# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7352 | 0 | 1.0000 | Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia. The effluents from wastewater treatment plants have been recognized as a significant environmental reservoir of antibiotics and antibiotic resistance genes (ARGs). Reclaimed water irrigation (RWI) is increasingly used as a practical solution for combating water scarcity in arid and semiarid regions, however, impacts of RWI on the patterns of ARGs and the soil bacterial community remain unclear. Here, we used high-throughput quantitative PCR and terminal restriction fragment length polymorphism techniques to compare the diversity, abundance and composition of a broad-spectrum of ARGs and total bacteria in 12 urban parks with and without RWI in Victoria, Australia. A total of 40 unique ARGs were detected across all park soils, with genes conferring resistance to β-lactam being the most prevalent ARG type. The total numbers and the fold changes of the detected ARGs were significantly increased by RWI, and marked shifts in ARG patterns were also observed in urban parks with RWI compared to those without RWI. The changes in ARG patterns were paralleled by a significant effect of RWI on the bacterial community structure and a co-occurrence pattern of the detected ARG types. There were significant and positive correlations between the fold changes of the integrase intI1 gene and two β-lactam resistance genes (KPC and IMP-2 groups), but no significant impacts of RWI on the abundances of intI1 and the transposase tnpA gene were found, indicating that RWI did not improve the potential for horizontal gene transfer of soil ARGs. Taken together, our findings suggested that irrigation of urban parks with reclaimed water could influence the abundance, diversity, and compositions of a wide variety of soil ARGs of clinical relevance. ONE-SENTENCE SUMMARY: Irrigation of urban parks with treated wastewater significantly increased the abundance and diversity of various antibiotic resistance genes, but did not significantly enhance their potential for horizontal gene transfer. | 2016 | 26736055 |
| 7332 | 1 | 0.9998 | Metagenomic Survey Reveals More Diverse and Abundant Antibiotic Resistance Genes in Municipal Wastewater Than Hospital Wastewater. Alongside antibiotic resistance, co-selection of antibiotics, biocides, and metal resistance is a growing concern. While hospital wastewater is considered a hotspot for antibiotic-resistant bacteria (ARB) and genes (ARGs), the scenario in India, one of the biggest consumers of antibiotics, remains poorly described. In this study, we used metagenomic sequencing to characterize ARGs and biocide/metal resistance genes (BMRGs) in four wastewater treatment plants (WWTPs) in Jaipur City of India. We observed a significantly lower richness and abundance of ARGs in the influent of a WWTP exclusively receiving hospital wastewater when compared to other three WWTPs involving municipal wastewater treatment. Several tetracycline and macrolide-lincosamide-streptogramin resistance genes were enriched in influents of these three municipal wastewater-related treatment plants, whereas hospital wastewater had a higher abundance of genes conferring resistance to disinfectant-related compounds such as synergize and wex-cide-128, reflecting the patterns of antibiotic/disinfectant use. Of note, in the wastewater system with more chemicals, there was a strong correlation between the numbers of ARGs and BMRGs potentially harbored by common hosts. Our study highlights significant influxes of ARGs from non-hospital sources in Jaipur City, and thus more attention should be paid on the emergence of ARGs in general communities. | 2021 | 34526976 |
| 3097 | 2 | 0.9998 | Investigation of the Prevalence of Antibiotic Resistance Genes According to the Wastewater Treatment Scale Using Metagenomic Analysis. Although extensive efforts have been made to investigate the dynamics of the occurrence and abundance of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs), understanding the acquisition of antibiotic resistance based on the WWTP scale and the potential effects on WWTPs is of relatively less interest. In this study, metagenomic analysis was carried out to investigate whether the WWTP scale could be affected by the prevalence and persistence of ARGs and mobile genetic elements (MGEs). As a result, 152 ARG subtypes were identified in small-scale WWTP samples, while 234 ARG subtypes were identified in large-scale WWTP samples. Among the detectable ARGs, multidrug, MLS (macrolide-lincosamide-streptogramin), sulfonamide, and tetracycline resistance genes had the highest abundance, and large and small WWTPs had similar composition characteristics of ARGs. In MGE analysis, plasmids and integrons were 1.5-2.0-fold more abundant in large-scale WWTPs than in small-scale WWTPs. The profile of bacteria at the phylum level showed that Proteobacteria and Actinobacteria were the most dominant bacteria, representing approximately 70% across large- and small-scale WWTPs. Overall, the results of this study elucidate the different abundances and dissemination of ARGs between large- and small-scale WWTPs, which facilitates the development of next-generation engineered wastewater treatment systems. | 2021 | 33671905 |
