competitively inhibit the Quorum Sensing (QS) systems of several pathogens blocking their virulence mechanisms. They are considered promising compounds to deal with antimicrobial resistance, providing an opportunity to develop new drugs against these targets. AREAS COVERED: The present review represents a comprehensive analysis of patents and patent applications available on Espacenet and Google Patent, from 2019 to 2023 referring to the therapeutic use of Quorum Sensing inhibitors. EXPERT OPINION: Unlike classical antibiotics, which target the basic cellular metabolic processes, QSIs provide a promising alternative to attenuating virulence and pathogenicity without putting selective pressure on bacteria. The general belief is that QSIs pose no or little selective pressure on bacteria since these do not affect their growth. To date, QSIs are seen as the most promising alternative to traditional antibiotics. The next big step in this area of research is its succession to the clinical stage. | 2025 | 40219759 |
| 8884 | 18 | 0.9995 | Regulatory Mechanisms of the LuxS/AI-2 System and Bacterial Resistance. The quorum-sensing (QS) system is an intercellular cell-cell communication mechanism that controls the expression of genes involved in a variety of cellular processes and that plays critical roles in the adaption and survival of bacteria in their environment. The LuxS/AI-2 QS system, which uses AI-2 (autoinducer-2) as a signal molecule, has been identified in both Gram-negative and Gram-positive bacteria. As one of the important global regulatory networks in bacteria, it responds to fluctuations in the numbers of bacteria and regulates the expression of a number of genes, thus affecting cell behavior. We summarize here the known relationships between the LuxS/AI-2 system and drug resistance, discuss the inhibition of LuxS/AI-2 system as an approach to prevent bacterial resistance, and present new strategies for the treatment of drug-resistant pathogens. | 2019 | 31383657 |
| 9157 | 19 | 0.9995 | Potential Emergence of Multi-quorum Sensing Inhibitor Resistant (MQSIR) Bacteria. Expression of certain bacterial genes only at a high bacterial cell density is termed as quorum-sensing (QS). Here bacteria use signaling molecules to communicate among themselves. QS mediated genes are generally involved in the expression of phenotypes such as bioluminescence, biofilm formation, competence, nodulation, and virulence. QS systems (QSS) vary from a single in Vibrio spp. to multiple in Pseudomonas and Sinorhizobium species. The complexity of QSS is further enhanced by the multiplicity of signals: (1) peptides, (2) acyl-homoserine lactones, (3) diketopiperazines. To counteract this pathogenic behaviour, a wide range of bioactive molecules acting as QS inhibitors (QSIs) have been elucidated. Unlike antibiotics, QSIs don't kill bacteria and act at much lower concentration than those of antibiotics. Bacterial ability to evolve resistance against multiple drugs has cautioned researchers to develop QSIs which may not generate undue pressure on bacteria to develop resistance against them. In this paper, we have discussed the implications of the diversity and multiplicity of QSS, in acting as an arsenal to withstand attack from QSIs and may use these as reservoirs to develop multi-QSI resistance. | 2016 | 26843692 |