| 7283 | 3 | 0.9998 | Comparative metagenomics reveals a diverse range of antimicrobial resistance genes in effluents entering a river catchment. The aquatic environment has been implicated as a reservoir for antimicrobial resistance genes (ARGs). In order to identify sources that are contributing to these gene reservoirs, it is crucial to assess effluents that are entering the aquatic environment. Here we describe a metagenomic assessment for two types of effluent entering a river catchment. We investigated the diversity and abundance of resistance genes, mobile genetic elements (MGEs) and pathogenic bacteria. Findings were normalised to a background sample of river source water. Our results show that effluent contributed an array of genes to the river catchment, the most abundant being tetracycline resistance genes tetC and tetW from farm effluents and the sulfonamide resistance gene sul2 from wastewater treatment plant (WWTP) effluents. In nine separate samples taken across 3 years, we found 53 different genes conferring resistance to seven classes of antimicrobial. Compared to the background sample taken up river from effluent entry, the average abundance of genes was three times greater in the farm effluent and two times greater in the WWTP effluent. We conclude that effluents disperse ARGs, MGEs and pathogenic bacteria within a river catchment, thereby contributing to environmental reservoirs of ARGs. | 2016 | 27054725 |
| 3177 | 4 | 0.9998 | Metagenomic investigation of antibiotic resistance genes and resistant bacteria contamination in pharmaceutical plant sites in China. Pharmaceutical plant sites play a significant role in the dissemination of antibiotic resistance genes (ARGs) into the environment. It is imperative to comprehensively monitor of ARGs across various environmental media at these sites. This study focused on three pharmaceutical plants, two located in North China and one in South China. Through metagenomic approaches, we examined the composition, mobility potential, and bacterial hosts of ARGs in diverse media such as process water, groundwater, topsoil, soil cores, and pharmaceutical fermentation residues across diverse environmental matrices, including topsoil, soil cores, process water, groundwater, and pharmaceutical fermentation residues. We identified a wide array of ARGs, comprising 21 types and 740 subtypes, with process water exhibiting the highest abundance and diversity. Treatment processes varied in their efficacy in eliminating ARGs, and the clinically relevant ARGs should also be considered when evaluating wastewater treatment plant efficiency. Geographical distinctions in groundwater ARG distribution between northern and southern regions were observed. Soil samples from the three sites showed minimal impact from pharmaceutical activity, with vancomycin-resistance genes being the most prevalent. High levels of ARGs in pharmaceutical fermentation residues underscore the necessity for improved waste management practices. Metagenomic assembly revealed that plasmid-mediated ARGs were more abundant than chromosome-mediated ARGs. Metagenome-assembled genomes (MAGs) analysis identified 166 MAGs, with 62 harboring multiple ARGs. Certain bacteria tended to carry specific types of ARGs, revealing distinct host-resistance associations. This study enhances our understanding of ARG dissemination across different environmental media within pharmaceutical plants and underscores the importance of implementing strict regulations for effluent and residue discharge to control ARG spread. | 2024 | 38960118 |
| 6867 | 5 | 0.9998 | Comparative analysis of characteristics of antibiotic resistomes between Arctic soils and representative contaminated samples using metagenomic approaches. Antibiotic resistance is one of the most concerned global health issues. However, comprehensive profiles of antibiotic resistance genes (ARGs) in various environmental settings are still needed to address modern antibiotic resistome. Here, Arctic soils and representative contaminated samples from ARG pollution sources were analyzed using metagenomic approaches. The diversity and abundance of ARGs in Arctic soils were significantly lower than those in contaminated samples (p < 0.01). ARG profiles in Arctic soils were featured with the dominance of vanF, ceoB, and bacA related to multidrug and bacitracin, whereas those from ARG pollution sources were characterized by prevalent resistance to anthropogenic antibiotics such as sulfonamides, tetracyclines, and beta-lactams. Mobile genetic elements (MGEs) were found in all samples, and their abundance and relatedness to ARGs were both lower in Arctic soils than in polluted samples. Significant relationships between bacterial communities and ARGs were observed (p < 0.01). Cultural bacteria in Arctic soils had clinically-concerned resistance to erythromycin, vancomycin, ampicillin, etc., but ARGs relevant to those antibiotics were undetectable in their genomes. Our results suggested that Arctic environment could be an important reservoir of novel ARGs, and antibiotic stresses could cause ARG pollution via horizontal gene transfer and enrichment of resistant bacteria. | 2024 | 38452676 |
| 7330 | 6 | 0.9998 | Deterministic assembly process dominates bacterial antibiotic resistome in wastewater effluents receiving river. Antibiotic resistance has become a concerning global health challenge, such as the dissemination of bacteria and genes between humans and the environments. Wastewater treatment plants (WWTPs) effluents, as significant reservoirs for antimicrobial resistant bacteria and antibiotic resistance genes (ARGs), pose critical risks to public health. However, whether wastewater effluent prominently contributes to the abundance of ARGs and their community assembly processes in receiving river has yet been unclear. Here we investigated the effects of the effluent discharge on the ARGs and their associate microbial community in the receiving river (Qinhuai River, Nanjing) of upstream and 2000 m downstream of one WWTPs discharge point. Results revealed that the total antibiotic concentrations of all sediment samples ranged from 37.86 to 76.11 µg/kg dw, while antibiotic concentrations and ARG abundances in the river near the wastewater discharge site were significantly higher than that of the downstream receiving river. The metagenomic assembly obtained 245 ARGs associated with 19 antibiotic types in the receiving river. Network analyses confirmed that Proteobacteria, Firmicutes, Acidobacteria, and Bacteroides were the key phylum and positively correlated with the antibiotic resistome. Additionally, the bacterial pathogens of the receiving river were identified as the most frequent strains of clinically relevant antibacterial resistance, such as Streptococcus pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Using null modeling analysis to determine the quantification of ecological processes, the results showed that heterogeneous environmental selection (81.81%) was a dominate role of the ecological mechanisms determining the ARG community reconstruction in the receiving river. Our results may contribute to control the environmental dissemination of antimicrobial resistance risks in aquatic environments. | 2022 | 35864403 |
| 7218 | 7 | 0.9998 | Mass-immigration shapes the antibiotic resistome of wastewater treatment plants. Wastewater treatment plants (WWTPs) are the hotspots for the spread of antibiotic resistance genes (ARGs) into the environment. Nevertheless, a comprehensive assessment of the city-level and short-term daily (inter-day) variations of ARG profiles in the whole process (influent-INF, activated sludge-AS and effluent-EF) of WWTPs is still lacking. Here, 285 ARGs and ten mobile gene elements were monitored in seven WWTPs in Xiamen for seven days via high-throughput qPCR. The average daily load of ARGs to WWTPs was about 1.32 × 10(20) copies/d, and a total of 1.56 × 10(18) copies/d was discharged to the environment across the entire city. Stochastic processes were the main force determining the assembly of ARG communities during sampling campaign, with their relative importance ranked in the order of INF > EFF > AS. There're little daily variations in ARG richness, abundance, β-diversity composition as well as assembly mechanisms. The results of SourceTracker, variation partitioning analysis, and hierarchical partitioning analysis indicated that bacteria and ARGs from upstream treatment processes played an increasingly dominant role in shaping ARG communities in AS and EFF, respectively, suggesting the importance of mass-immigration of bacteria and ARGs from the source on ARG transport in wastewater treatment processes. This emphasizes the need to revise the way we mitigate ARG contamination but focus on the source of ARGs in urban wastewater. | 2024 | 37914134 |
| 7342 | 8 | 0.9998 | Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant. The increased antibiotic resistance among microorganisms has resulted into growing interest for investigating the wastewater treatment plants (WWTPs) as they are reported to be the major source in the dissemination of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment. In this study, we investigated the prevalence and persistence of ARGs and HMRGs as well as bacterial diversity and mobile genetic elements (MGEs) in influent and effluent at the WWTP in Gwangju, South Korea, using high-throughput sequencing based metagenomic approach. A good number of broad-spectrum of resistance genes (both ARG and HMRG) were prevalent and likely persistent, although large portion of them were successfully removed at the wastewater treatment process. The relative abundance of ARGs and MGEs was higher in effluent as compared to that of influent. Our results suggest that the resistance genes with high abundance and bacteria harbouring ARGs and MGEs are likely to persist more through the treatment process. On analyzing the microbial community, the phylum Proteobacteria, especially potentially pathogenic species belonging to the genus Acinetobacter, dominated in WWTP. Overall, our study demonstrates that many ARGs and HMRGs may persist the treatment processes in WWTPs and their association to MGEs may contribute to the dissemination of resistance genes among microorganisms in the environment. | 2018 | 29858829 |
| 7328 | 9 | 0.9997 | Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water. The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river. | 2016 | 27340885 |
| 7284 | 10 | 0.9997 | Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water. | 2015 | 25913323 |
| 6862 | 11 | 0.9997 | Strong variation in sedimental antibiotic resistomes among urban rivers, estuaries and coastal oceans: Evidence from a river-connected coastal water ecosystem in northern China. Sediment is thought to be a vital reservoir to spread antibiotic resistance genes (ARGs) among various natural environments. However, the spatial distribution patterns of the sedimental antibiotic resistomes around the Bohai Bay region, a river-connected coastal water ecosystem, are still poorly understood. The present study conducted a comprehensive investigation of ARGs among urban rivers (UR), estuaries (ES) and Bohai Bay (BHB) by metagenomic sequencing. Overall, a total of 169 unique ARGs conferring resistance to 15 antimicrobial classes were detected across all sediment samples. The Kruskal-Wallis test showed that the diversity and abundance of ARGs in the UR were all significantly higher than those in the ES and BHB (p < 0.05 and p < 0.01), revealing the distance dilution of the sedimental resistomes from the river to the ocean. Multidrug resistance genes contained most of the ARG subtypes, whereas rifamycin resistance genes were the most abundant ARGs in this region. Our study demonstrated that most antimicrobial resistomes were highly accumulated in urban river sediments, whereas beta-lactamase resistance genes (mainly PNGM-1) dramatically increased away from the estuary to the open ocean. The relative abundance of mobile genetic elements (MGEs) also gradually decreased from rivers to the coastal ocean, whereas the difference in pathogenic bacteria was not significant in the three classifications. Among MGEs, plasmids were recognized as the most important carriers to support the horizontal gene transfer of ARGs within and between species. According to co-occurrence networks, pathogenic Proteobacteria, Actinobacteria, and Bacteroidetes were recognized as potential and important hosts of ARGs. Heavy metals, pH and moisture content were all recognized as the vital environmental factors influencing the distribution of ARGs in sediment samples. Overall, the present study may help to understand the distribution patterns of ARGs at a watershed scale, and help to make effective policies to control the emergence, spread and evolution of different ARG subtypes in different habitats. | 2023 | 37263036 |
| 6868 | 12 | 0.9997 | Rare resistome rather than core resistome exhibited higher diversity and risk along the Yangtze River. As important freshwater ecosystems, the occurrence and distribution of antibiotic resistance genes (ARGs) in rivers are relevant to public health. However, studies investigating ARGs of different environmental media in river ecosystems are limited. In this study, we analyzed the ARGs of microbes in free-living setting, particle-associated setting, sediment and bank soil of the Yangtze River using metagenomics. Twenty-six ARGs were found in all samples regardless of media (core resistome) with a diversity of 8.6 %-34.7 %, accounting for 22.7 %-89.2 % of the relative abundance of the overall ARGs. The core resistome of the Yangtze River was dominated by multidrug resistance genes consisting mainly of efflux pumps and bacitracin resistance genes. The rare resistome was dominated by multidrug, sulfonamide, and aminoglycoside resistance genes. The core resistome was more prevalent in chromosomes, implying that these ARGs with low diversity and high relative abundance may be intrinsic to microbes in the Yangtze River. The rare resistome was more prevalent in plasmids, suggesting these ARGs with high diversity and low relative abundance were acquired under environmental stresses and had transfer potential. Additionally, we found that core and rare resistome were mainly carried by specific bacteria. Noteworthily, twenty-two ARGs of high clinical concern were identified in rare resistome, especially aac(6')-I, sul1, and tetM, which were plasmid-borne and hosted by clinically relevant pathogens. Both core and rare resistome hosts showed the highest niche breadths in particle-associated setting compared to other media, and particle-associated setting could provide more stable and ideal conditions for resistome hosts to survive. This study elucidated the genetic locations of ARGs and the community assembly mechanisms of ARG hosts in freshwater environments. | 2024 | 38039820 |
| 6844 | 13 | 0.9997 | Antibiotic resistance genes correlate with metal resistances and accumulate in the deep water layers of the Black Sea. Seas and oceans are a global reservoir of antibiotic resistance genes (ARGs). Only a few studies investigated the dynamics of ARGs along the water column of the Black Sea, a unique environment, with a peculiar geology, biology and history of anthropogenic pollution. In this study, we analyzed metagenomic data from two sampling campaigns (2013 and 2019) collected across three different sites in the Western Black Sea at depths ranging from 5 to 2000 m. The data were processed to annotate ARGs, metal resistance genes (MRGs) and integron integrase genes. The ARG abundance was significantly higher in the deep water layers and depth was the main driver of beta-diversity both for ARGs and MRGs. Moreover, ARG and MRG abundances strongly correlated (r = 0.95). The integron integrase gene abundances and composition were not influenced by the water depth and did not correlate with ARGs. The analysis of the obtained MAGs showed that some of them harbored intI gene together with several ARGs and MRGs, suggesting the presence of multidrug resistant bacteria and that MRGs and integrons could be involved in the selection of ARGs. These results demonstrate that the Black Sea is not only an important reservoir of ARGs, but also that they accumulate in the deep water layers where co-selection with MRGs could be assumed as a relevant mechanism of their persistence. | 2022 | 36030962 |
| 7285 | 14 | 0.9997 | Human Activity Determines the Presence of Integron-Associated and Antibiotic Resistance Genes in Southwestern British Columbia. The dissemination of antibiotic resistant bacteria from anthropogenic sources into the environment poses an emerging public health threat. Antibiotic resistance genes (ARGs) and gene-capturing systems such as integron-associated integrase genes (intI) play a key role in alterations of microbial communities and the spread of antibiotic resistant bacteria into the environment. In order to assess the effect of anthropogenic activities on watersheds in southwestern British Columbia, the presence of putative antibiotic resistance and integrase genes was analyzed in the microbiome of agricultural, urban influenced, and protected watersheds. A metagenomics approach and high-throughput quantitative PCR (HT qPCR) were used to screen for elements of resistance including ARGs and intI. Metagenomic sequencing of bacterial genomic DNA was used to characterize the resistome of microbial communities present in watersheds over a 1-year period. There was a low prevalence of ARGs relative to the microbial population (<1%). Analysis of the metagenomic sequences detected a total of 60 elements of resistance including 46 ARGs, intI1, and groEL/intI1 genes and 12 quaternary ammonium compounds (qac) resistance genes across all watershed locations. The relative abundance and richness of ARGs was found to be highest in agriculture impacted watersheds compared to urban and protected watersheds. A downstream transport pattern was observed in the impacted watersheds (urban and agricultural) during dry months. Similar to other reports, this study found a strong association between intI1 and ARGs (e.g., sul1), an association which may be used as a proxy for anthropogenic activities. Chemical analysis of water samples for three major groups of antibiotics was below the detection limit. However, the high richness and gene copy numbers (GCNs) of ARGs in impacted sites suggest that the effects of effluents on microbial communities are occurring even at low concentrations of antimicrobials in the water column. Antibiotic resistance and integrase genes in a year-long metagenomic study showed that ARGs were driven mainly by environmental factors from anthropogenized sites in agriculture and urban watersheds. Environmental factors such as land-use and water quality parameters accounted for 45% of the variability observed in watershed locations. | 2018 | 29765365 |
| 7312 | 15 | 0.9997 | Sources of Antibiotic Resistance Genes in a Rural River System. The increasing prevalence of antibiotic resistance genes (ARGs) in the environment is problematic due to the risk of horizontal gene transfer and development of antibiotic resistant pathogenic bacteria. Using a suite of monitoring tools, this study aimed to investigate the sources of ARGs in a rural river system in Nova Scotia, Canada. The monitoring program specifically focused on the relative contribution of ARGs from a single tertiary-level wastewater treatment plant (WWTP) in comparison to contributions from the upgradient rural, sparsely developed, watershed. The overall gene concentration significantly ( < 0.05) increased downstream from the WWTP, suggesting that tertiary-level treatment still contributes ARGs to the environment. As a general trend, ARG concentrations upstream were found to decrease as proximity to human-impacted areas decreased; however, many ARGs remained above detection limits in headwater river samples, which suggested their ubiquitous presence in this watershed in the absence of obvious pollution sources. Significant correlations with ARGs were found for human fecal marker, and some antibiotics, suggesting that these markers may be useful for prediction and understanding of ARG levels and sources in rural rivers. | 2018 | 30272774 |
| 6846 | 16 | 0.9997 | Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters. Antibiotic resistance genes (ARGs) in urban rivers are a serious public health concern in regions with poorly planned, rapid development. To gain insights into the predominant factors affecting the fate of ARGs in a highly polluted urban river in eastern China, a total of 285 ARGs, microbial communities, and 20 physicochemical parameters were analyzed for 17 sites. A total of 258 unique ARGs were detected using high-throughput qPCR, and the absolute abundance of total ARGs was positively correlated with total organic carbon and total dissolved nitrogen concentrations (P < 0.01). ARG abundance and diversity were greatly altered by microbial community structure. Variation partitioning analysis showed that the combined effects of multiple factors contributed to the profile and dissemination of ARGs, and variation of microbial communities was the major factor affecting the distribution of ARGs. The disparate distribution of some bacteria, including Bacteroides from mammalian gastrointestinal flora, Burkholderia from zoonotic infectious diseases, and Zoogloea from wastewater treatment, indicates that the urban river was strongly influenced by point-source pollution. Results imply that microbial community shifts caused by changes in water quality may lead to the spread of ARGs, and point-source pollution in urban rivers requires greater attention to control the transfer of ARGs between environmental bacteria and pathogens. | 2017 | 28864929 |
| 7367 | 17 | 0.9997 | Persistence of antibiotic resistance from animal agricultural effluents to surface water revealed by genome-centric metagenomics. Concerns about antibiotic resistance genes (ARGs) released from wastewaters of livestock or fish farming into the natural environment are increasing, but studies on unculturable bacteria related to the dissemination of antibiotic resistance are limited. Here, we reconstructed 1100 metagenome-assembled genomes (MAGs) to assess the impact of microbial antibiotic resistome and mobilome in wastewaters discharged to Korean rivers. Our results indicate that ARGs harbored in the MAGs were disseminated from wastewater effluents into downstream rivers. Moreover, it was found that ARGs are more commonly co-localized with mobile genetic elements (MGEs) in agricultural wastewater than in river water. Among the effluent-derived phyla, uncultured members of the superphylum Patescibacteria possessed a high number of MGEs, along with co-localized ARGs. Our findings suggest that members of the Patesibacteria are a potential vector for propagating ARGs into the environmental community. Therefore, we propose that the dissemination of ARGs by uncultured bacteria should be further investigated in multiple environments. | 2023 | 37290355 |
| 6852 | 18 | 0.9997 | Distribution and co-occurrence patterns of antibiotic resistance genes in black soils in Northeast China. Black soils (Mollisols) are among the most important soil resources for crop production and food security. In China, they are mainly distributed in the northeastern region. To investigate soil antibiotic resistance distribution patterns and monitor soil quality, we randomly chose nine corn fields in Northeast China and analyzed the antibiotic resistance gene (ARG) distribution and co-occurrence patterns on the basis of high-throughput approaches and network analyses. High genetic diversity (136 unique genes) and low ARG abundances (10(-5)-10(-2) copies/16S rRNA gene copy) were detected, with relatively few interactions among ARGs. Type I integron genes were prevalent in the soil and were positively correlated with ARGs, which may increase the risk of ARG transmission. Most ARGs were strongly associated with microorganisms. Moreover, several ARGs were significantly correlated with antibiotics, nutrients, and metal elements. The generation and dissemination of ARGs, which were most likely mediated by mobile genetic elements (MGEs) and bacteria, were affected by environmental conditions. These results provide insights into the widespread co-occurrence patterns in soil resistomes. | 2022 | 35809539 |
| 6877 | 19 | 0.9997 | Exploring urban coastal areas: Investigating the urban coastal areas as a reservoirs of antibiotic resistance Genes★. Antibiotic resistance genes (ARGs) have long served as adaptive defensive mechanisms among bacteria, enabling their survival and propagation in challenging environments. The consequences of inefficient wastewater treatment have culminated the emergence of untreatable and lethal extensively drug-resistant. To understand the relationship between wastewater effluent and marine ecosystems, we conducted a study to monitor the diversity and prevalence of common ARGs in Hong Kong's urban coastal areas at different seasons. Our findings revealed that sul 1 was the most abundant resistance gene, with an average relative abundance of 4.45 × 10(-2) per 16s rRNA gene copy. Moreover, temperature, dissolved oxygen, and salinity were key factors influencing seasonal variations in total ARGs abundance. The influence of environmental factors varied based on ARGs' association with Intl1, with Intl1-associated ARGs strongly correlating with temperature and dissolved oxygen. Notably, despite their abundance, sul1 and mphA exhibited similar correlations with both Intl1 and key environmental factors, suggesting these ARGs share a common dissemination mechanism. Moreover, the robust association between resistance genes and mobile genetic elements (MGE) could potentially act as a valuable indicator for assessing the efficacy of removing ARGs in wastewater treatment methods when operating under carefully optimized environmental parameters. | 2025 | 39642594 |